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This study explores the dynamics of finite-size fibres suspended freely in a viscoelastic
turbulent flow. For a fibre suspended in Newtonian flows, two different flapping regimes
were identified by Rosti et al. (Phys. Rev. Lett., vol. 121, issue 4, 2018, 044501): one
dominated by time scales from the flow, and another dominated by time scales associated
with its natural frequency. We explore in this work how the fibre dynamics is modified
by the elasticity of the carrier fluid. For this, we perform direct numerical simulations of
a two-way coupled fibre–fluid system in a parametric space spanning different Deborah
numbers, fibre bending stiffness (flexible to rigid) and linear density difference between
the fibre and the flow (neutrally buoyant to denser-than-fluid fibres). We examine how
these parameters influence various fibre characteristics such as the frequency of flapping,
curvature, and alignment with the fluid strain and polymer stretching directions. Results
reveal that the neutrally buoyant fibres, depending on their flexibility, oscillate with
large and small time scales transpiring from the flow, but the smaller time scales are
suppressed as the polymer elasticity increases. Polymer stretching is uncommunicative
to denser-than-fluid fibres, which flap with large time scales from the flow when flexible,
and with their natural frequency when rigid. Thus the characteristic elastic time scale has
a subdominant effect when the fibres are neutrally buoyant, while its effect is absent when
the fibres become more inertial. In addition, we also explore the fibre’s bending curvature
and its preferential alignment with the flow to identify the other roles of viscoelasticity in
modifying the coupled fluid–structure dynamics. Inertial fibres have larger curvatures and
are less responsive to the polymer presence, whereas the neutrally buoyant fibres show
quantitative changes. The perceptible passivity of the denser fibres is again reflected in
the way they align preferentially with the polymeric stretching directions: the neutrally
buoyant fibres show a higher alignment with the polymer stretching directions compared
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to the denser ones. In a nutshell, the polymers exert a larger influence on neutrally
buoyant fibres, which are more reflective of the polymeric influence in the flow. The study
addresses comprehensively the interplay between polymer elasticity and the fibre structural
properties in determining its response behaviour in an elasto-inertial turbulent flow.

Key words: particle/fluid flow, viscoelasticity, isotropic turbulence

1. Introduction

Systems involving filament-like structures interacting with fluids are common in nature
and many industrial processes, such as microplastics in aquatic environments and pulp
production in paper-making (Lundell, Söderberg & Alfredsson 2011; Guasto, Rusconi &
Stocker 2012; Du Roure et al. 2019; Carichino, Drumm & Olson 2021), and are studied
also due to their similarities with the dynamics of complex systems, such as swimming
fish and flapping flags (Zhang et al. 2000; Tian 2013). Studies involving Newtonian fluids
(Parsa et al. 2012; Brouzet, Verhille & Le Gal 2014; Ni et al. 2015; Allende, Henry
& Bec 2018; Kuperman, Sabban & van Hout 2019; Sulaiman et al. 2019; Żuk et al.
2021) are more common compared to the research done on filaments interacting with
non-Newtonian viscoelastic fluids. However, filament–fluid interactions in the background
of viscoelasticity or ‘polymeric’ influence have gathered more attention recently owing to
their presence in many biological and industrial scenarios; to name a few, fluid transport
in biological and technological scenarios involving confined environments, such as cilia
that transport trapped particles out of the lungs from a viscoelastic mucus layer (Guo
& Kanso 2017), filament-like biological polymers such as actin (Gisler & Weitz 1999),
pulp fibre suspensions in the paper-making industry (Hearle & Morton 2008) and in the
development of nanocomposite materials wherein the nanotubes (Hobbie et al. 2003) are
essentially microscopic fibres, suspensions of which can also induce flow-induced gelation
and shear thickening (Perazzo et al. 2017).

In this work, we study the dynamics of elongated finite-size fibres immersed in a
tri-periodic domain forced by a cellular flow, thus dealing with a fibre–fluid viscoelastic
system in a highly turbulent flow regime. By ‘finite size’, we mean that the fibre has
a finite length, comparable to length scales in the inertial range of turbulence. The
presence of polymers introduces also (at least) an additional dimensionless number, called
the Deborah number (De), which is the ratio of the polymeric relaxation time scale Λ

over a characteristic time scale of the flow, say L0/Urms0 , L0 being the integral length
scale of the flow, and Urms0 the root mean square (r.m.s.) flow velocity. Yang & Fauci
(2017) modelled the motion of a single fibre dispersed in a polymeric cellular flow using
two-dimensional computations at very low Reynolds number, and noticed that the fibre
in a Newtonian fluid travels faster and buckles earlier in comparison to its viscoelastic
counterparts. Often experiments have been carried out to study the dynamics of fibres in
polymer-laden flows subject to simple shear flows, where there are interests in probing
whether the fibre gets aligned to the vorticity or the flow directions (Iso, Cohen & Koch
1996a; Iso, Koch & Cohen 1996b); there have been definite industrial interests in knowing
how the shear flow orients the semi-flexible nanotubes, and how the elasticity of the
viscoelastic melt influences the latter (Hobbie et al. 2003). Viscoelastic flows interacting
with non-massless deforming structures were studied with an IB-LBM method for the first
time by Ma et al. (2020), who found that viscoelasticity can hinder the three-dimensional
flapping motion of flags. Viscoelasticity is also reported to alter the beating patterns of
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Dynamics of fibres in viscoelastic turbulent flows

swimmers (filament-like), which in turn influences their swimming velocities and the
power dissipated (Fu, Wolgemuth & Powers 2008).

The studies mentioned above show irrefutably that the complexities associated with
viscoelasticity or non-Newtonian effects are intrinsic to most fibre–fluid interaction
systems. However, most of the literature has attempted to test the fibre dynamics under
very low Reynolds number flows and two-dimensional flow conditions, which although
they can provide clues to the key dynamics, do not unravel the complications arising out
of fluid turbulence. In this context, we attempt to track the fibre dynamics for the first time
using three-dimensional direct numerical simulations (DNS) in a homogeneous isotropic
turbulent viscoelastic flow, to investigate how the polymeric fluid turbulence influences
the fibre dynamics, and to analyse if there are qualitative features associated with this
system that are not captured by the two-dimensional simplifications in previous studies.
Indeed, filament–fluid interactions in past studies conducted in Newtonian turbulent flows
have shown that fibre bending stiffness and the linear density difference between the fibre
and flow play imperative roles in deciding the fibre’s flapping frequency. Oehmke et al.
(2021) measured Lagrangian time scales (related to spinning and tumbling) of inertial
fibres in turbulence, and reported that they scale with length and diameter of the fibre. It
was observed by Rosti et al. (2018) and Olivieri, Mazzino & Rosti (2022) that under the
right parametric combinations, the flexible fibres flapped approximately with the turbulent
eddy frequency at its length scale, and the stiffer ones flapped with their inherent natural
frequency. This observation suggested that fibres could be used to measure the two-point
statistics of the flow, at least in certain parametric regimes. It is also in the interests of the
present work to understand if viscoelasticity can modify the known dynamics discussed
above.

We attempt, for the first time, a systematic approach to study the fully coupled fibre–fluid
system at a high Reynolds number turbulent flow, where the fluid is viscoelastic. The
simulations are performed for a homogeneous isotropic flow subject to a cellular forcing,
with parametric variations in the polymer relaxation time, the fibre’s bending stiffness
(flexible and rigid fibres), and the linear density difference between fibre and flow (almost
neutrally buoyant and denser-than-fluid fibres). The fibre dynamics is tracked through
its flapping frequency, the bending curvature, and its alignment with the relevant fluid
quantities, to learn if viscoelasticity influences its course of action. The main open question
tackled by our study is the following.

(i) What is the dynamical response of a fibre (with rest length in the turbulent inertial
range of scales) when it is dispersed in a turbulent viscoelastic flow?

More specifically, we would like to focus on the fibre deformation measured through its
end-to-end displacement, and look at various aspects of it, such as the following.

(ii) How does the temporal and frequency dynamics of suspended fibres get influenced
in a parametric plane comprising its flexibility, its linear density difference with
respect to the fluid, and most importantly, the polymer relaxation time?

(iii) Can one quantify the effects of viscoelasticity on the fibre deformation (e.g. through
its curvature and bending energy)?

(iv) Is the alignment of the fibre with the flow (e.g. the principal directions of the strain
rate tensor) altered by the presence of polymers?
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Figure 1. (a) A qualitative snapshot from the DNS simulations for Reλ0 ≈ 310 and Deborah number De ≈ 7,
where fibres of various rigidities are dispersed in a tri-periodic domain. The three back planes are coloured
based on the trace of the polymer conformation tensor, and the red lines represent the fibres. (b) Schematic of
the fibre and the Lagrangian points.

Section 2 describes the methodology and details of computations carried out to execute
the study, § 3 discusses the results, and § 4 concludes the study.

2. Methodology

We consider finite-size flexible fibres with various bending rigidities γ and with lengths c
within the inertial range of scales, dispersed in a homogeneous isotropic turbulent flow in
a cubic domain of size Ld with periodic boundary conditions applied in all directions, as
shown in figure 1(a). The reference configuration is chosen such that the Taylor microscale
Reynolds number of the corresponding single-phase flow Reλ0 ≡ Urms0λ0/ν ≈ 310, where
Urms is the r.m.s. velocity, λ0 is the Taylor microscale, and ν is the kinematic viscosity. In
the flow, we inject a series of fibres with different flexibility, achieving a volume fraction
ΦV = Vs/Vf = 1.89 × 10−5, defined as the ratio of the volume of the dispersed phase
Vs = Ncπd2/4 to that of the fluid phase Vf = L3

d, where N is the number of fibres, d is the
diameter, and c is the unbent fibre length. This implies that the suspension is very dilute
and hence the overall back-reaction effects on the flow from the fibre are minimal.

Each fibre is modelled as a homogeneous, inextensible elastic filament evolving
according to the Euler–Bernoulli beam equation in a Lagrangian framework:

ρlẌ = ∂s(T ∂s(X )) − γ ∂4
s X − F , (2.1)

∂sX · ∂sX = 1, (2.2)

where X (s, t) is the fibre position based on the curvilinear coordinate s at time t,
ρl = ρ̃s − ρ̃f is the difference between the linear densities of the solid and the fluid, γ

is the bending stiffness (defined as the product of the elastic modulus and the second
moment of the area), T is the tension enforcing the inextensibility, and F is the effect
of the fluid acting on the fibre. Freely moving boundary conditions are imposed at both
fibre ends: ∂ssX |s=0,c = ∂sssX |s=0,c = T|s=0,c = 0. In this work, we consider both heavy
and almost neutrally buoyant fibres, with ρl = 1 and 10−3, and we vary the bending
stiffness over several orders of magnitudes in the range [10−8, 10−2]. We can define a
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non-dimensional bending stiffness γ ′ by comparing the inertial and bending terms, i.e. γ ′
= γ /ρlU2

rms0
L2

0, where L0 is the integral length scale of the flow, and obtain approximately
γ ′ ∈ [10−8, 10−1] for neutrally buoyant fibres and γ ′ ∈ [10−11, 10−4] for denser ones.
These values are comparable to those achieved experimentally by Gay, Favier & Verhille
(2018), where γ ′ ∈ [10−6, 106]. A schematic of the fibre is shown in figure 1(b), where
x1, x2 and x3 are the coordinate axes corresponding to the Eulerian frame of reference,
and nl is the number of Lagrangian points on the fibre, taken as 25 here. Suppose that X 1
and X 2 are the Lagrangian coordinates of the fibre tips. Then the end-to-end displacement
is defined as |X 2 − X 1|. In this study, we characterise this quantity, which represents an
effective fibre deformation (mainly quantifying its bending).

The fluid flow is governed by the incompressible Navier–Stokes equations for a
viscoelastic fluid:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ + ρ( ffib + fturb), (2.3)

∇ · u = 0, (2.4)

where u(x, t) and p(x, t) are the velocity and pressure fields, ρ is the fluid density,
τ is the stress tensor, and ffib is the feedback forcing from the fibre. Here,
fturb is the external forcing term used to sustain turbulence, chosen to be the
Arnold–Beltrami–Childress forcing (Dombre et al. 1986) given by fturb = ν(A sin z +
C cos y, B sin z + A cos z, C sin y + B cos z) with constant parameters A = B = C = 1.

The stress tensor τ is the sum of two contributions coming from the solvent and polymer
(Comminal, Spangenberg & Hattel 2015), i.e. τ = τS + τP, with τS = 2ηsD and τP =
G0fS(c), where ηS = βηt is the solvent viscosity, β is the solvent to total viscosity ratio,
chosen to be equal to 0.9, and the rate of deformation tensor is D = (∇u + ∇uT)/2. Also,
G0 = (1 − β)ηt/Λ is the polymeric elastic modulus, Λ is the relaxation time, and fS(c) is
a strain function expressed in terms of the conformation tensor c, which is representative
of the orientation of the polymer chains. A matrix log-conformation formulation (Fattal &
Kupferman 2004, 2005; Izbassarov et al. 2018) is used to solve the above equation, where
the variable Ψ = log c is invoked, and the transport equation is modified as

∂Ψ

∂t
+ (u · ∇)Ψ − (ΩΨ − Ψ Ω) − 2E = − 1

Λ
exp(−Ψ ) fR[exp(Ψ )], (2.5)

where Ω and E are pure rotation (antisymmetric) and pure extension (symmetric traceless)
matrices, obtained from the projection of the velocity gradient into the principal base of the
stress tensor (Fattal & Kupferman 2004), and fR is the relaxation function. In the present
work, we consider Oldroyd-B fluids, which have the strain and relaxation functions fS(c) =
fR(c) = c − I , where I is the identity matrix (Comminal et al. 2015). The conformation
tensor c is normalised such that at equilibrium, it turns out to be an identity matrix.

The fluid governing equations (2.3)–(2.5) are solved using the fractional step method on
a staggered grid, in a domain of length Ld = 2π that is discretised into a uniform Eulerian
grid with 5003 cells, which ensures that the ratio between the Kolmogorov dissipative
length scale and the grid spacing is η0/
x ≈ 0.5. The adequacy of the grid resolution
has also been tested by comparing with results of a 10243 cell grid in the single-phase
flow. The number of Lagrangian points nl on the fibre of length c is decided such that
the spatial resolution 
s = c/(nl − 1) is approximately equal to the Eulerian grid spacing

x. The in-house-developed solver Fujin (see https://groups.oist.jp/cffu/code) – validated
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Ld Reλ0 Urms0 ε0 η0 L0 ρ ν β Λ N c d γ ρl

2π 310 6.6 62 0.0068 2.5 1 0.005 0.9 0.1, 0.3, 2.7 14 0.3 ≈ 3 
x [10−8, 10−1] 10−3, 1

Table 1. Values of parameters used in the study: the domain length Ld , the Taylor-scale Reynolds number
Reλ0 , the r.m.s. velocity Urms0 , the dissipation rate ε0, the Kolmogorov length scale η0, and the integral length
scale L0 of single-phase flow, density ρ and kinematic viscosity ν of the fluid, the solvent to total viscosity
ratio β, the polymer relaxation time Λ, the number of fibres N, the fibre length c and diameter d, the bending
stiffness γ , and linear density difference ρl. The range of γ is spanned in logarithmically equispaced steps.

extensively in a variety of problems, including fibres dispersed in turbulent flows (Olivieri
et al. 2022) – has been used. The solver is parallelised using MPI and the 2decomp library
for domain decomposition. Second-order central finite differencing is used for spatial
discretisation, and the Adams–Bashforth scheme for temporal discretisation. Table 1
summarises the values of all the parameters used in the study. We first ran the single-phase
configuration without fibres until we obtained a statistically steady state, which was then
used to run a non-Newtonian simulation without fibres. Finally, the obtained flow fields
were used as initial conditions to run the fibre–fluid cases, where the fibres are released
randomly in the domain.

The mutual interactions between the solid and fluid phases are enforced via singular
force distributions acting on the fibre and flow, implemented in the setting of an immersed
boundary method (Huang, Shin & Sung 2007; Rosti et al. 2018). The material points of
the immersed fibre are forced to move with the fluid velocities at those points through a
no-slip condition Ẋ = u(X , t), where X = X (s, t) is the position of a fibre material point,
and u = u(x, t) is the fluid velocity field. The fluid velocity at the position of the fibre
Lagrangian point, U = u(X (s, t), t), is obtained by interpolating the fluid velocity at the
Eulerian nodes around the Lagrangian point as

U(X (s, t), t) =
∫

u(x, t) δ(x − X (s, t)) d3x, (2.6)

where δ is the Dirac delta function. The interpolated velocity U is used to compute the
fluid–structure forcing term, represented as

F (s, t) = Υ (U − Ẋ ), (2.7)

where Υ is a large negative constant (Goldstein, Handler & Sirovich 1993; Huang et al.
2007) with value −10. Finally, the forcing on the fluid from the fibre is calculated as

ffib(x, t) = 1
ρ

∫
s

F (s, t) δ(x − X (s, t)) ds. (2.8)

In order to examine if there is a spatial inhomogeneity or clustering due to the
fibres, the probability density function of the distance between fibres was computed at
a low De and from an instantaneous snapshot. It was seen that the fibres were at a
distance of approximately 10 fibre lengths. This implies that the fibres are distributed in a
homogeneous manner in the domain owing to their low volume fraction, and the chances
of spatial clustering are rare, hence those effects are not considered in further analysis
here.
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3. Results

3.1. Flow dynamics

We start the analysis by plotting the turbulent kinetic energy E (normalized with ε
2/3
0 η

5/3
0 ,

where ε0 is the turbulent dissipation rate of the single phase flow), as a function of
the wavenumber k/kη0 (kη0 being the wavenumber corresponding to the Kolmogorov
length scale defined as 2π/η0) at three different Deborah numbers, De ≈ 0.3, 1, 7,
to identify if viscoelasticity has played a role in bringing deviations to the classical
Kolmogorov spectrum, where E(k) ∝ kp with p = −5/3, which is the Kolmogorov scaling
(K41). It is seen that at the lowest De (≈ 0.3), the spectrum follows the Kolmogorov
scaling, as the non-Newtonian effects are weak. As De increases to 1, the scaling
behaviour is modified: an increasing amount of energy is transferred by the elasticity
of the polymers, which alters the spectra to achieve a different scaling coefficient
p = −2.3. Such a scaling behaviour has been elucidated already in non-Newtonian
flows without dispersed particles, and has been addressed as an ‘elastic scaling’ in
experimental and numerical studies (Zhang et al. 2021; Rosti, Perlekar & Mitra 2023).
The range of k over which the scaling is valid is called the ‘elastic’ range, and this
case turns out to be a clear case of the interaction of elastic and inertial turbulence.
This modified scaling does not persist with a further increase in the Deborah number,
and the flow recovers the classic Kolmogorov scaling, as shown for De ≈ 7. Thus
the spectral character of the fluid shows a non-monotonic trend in the presence of
polymers, confirming what has been identified in the literature earlier (Rosti et al. 2023).
A possible reason for this behaviour is as follows (Singh & Rosti 2023). The polymeric
term ((1 − β)ηt/Λ)∇ · c is close to 0 at low De, as the polymers stretch minimally and the
K41 scaling persists. At De ≈ 1, the time scales of polymer and flow become comparable;
additionally, ∇ · c also becomes large as the polymers stretch more, hence a multi-scaling
spectrum occurs. At higher Deborah numbers, the polymers, with very large relaxation
time (Λ → ∞), cannot follow the carrier flow, or are rather decoupled from the flow,
resulting in a return of the Newtonian scaling. In this study, this behaviour is also present
since the flow is dilute, and fibre-induced modulation is negligible. In other words, fibres
can be expected to be mere carriers of the information pertaining to the flow, and can
possibly be reflective of the polymeric influence in the flow, if any. The inset of figure 2
shows Reλ (based on the fluid dissipation rate and r.m.s. velocity in the polymeric flow)
for each of the three Deborah numbers, which is clearly seen to increase with respect to
the single-phase flow (shown with a dotted line), as the fluid dissipation rate drops due to
the presence of polymers.

Following this, we perform a scale-by-scale budget analysis at the intermediate Deborah
number De ≈ 1 to obtain the flux of kinetic energy

εinj = εf + εp = Πf (k) + Df (k) + P(k) + Πfs(k) + Fturb(k). (3.1)

Here, εinj is the total injected dissipation rate, εf and εp are the corresponding components
from the fluid and the polymer, and Πf , Df , P, Πfs and Fturb are the flux contributions
from the nonlinear term, viscous term, polymeric stresses, the fluid–structure coupling
and the external forcing, respectively. The variation of each of the above flux components
(normalised with εinj), as a function of wavenumber (normalised with kinj, the forcing
wavenumber) is shown in figure 3(a). An overall observation shows that the contribution
from the forcing Fturb prevails only at the lowest wavenumber, and that the fluid–structure
coupling Πfs is negligible as the volume fraction of the fibres is very low. The nonlinear
term Π dominates at low wavenumbers, taken over by the fluid dissipation Df at higher
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Figure 2. Energy spectra of the turbulent polymeric flows at different Deborah numbers De. The vertical
dashed line represents the wavenumber corresponding to the fibre length. The inset shows the resulting Taylor
Reynolds number Reλ for each of the cases.
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Figure 3. (a) Flux contributions from (3.1) (normalised with the turbulent energy dissipation rate) plotted with
respect to the wavenumber k, at De ≈ 1. (b) The variation of the nonlinear energy flux Πf , fluid dissipation
Df , polymer flux Πp and polymeric dissipation Dp. The vertical dashed lines represent the wavenumber
corresponding to the fibre length.

k values, which eventually saturates to εf . However, at this Deborah number, the effects
from the polymer stresses P dominate Df , as one of the effects of polymers is to increase
the effective dissipation (Lumley 1973; Hinch 1977; Bird, Armstrong & Hassager 1987).
However, P is not a purely dissipative term, which is evident through its non-monotonic
behaviour with k. Rosti et al. (2023) proposed to break down P as

P(k) = Πp(k) + Dp(k), (3.2)

where

Dp(k) = εp

εf
Df (k). (3.3)

Here, Dp is a purely dissipative component that saturates to the polymeric dissipation
rate εp, and Πp a nonlinear component from the polymer contribution alone. Further,
they evaluated the range over which the elastic scaling is valid by simultaneously plotting
Df , Πf and Πp, which for the present case is shown in figure 3(b). At low k, the flux
is carried predominantly by the solvent Πf , which diminishes as k increases, while the
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polymeric flux Πp increases. The crossover k between these two fluxes is identified
as kp, and the crossover between Πp and Dp (or Df ) is defined as kη′ , which is the
wavenumber when any of the dissipation dominates (Rosti et al. 2023). The intermediate
range kp < k < kη′ is the elastic range. This exercise has been done in the current context to
show that the wavenumber corresponding to the fibre length scale c, equal to kc/kinj ≈ 21
(corresponding to the dashed vertical line in figures 2 and 3 at k/kη0 ≈ 0.02) falls within
this elastic regime. In other words, the fibre is in a range of length scales that is dominated
by the fluid elasticity.

3.2. Fibre dynamics

3.2.1. Flapping frequency
We now turn our focus to identifying the dominant flapping dynamics of the fibres across
different Deborah numbers, primarily by looking at their frequency of flapping. The
flapping frequency of fibres interacting with fluids is indeed a well-probed quantity in
previous works, due to the interesting transitions that it shows with respect to various
parametric variations. Notable mentions in this context are the works by Rosti et al. (2020)
and Olivieri et al. (2022), wherein the potential of finite-size flexible fibres to measure
relevant two-point statistics of turbulence was highlighted. Mainly, two qualitatively
different dynamical regimes were identified: (i) one controlled predominantly by the flow
time scales, with the fibres acting as a representative of the turbulent flow; (ii) another
controlled by the fibre’s natural frequency, in which the effects coming from the carrier
flow are negligible. Extending this analysis in the context of a viscoelastic flow scenario
for a dilute configuration of dispersed particles is one of the main focuses of this study.
We perform a detailed analysis to evaluate the frequency content of the fibre response
using a continuous-time wavelet transform and fast Fourier transform on the end-to-end
displacement (y) of fibres with different bending rigidities γ , at various Deborah numbers.
A goal of this work is to recognise if the fibre at some/all parametric combinations is
reflective of changes in the fluid due to the presence of polymers. In this context, it is
worth mentioning certain important frequency values associated with the system: (i) the
large eddy turnover frequency fl = Urms0/L0, where Urms0 is the r.m.s. velocity associated
with the single-phase flow, and L is the integral length scale; (ii) the eddy-frequency at
the fibre’s length scale fc ≈ c−2/3ε1/3, where ε is the turbulent dissipation rate of kinetic
energy, and the formula holds for Newtonian fluids; (iii) the frequency associated with the
polymer stretching, fΛ = 1/Λ; and (iv) the fibre natural frequency (from a normal mode
analysis of (2.1)) given by fnat = α

√
γ /(ρlc4) (where α ≈ 22.4/π).

The time histories of the end-to-end displacement y normalised with the fibre unbent
length c are used to explore its frequency behaviours. Note that fast Fourier transforms are
useful in capturing the global frequency features of the responses, in contrast to wavelets,
which are time–frequency transforms that help to analyse the local characteristics in time.
Hence a complementary analysis based on both is useful in the analysis of such highly
non-stationary signals, thus such an approach has been used in this work to analyse the
flapping frequencies. Figure 4 shows the time histories and their wavelets for two extreme
values of rigidities, at γ = 10−8 (flexible, figures 4a,b) and γ = 10−2 (rigid, figures 4c,d).
Figures 4(a,c) and 4(b,d) show the cases at two different values of linear densities, ρl =
10−3 and ρl = 1, respectively. The former represents an approximately ‘neutrally buoyant’
scenario, and the latter corresponds to ‘denser-than-fluid’ fibres; these terms will be used
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Figure 4. Time histories and wavelet transform of the fibre end-to-end displacement at the smallest
Deborah number De ≈ 0.3 for fibres that are (a) neutrally buoyant, flexible (ρl = 10−3, γ = 10−8),
(b) denser-than-fluid, flexible (ρl = 1, γ = 10−8), (c) neutrally buoyant, rigid (ρl = 10−3, γ = 10−2),
(d) denser-than-fluid, rigid (ρl = 1, γ = 10−2).

from here onwards. As a starting point, we discuss the flexible fibre in figures 4(a,b).
Clearly, the two cases show definite differences: the time histories of neutrally buoyant
fibres show rapid variations, fluctuating intermittently between amplitudes as low as 0.1
to amplitudes as high as the fibre’s initial length itself (y/c = 1). On the contrary, the
fluctuations are more bounded around similar amplitudes for the denser fibre, with a mean
value at approximately 0.4. With respect to the frequency content of the signal, at low
γ , it can be seen that the neutrally buoyant responses are dominantly characterised by a
broad spectrum of frequencies f /fl ≈ 0.05–3 (figure 4a), whereas the denser fibre shows a
relatively narrower spread of frequency values around or below f /fl ≈ 1 (figure 4b). Note
that frequencies are normalised with the large eddy turnover frequency fl.

For the rigid fibre, for neutrally buoyant (figure 4c) and denser (figure 4d) fibres, the
time histories convey that the fibre tends to remain in a more unbent configuration, and
the frequency behaviours vary drastically across the two linear densities. As the fibre gets
more rigid, it starts flapping with higher frequencies; see e.g. figure 4(c), where peaks
appear up to f /fl ≈ 10. This may be caused by the different shape of the fibre itself. Rigid
fibres deform less, or are closer to the initial unbent configuration, and thus can react
to small-scale as well as large-scale flow structures around them, resulting in small as
well as large time scales in the fibre spectrum. The rigid, denser fibre (figure 4d) shows
a band of frequency at f /fl ≈ 3, which corresponds to the natural frequency fn/fl at this
γ . The four different cases compared in figure 4 suggest that the flapping dynamics of
the fibre (temporal and spectral) is strongly influenced by its density and rigidity: the
neutrally buoyant fibres flap with a broader spectrum of fluid time scales, with very large
time scales when they are flexible, and a combination of large and smaller time scales as
they become more rigid. The denser fibres, however, are limited in their spectrum, with
very large time scales related to the flow when they are flexible, or the fibre’s natural
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Figure 5. Frequency distribution of the fibres from the wavelet analysis, for De ≈ 0.3, 1, 7, for (a,c,e)
neutrally buoyant fibres (ρl = 10−3) and (b,d, f ) denser-than-fluid fibres (ρl = 1).

frequency as they become rigid. The above discussion through wavelets was made to
develop an understanding of how the fibre flaps at low Deborah number, close to the
classical Newtonian scenario. It is in this picture that we attempt to characterise the effects
of polymer elasticity on the flapping dynamics of the fibre in the next part of the paper.

As a next step, we attempt to confirm the existence of this behaviour across different
Deborah numbers De in figure 5: the abscissa represents the frequencies exhibited by
the fibre, and the ordinates show their magnitude. Figures 5(a,c,e) and 5(b,d, f ) show
neutrally buoyant and denser fibres, respectively, and the three rows correspond to Deborah
number increasing from top to bottom, with each plot showing the variation in γ s. To
plot each of these figures, a wavelet analysis (as shown earlier) was performed first. Then
the magnitudes of the wavelet transform of each frequency were averaged in time and
subsequently plotted as a function of the frequencies in figure 5. Such an approach has
been used to explain and help to visualise the dominant and most relevant frequencies to
the system, which are otherwise inherently encapsulated by the variety of time scales and
noise introduced by the turbulence. Essentially, we see the same information as in figure 4,
but with the temporal effects now averaged out.
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We classify the frequencies exhibited by the fibres into two different categories,
addressed as low-frequency/large time scale and high-frequency/small time scale regimes,
shaded by grey and white regions in figure 5. To visualise specific details of the dynamics,
the main plots are represented in a log-linear scale, whereas the insets are shown in a
log-log format. The low-frequency regime is due to the large-scale eddies in the flow,
while the high-frequency window is from the small-scale eddies or the natural frequency
fn of the fibre itself. We will show now that the flapping frequency of the fibre is dictated
by one of these frequencies in each regime, or a combination of them depending on γ , ρl
and De.

First, we examine the dynamics for the neutrally buoyant case (figures 5a,c,e) at all
three Deborah numbers. The different colours represent the bending rigidities γ , with
γ ∈ [10−8, 10−2] in steps of 10−1, roughly increasing from top to bottom. The blue dashed
vertical line represents the normalised polymeric frequency fΛ/fl. Consistent with the
previous observations in figure 4, at the lowest De (figure 5a), low-γ fibres are influenced
mainly by the large time scales, with the contribution from the smaller time scales growing
as the rigidity increases (see inset). Indeed, at the highest γ values, high-frequency peaks
up to f /fl = 10 start emerging. Physically, this means that the flexible fibres are controlled
mainly by the large-scale structures of the flow, and as the fibre becomes more rigid, it
starts being affected also by the smaller eddies around it. At the intermediate De ≈ 1
(figure 5c), the polymeric frequency shifts left as it is an inverse function of De. We would
like to see if there is a difference in the fibre flapping with this change. The main plot
shows that there is no spread in frequencies as at the lowest De: indeed, frequencies are
peaking around f /fl ≈ 0.4 and the high frequencies are less evident for the rigid fibres
(inset). As De is increased further, and fΛ shifts further leftwards (figure 5e), a significant
reduction in the magnitude of the high frequencies can be seen for both low and high
γ . Overall, there seems to be a subdominant resonating effect between the excited time
scales and the polymeric time scale, resulting in the dominant fibre flapping peaks shifting
to smaller values as the polymeric frequency reduces. In other words, the results suggest
that an increase in the polymer relaxation time also suppresses the smaller time scales,
which are otherwise picked up the fibre. The effects observed in the Lagrangian spectra
of the fibre seem to be correlated to what is already known regarding the role of polymers
in influencing the turbulent flow structures, i.e. that polymers smooth out small-scale
structures and eddies in the flow, and the same effect is transferred to the dynamics of
the fibres. Indeed, as the small-scale structures of the flow are damped with increasing De,
the fibres flap with larger time scales.

Next, we discuss the flapping dynamics of the denser-than-fluid fibres in
figures 5(b,d, f ). The major differences are: (i) compared to the neutrally buoyant case,
there is no discernible high-frequency regime at low γ values, and the fibre flaps primarily
with the largest time scales of the flow; (ii) as γ is increased, a singular high-frequency
peak is triggered, corresponding to the fibre natural frequency fn/fl, represented by the
black circles in the plots. These features are persistent across all the Deborah numbers,
indicating a reduced effect of the polymers on the fibre dynamics as they get more inertial.

We show a global picture of the frequencies via the dominant flapping frequencies
obtained from a fast Fourier transform of the fluctuation of the end-to-end displacement,
plotted as a function of γ in figure 6. Note that we report in the figure results from
additional simulations with γ = 10−1 and 1 for the denser fibres. In particular, we plot
the average of all the frequencies captured by the Fourier analysis that have at least 90 %
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Figure 6. The flapping frequency of the fibre from a Fourier analysis, as a function of the bending rigidity γ .
The inset reports a zoomed view of the same plot in a log-log scale. For dense fibres, we include results from
additional simulation with γ = 10−1 and 1.

prominence as the most dominant peak. The black dashed line in the figure corresponds
to the large eddy turnover frequency fl, while the red dashed line corresponds to the
natural frequency fn, with all the frequencies being normalised with fl. The most important
features are: (i) there are flow-driven and fibre-driven flapping regimes; (ii) the denser
fibres fall into either of these regimes depending on γ , and show minimum sensitivity
with respect to De; (iii) the neutrally buoyant fibres always fall in the flow-driven regime,
but show more sensitivity to the variation in De. Numerical simulations of rigid fibres
moving in laminar flows by Cavaiola, Olivieri & Mazzino (2020) and in turbulent flows
by Brizzolara et al. (2021) revealed that as the fibre inertia (linear density) increased, the
ability of the fibre to be representative of the flow or to measure two-point flow statistics
diminishes. Few analogies on the same lines can be drawn here: the denser fibre sees less
changes in the flow when De increases, whereas the polymeric fluid flow influences the
flapping behaviour of the neutrally buoyant fibres.

3.2.2. Curvature of the fibres
The curvature κ exhibited is another characteristic feature representative of the fibre whose
relevance stems from the fact that it is a measure of the flexibility of the body. For example,
it was shown experimentally that the extent of flexibility of a filament changes its transport
properties in a cellular flow (Wandersman et al. 2010), thus tracking the effects of the
relevant control parameters on this observable can possibly be a pathway to identify the
overall system dynamics.

We define κ as
√

(x′′(s))2 + ( y′′(s))2 + (z′′(s))2, where (x, y, z) are the Lagrangian
coordinates, and ′′ indicates the second derivative with respect to s. The average of the
maximum curvature of each fibre calculated over different Lagrangian points over a few
snapshots of time is plotted (dotted lines) in figure 7(a), for both the neutrally buoyant
fibres (open circles) and the denser case (closed circles). Also, the average of the mean
curvature is represented (solid lines) for neutrally buoyant fibres (open squares) and
the denser case (closed squares). The denser-than-fluid fibres show a higher curvature
compared to the neutrally buoyant case, a consequence of the former being more inertial.
This can be interpreted by balancing inertial forces ρlẌ and bending forces γ ∂4

s X ; ∂2
s X

being the curvature, it can be seen that as ρl increases, the curvature can indeed increase for
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Figure 7. (a) Curvature and (b) elastic energy stored by the neutrally buoyant and denser fibres at various De.
Open and closed symbols are used to distinguish neutrally buoyant and denser cases, respectively, while in (a),
we use dotted and solid lines to distinguish the maximum and mean curvatures.

the same γ . The curvature κ decreases with increasing stiffness γ , being almost constant
with high values for flexible fibres, transitioning into lower values for highly stiff fibres
through an intermediate regime with interim values. The variation of the curvature with
De shows a non-monotonic trend at the intermediate De in the neutrally buoyant scenario.
The elastic energy stored by the fibres defined as Eel = ∫ c

0
1
2γ κ2 ds is plotted in figure 7(b).

The denser fibres have higher elastic energy, consistent with their overall larger curvature,
but seem to be unaffected by De, whereas an evident drop is exhibited by the neutrally
buoyant fibres as De changes from 0.3 (low) to 1 (interim), which recovers when De is
increased further.

To better perceive how the fibre shape deforms, we further probe into the fibre curvature
by plotting in figure 8(a) temporally averaged κ of each fibre as a function of its normalised
length s/c. Figures 8(a,c,e) and 8(b,d, f ) respectively show the neutrally buoyant and
denser cases, with figures 8(a,b), 8(c,d) and 8(e, f ) representing De ≈ 0.3, 1 and 7,
respectively. Clearly, as rigidity increases, κ decreases for all cases. For the highest γ ,
the neutrally buoyant fibres are almost in an unbent configuration in comparison with
the denser ones at the highest γ (compare the abscissa of figures 8a,b), which exhibits a
unimodal shape. The denser fibre further becomes bimodal and multimodal from thereon
as γ decreases, eventually becoming a highly flexible and deformable body. This happens
also for the neutrally buoyant fibres, but at much lower γ ; indeed, for the same rigidity,
the deformation and magnitudes of the neutrally buoyant fibres are lower compared to the
denser ones.

Figures 8(a,b) ascertain that for the same stiffness, fibres of higher linear density
buckle to a higher extent in comparison to the neutrally buoyant ones (see the green
colours). In other words, a dynamical transition to buckling from an unbent configuration
is easily initiated when the fibres are more inertial. When investigating if viscoelasticity
further hinders this behaviour, we observe that the deformations of the neutrally buoyant
fibres (figures 8a,c,e) are slightly affected by viscoelasticity, while the denser fibres are
insensitive to variations in fluid elasticity (figures 8b,d, f ). It is known that capsules in
an Oldroyd-B shear flow experience monotonically decreasing or increasing deformations
depending on the level of elasticity, and that the three-dimensional flapping of a flag is
hindered by viscoelasticity (Ma et al. 2020). Fu et al. (2008) defined a bending scale
for filament-like swimmers (higher for stiff filaments, and smaller for flexible filaments
deforming due to fluid forces), and reported that viscoelasticity increased this bending
scale. This was correlated to the beating patterns of swimmers changing from travelling
waves to standing waves as Deborah number increased. All these studies were conducted at
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Figure 8. The curvature κ plotted as a function of the normalised length s/c, along the fibre length at
(a,b) De ≈ 0.3, (c,d) De ≈ 1, and (e, f ) De ≈ 7, for (a,c,e) neutrally buoyant and (b,d, f ) denser cases.

lower Reynolds numbers, where the fluid turbulence was not relevant, whereas the present
study extends this understanding to turbulent scenarios in a broader parametric setting.
Scrutinising the effects of viscoelasticity on the filament deformations along similar lines
as the above-discussed studies leads one to conclude that increased polymer stretching can
influence the fibre curvature quantitatively, but does not impact it qualitatively.

3.2.3. Alignment
We now try to understand whether there is a preferential alignment of the fibre towards
specific flow quantities such as the principal direction of strain rate or that of the
conformation tensor. In turbulent mixing, it is of interest usually to understand how
material fluid elements orient with components of velocity gradient tensor (Guala et al.
2006). Flow-induced fibre alignment has a significant influence on the properties of
composite materials, such as those made by processes like injection molding. This
property is also highly dependent on the configuration: e.g. in homogeneous isotropic
turbulence flows, fibres are known to usually align with the intermediate eigenvector of
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the strain rate tensor, whereas for channels, they are a function of the channel height,
largely influenced by the coherent structures (Cui et al. 2021). Clearly, the alignment can
also be influenced by viscoelastic stresses; experiments with low Reynolds number simple
shear flows have shown that orientation of semi-dilute fibre suspensions in weakly (Iso,
Koch & Cohen 1996b) and highly (Iso et al. 1996a) elastic fluids change in comparison
to their aligned directions in Newtonian flows (Stover, Koch & Cohen 1992). Further, this
trend itself showed a complex set of behaviours based on the fibre concentration (Iso et al.
1996a,b).

The fibre’s local orientation (considering segments connecting two Lagrangian points)
with the local fluid flow is computed instantaneously, and after adopting a coarse-graining
procedure, the existence of a preferential alignment with any of the principal directions (êi)
of the strain rate and of the conformation tensor are explored. The three principal directions
are chosen as imin, iinter, imax corresponding to eigenvalues χ such that χmin < χinter <

χmax, respectively. Usually, the eigendirection corresponding to χmax corresponds to the
most extensional direction, and χmin corresponds to the eigenvalue of the least extensional
direction.

In figure 9, we consider only the neutrally buoyant fibres and show the alignment of
the fibre’s orientation with the strain rate principal directions (figures 9a,c,e) and with
the conformation tensor principal directions (figures 9b,d, f ) at De ≈ 0.3, 1, 7 (top to
bottom). The solid, dashed and dotted lines correspond to imin, iinter and imax, respectively.
Two extreme values of γ are chosen, corresponding to flexible (γ = 10−8, red) and rigid
(γ = 10−2, green) fibres. It can be seen that for all three Deborah numbers, the fibres
are mainly aligned with the intermediate eigenvectors (iinter) of the strain rate, and with
the most extensional direction (imax) of the conformation tensor. The anti-alignment with
the least extensional direction (imin) persists instead in both cases. It is also interesting to
note that the variations of these trends for flexible and rigid fibres are negligible. Statistics
of alignment of neutrally buoyant slender, microscopic fibres in homogeneous isotropic
Newtonian flows (Pumir & Wilkinson 2011; Ni et al. 2015) showed a tendency to align
with iinter, to be mostly perpendicular to imin, and have no particular alignment with imax,
in agreement to figures 9(a,c,e) here. Despite that, in polymeric flows the fibres are seen
to align more with the most extensional direction of the polymeric tensor.

Major differences observed in the alignment of the denser-than-fluid fibres (figure 10)
are that (i) the flexible and rigid fibres behave differently, and (ii) the alignment of the
fibres with the polymeric tensor principal directions changes with the Deborah number,
although with lower probabilities compared to their alignment with the velocity gradient
tensor. At De ≈ 0.3 (figure 10a), the fibre is still aligned with the intermediate eigenvector
of the strain tensor, but it is anti-aligned with the most and least extensional directions. This
alignment and anti-alignment trend is modified with the conformation tensor (figure 10b),
where the fibre is anti-aligned with the intermediate direction and aligned with the least
and most extended directions. This behaviour is visible only for the most rigid fibres, while
the flexible ones are nearly uniformly distributed, indicating no preferential direction.
Further, as De increases, the trends with respect to the strain rate matrix hold similar
to the previous case (figures 10c,e), while with the conformation tensor we see a change:
the alignment of the rigid fibres with the most extended direction vanishes at De ≈ 1
(figure 10d), and returns at the larger value of De (figure 10 f ). In short, the preferential
alignment of the denser-than-fluid fibres is a function of the rigidity as well as the Deborah
number. Also, consistently with the previous observations of this study, they do not quite
follow the polymeric extensional direction of the neutrally buoyant fibres.
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Figure 9. Probability density functions (p.d.f.s) of the alignment of neutrally buoyant fibres with the principal
directions of (a,c,e) the strain rate tensor and (b,d, f ) the conformation tensor, at (a,b) De ≈ 1, (c,d) De ≈ 3,
and (e, f ) De ≈ 7. Solid, dashed and dotted lines correspond to imin, iinter and imax, respectively.

Dotto & Marchioli (2019) investigated the orientation of inertial flexible fibres in
channel flow, for different lengths and Stokes numbers of the fibre. Although a function of
the channel height, it was reported that the fibre mean orientations in the streamwise and
wall-normal directions showed a lesser tendency to align preferentially with the flow as
the fibre inertia increased. The authors also mention that the fibre flexibility plays only a
secondary role when fibre inertia is large enough. Analogously, here we also observe that
an increase in fibre inertia influences the alignment of fibres, and that flexible fibres show
no preferential alignment.

3.2.4. Preferential sampling
Finally, we investigate the preferential sampling of fibres. To do so, we compare the trace
of the conformation tensor around the fibres (measured in a Lagrangian way) and that in
the whole domain (measured in an Eulerian way). Note that the trace is a direct quantifier
of the extension of the polymers, and the objective here is to find out to what extent the
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10–8 10–2γ

imin iinter imax

(a) (b)

(c) (d)

(e) ( f )

Figure 10. Probability density functions of the alignment of denser-than-fluid fibres with the principal
directions of (a,c,e) the strain rate tensor and (b,d, f ) the conformation tensor, at (a,b) De ≈ 1, (c,d) De ≈ 3,
and (e, f ) De ≈ 7. Solid, dashed and dotted lines correspond to imin, iinter and imax, respectively.

fibres see the polymer stretching. Figure 11(a) shows the trace of the conformation tensor
experienced by the fibres for the three different values of De, at a fixed value γ = 10−8.
The black curves correspond instead to the Eulerian data. Both shift towards the right to
higher values with increasing Deborah number, a direct effect of the increasing polymer
extension with De. The probability density functions of the trace of the conformation
tensor in the domain exhibit a very wide distribution at all De, positively skewed. The
Lagrangian distributions show a similar shape, but with larger mean values and reduced
tails; thus fibres do not sample the whole regions of maximum polymer stretching. Denser
fibres tend to sample more regions of high polymer extension at low De, while the opposite
is evident at larger Deborah numbers. Figures 11(b,c) show the means and standard
deviations of the neutrally buoyant and denser fibres, respectively. Evidently, there is not
much effect on the stiffness of the fibre, whereas the rate of increase in trace with respect to
De is slightly higher for the neutrally buoyant fibres. Nevertheless, the fibres not sampling
the regions with extreme polymer stretching can be the reason for the moderate effect of
the Deborah number on their dynamics.
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Figure 11. (a) Probability density function of the trace of the conformation tensor (black) measured in the
whole domain and (colours) perceived by the fibres, i.e. measured in a Lagrangian way. Dashed and dotted lines
correspond to the neutrally buoyant and denser fibres, both at γ = 10−8. (b,c) Mean and standard deviation of
the probability density function of the trace of the conformation tensor for (b) neutrally buoyant and (c) denser
fibres. The black lines represent the mean values of the Eulerian data.

4. Conclusions

We perform direct numerical simulations (DNS) to explore the dynamical properties of
fibres (both flexible and rigid, neutrally buoyant and denser-than-fluid fibres) dispersed
in a viscoelastic turbulent flow where fluid inertia and polymer elasticity are present
simultaneously, with the three phases – fluid, polymers and fibres – which are fully
coupled. The Reynolds number is sufficiently high to show a clear inertial range of scale,
which is altered when the Deborah number is increased. The goal is to examine how the
microscopic polymers can influence the dynamics of macroscopic fibres, and to identify
if the fibres reflect the changes in the fluid due to the polymers. For this, the flapping
frequency of the fibres, their curvature, preferential alignment with and sampling of the
flow were tracked for various values of the Deborah number.

We observe that the fibres flap primarily with a variety of time scales, transpiring from
the flow or their structural natural response, depending on the particle inertia, stiffness, and
the polymer relaxation time. An examination of the frequency spectrum of the end-to-end
displacement of the fibres showed that the expected time scale due to polymer stretching is
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not picked up explicitly by the fibre. Still, the neutrally buoyant fibres are weakly reflective
of the polymer effects as the dominant flapping time scales of the fibre are also seen to
increase with the polymer relaxation time; on the other hand, the denser-than-fluid fibres
always oscillate with large time scales when flexible, and with their natural frequency
when sufficiently rigid, irrespective of the changes in the Deborah number. Polymer
relaxation time impacts the neutrally buoyant fibre curvature quantitatively, but does not
significantly impact the transition to buckling; on the contrary, the denser fibres – which
also exhibit larger curvatures – are passive to the variations of the relaxation time. The
neutrally buoyant fibres show a high level of alignment with the polymer conformation
tensor, unresponsive to variations in their rigidity and the Deborah number. Conversely,
the alignment of the denser fibres changes with both the Deborah number and the rigidity,
especially with respect to the polymeric tensor, although these probabilities are much
lower than the corresponding alignment with the strain rate tensor.

This study attempts for the first time to track the dynamical properties of long fibres
fully coupled with viscoelastic high Reynolds number turbulent flows. It reveals a complex
interplay between the fibre flexibility, the polymer relaxation time, and the fibre inertia in
determining the response behaviours of the fibres. The study can be of interest to industries
developing products/processes involving viscoelastic fluid–fibre suspensions to optimise
manufacturing and quality control processes, and is a fundamental addition to this field of
study. Future works should take into account the effect of gravity as well. Ardekani et al.
(2017) studied the sedimentation of prolate spheroids in homogeneous isotropic turbulence
with application to non-motile phytoplanktons, and showed that settling spheroids showed
an increased mean settling speed from those in a quiescent fluid; the authors of this study
suggest that flexural stiffness is a dynamically important attribute to diatom chains that
should be taken into account in future studies. Also, the ability of shear thinning fluid
to modify particle sedimenting velocity has been demonstrated by Alghalibi et al. (2020)
through DNS. Along similar lines, it would be compelling to track the observations made
in the current work by considering sedimentation effects along with considering fibre
stiffness and Deborah number effects. Banaei et al. (2020) found definite differences
between rigid and flexible fibres with respect to their settling velocities and alignment
with the direction of gravity, while Rahmani et al. (2023) described the shapes of inertial
settling flexible fibres of large aspect ratios. It would be intriguing to perceive these known
dynamics of sedimenting fibres in the background of elasto-inertial turbulence.
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