
J. Fluid Mech. (2016), vol. 799, pp. 27–55. c© Cambridge University Press 2016
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2016.348

27

Convective plumes in rotating systems

Bruno Deremble†

Department of Earth, Ocean and Atmospheric Sciences, The Florida State University,
Tallahassee, FL 32306-4520, USA

(Received 18 July 2014; revised 1 March 2016; accepted 17 May 2016;
first published online 21 June 2016)

Convective plumes emanating from fixed buoyant sources such as volcanoes, hot
springs and oil spills are common in the atmosphere and the ocean. Most of what
we know about their dynamics comes from scaling laws, laboratory experiments and
numerical simulations. A plume grows laterally during its ascent mainly due to the
process of turbulent entrainment of fluid from the environment into the plume. In an
unstratified system, nothing hampers the vertical motion of the plume. By contrast, in
a stratified system, as the plume rises, it reaches and overshoots the neutral buoyancy
height – due to the non-zero momentum at that height. This rising fluid is then dense
relative to the environment and slows down, ceases to rise and falls back to the height
of the intrusion. For buoyant plumes occurring in the ocean or atmosphere, the rotation
of the Earth adds an additional constraint via the conservation of angular momentum.
In fact, the effect of rotation is still not well understood, and we addressed this issue
in the study reported here. We looked for the steady states of an axisymmetric model
in both the rotating and non-rotating cases. At the non-rotating limit, we isolated two
regimes of convection depending on the buoyancy flux/momentum flux ratio at the
base of the plume, in agreement with scaling laws. However, the inclusion of rotation
in the model strongly affects these classical convection patterns: the lateral extension
of the plume is confined at the intrusion level by the establishment of a geostrophic
balance, and non-trivial swirl speed develops in and around the plume.

Key words: convection, plumes/thermals, rotating flows

1. Introduction
Hydrothermal vents are often found in fracture areas at the sea floor. Each vent is

a steady source of hot water and, sometimes, gas and other miscible and immiscible
materials. Such a buoyant source generates a convective plume that rises and mixes
with the surrounding water. The total equivalent heat flux generated by a single
source is of the order of 106 W (Converse, Holland & Edmond 1984; Carazzo,
Kaminski & Tait 2008). Stein, Stein & Pelayo (1995) estimated a total heat flux,
if all these sources were combined, of 32 TW. They argued that these sources
can have a non-negligible effect on oceanic abyssal circulation. Scott, Marotzke &
Adcroft (2001) also showed how hydrothermal vents affect the meridional overturning
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28 B. Deremble

circulation. They demonstrated that the circulation that develops in response to these
heat sources not only depends on the magnitude of the heat flux but is also strongly
related to the stratification and the depth of the thermocline. When a plume rises, it
entrains surrounding fluid, and the stratification is a key factor needed to arrest the
vertical motion, as described by Morton, Taylor & Turner (1956) (henceforth MTT).
Using simplified equations of the dynamics, MTT were able to obtain scaling laws
to describe the shape of the plume and the height of the neutral level depending on
the buoyancy flux and the Brunt–Väisälä frequency N.

While the original scaling laws were for plumes in the non-rotating case, Speer &
Marshall (1995) added the effect of rotation to build a more complete set of scaling
laws. The Coriolis parameter f = 2Ω , where Ω is the rotation rate, introduces a new
time scale that conflicts with the buoyancy frequency N. Speer & Marshall (1995)
circumvented this issue of multiple time scales by dissecting the evolution of the
plume into a series of events. For an initial value problem where the buoyancy flux
starts at t= 0, they identified three stages in the development of the plume.

(i) First, t < N−1: the rising plume. At this stage, the classical scaling laws apply.
The system does not feel the effect of rotation.

(ii) Second, N−1< t< f−1: the lines of constant angular momentum are deflected from
their original positions. As a consequence, a cyclone forms at the base of the
plume and an anticyclone forms at the intrusion level.

(iii) Finally, t > f−1: the plume shape adjusts to remain in geostrophic balance.
Ultimately, the anticyclone at the intrusion level becomes baroclinically unstable
and moves away from the plume according to its own dynamics (Helfrich &
Battisti 1991; Fernando, Chen & Ayotte 1998).

At each stage of the plume development, a collection of length scales can be
obtained to describe the base and the top of the plume, but the general shape is
thought to remain unchanged during the evolution (Whitehead, Marshall & Hufford
1996).

Although several studies have addressed the question of the baroclinic vortex, fewer
studies have focused on the shape of the plume between the source and the intrusion
level, and the dynamical effect of the cyclone at the base of the plume (Julien et al.
1999; Yamamoto, Cenedese & Caulfield 2011). In fact, in the case of pure jets, the
presence of swirl strongly affects the dynamics and creates new patterns of turbulence
(Liang & Maxworthy 2005). These patterns are precisely what we investigate herein
by addressing the following questions. Are the classical convection patterns modified
by background rotation? Can we quantify the feedback of the swirl speed on the
plume dynamics?

To elucidate the impact of rotation on plume dynamics, we built a model of
intermediate complexity. This model is derived from the original Navier–Stokes
equations and takes advantage of the radially symmetric property of the plume
(see Fabregat et al. 2016a). This model can be used in two different ways: either
to reproduce the turbulent flow using a time integration or to look for the steady
states of the system using an appropriate parameterization for turbulence. Our study
explored the latter. Because the axisymmetric equations are an azimuthal average of
the dynamics, we use this set of equations to understand the mean flow rather than
the detailed turbulence behaviour. The strategy is to compute branches of solutions
by means of a continuation technique, and thus to obtain the steady states of the
equations for various values of the parameters.

The paper is organized as follows. Section 2 below is a review of the original MTT
model used to describe a convective plume. We first recall the main hypothesis and
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Convective plumes in rotating systems 29

then derive the equation for the top of the plume and neutral level in the non-rotating
case. They serve as a basis of our study. In § 3, we introduce the axisymmetric model
used in the remainder of the analysis and briefly describe the method of continuation.
In § 4, we use this model at the non-rotating limit and compare it with scaling laws.
We introduce rotation in § 5 to show how it affects the shape of the solution. We
present results from a preliminary three-dimensional numerical experiment in § 6. We
discuss our conclusions in § 7.

2. Scaling laws for convective plumes

A convective plume is defined here as a buoyant jet in which the buoyancy is
supplied steadily from a point source (Emanuel 1994). It is usually difficult to describe
in detail the dynamics of such plumes as the plume triggers high levels of turbulence.
An elegant way to describe the shape of the plume is to use simplified equations
of the dynamics. Here, we briefly review the classical scaling laws following MTT’s
analysis. This approach relies on the following five hypotheses.

(1) The flow is steady and axisymmetric.
(2) The mean radial velocity ue at the edge of the plume and at any height z above

the source is proportional to the mean vertical velocity at the centre of the plume
w(r= 0) (entrainment hypothesis),

ue = αw(r= 0), (2.1)

where α is a proportionality constant, also known as the entrainment constant or
dilution rate. The value of α is usually determined experimentally, and the precise
value remains a matter for debate. However, commonly accepted values vary from
α= 0.054 for jets to α= 0.083 for plumes (Turner 1986), and correspond, in fact,
to a parameterization of the turbulence.

(3) The radial profiles of mean vertical velocity and mean buoyancy are similar at
all heights.

(4) The vertical perturbation pressure gradient is small compared with the vertical
buoyancy acceleration.

(5) The flow is Boussinesq.

By means of these five hypotheses, the system of equations describing the plume
can be simplified but still yield an accurate representation of the dynamics in the
plume.

2.1. Original equations
Because of hypotheses (1), (4) and (5), the momentum, continuity and buoyancy
equations in cylindrical coordinates simplify to

u
∂w
∂r
+w

∂w
∂z
= B, (2.2a)

∂ru
∂r
+ ∂rw

∂z
= 0, (2.2b)

u
∂B
∂r
+w

∂B
∂z
= 0, (2.2c)
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30 B. Deremble

where r and z are the radial and vertical coordinates, u and w are the radial and
vertical velocities, and B is the buoyancy,

B= g
ρ

ρ0
, (2.3)

where ρ is the density anomaly with respect to a stable density profile ρ1(z), ρ0 is
the constant background density (independent of z) and g is the acceleration due to
gravity. We integrate (2.2a–c) at each height z, over a horizontal disc of radius R(z).
We use hypothesis (3) with the additional constraint that the profiles of any quantity
inside the plume are normally distributed,

w(r, z)=w′(z) exp (−r2/R2), (2.4a)
B(r, z)= B′(z) exp (−r2/R2). (2.4b)

For notational convenience, we omit the ′ from this point forward. If we use
hypothesis (2) for the boundary condition on u, then (2.2a–c) become

d
dz

R2w2 = 2R2B, (2.5a)

d
dz

R2w = 2αRw, (2.5b)

d
dz

R2wB = −2R2wN2, (2.5c)

where
N2 =− g

ρ0

∂ρ1

∂z
(2.6)

is the background buoyancy frequency.
To characterize the plume, Morton & Middleton (1973) introduced two quantities

Γ = RB
αw2

(2.7)

and
Γ ′ = Bα

RN2
. (2.8)

Hunt & Kaye (2005) associated Γ (z= 0)> 1 with lazy plumes and Γ (z= 0)< 1 with
forced plumes. According to their definition, a lazy plume can be generated by slow
upward emission of light fluid relative to the equivalent point source plume (relative
excess of buoyancy). On the other hand, a forced plume can be generated by upward
emission of light fluid with excess velocity relative to the point source plume (relative
excess of momentum).

In an unstratified system (N2= 0), equation (2.5c) ensures that the buoyancy flux

F= π

2
R2wB (2.9)

through a horizontal section is constant at all heights z. The solution of (2.5) is a
simple scaling law for the vertical velocity and the radius of the plume,

w = c1F1/3z−1/3, (2.10a)
R = c2z, (2.10b)

where c1 and c2 are constants of proportionality, which can be simply evaluated
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Convective plumes in rotating systems 31

on assuming a particular value for the entrainment coefficient (see MTT). This
result validates what would be obtained from straightforward dimensional analysis.
For a point source release, the only important parameters are the buoyancy flux
and the distance from the source. Given a buoyancy flux F, one can compute the
vertical velocity inside the plume at any height z above this buoyancy source. Several
experiments and numerical models have confirmed the validity of these scaling laws
(Turner 1986; Woods 2010).

2.2. Dynamics in the stratified case
When the plume expands in a stratified medium, the dynamics is modified. As the
plume rises from the source, it entrains relatively dense fluid and reaches a height
where the plume is no longer buoyant, known as the level of neutral buoyancy, Hb.
The plume overshoots this level and falls back, around the rising flow, to the intrusion
level, at which the plume expands laterally. The key parameters for the description of
such a situation are the buoyancy flux at z= 0 and the background stratification N2.
If N2 6= 0, the scaling laws (2.10a,b) are no longer solutions of (2.5a–c), and only a
numerical solution can be found. The buoyancy flux in (2.9) becomes a function of
z, and we denote the buoyancy flux at z= 0 by F0 ≡ F(z= 0). Henceforth, we use a
subscript 0 to denote the value of a variable at z=0. MTT presented a generic solution
of this system (see their figure 1). Near the buoyancy source, they recovered the
solution of the unstratified system, and they demonstrated that the radius of the plume
becomes infinite at the top of the plume. MTT defined two quantities to describe the
plume:

(i) the top of the plume Hw as the first height at which the vertical velocity vanishes
(at r= 0),

Hw = z|w=0 , (2.11)

(ii) the neutral level Hb as the height at which the buoyancy vanishes (at r= 0),

Hb = z|B=0 . (2.12)

For an integrated model such as the one developed by MTT, Hw and Hb only
describe the dynamics occurring at r = 0. In the axisymmetric model that we will
introduce in § 3, these quantities may no longer be associated with the top of the
plume and the neutral level.

We also define the overshoot as the difference (Hw − Hb). In practice, as a plume
overshoots the height Hb and rises to Hw, it entrains and mixes with (less dense)
ambient fluid. The fluid at the top then falls back, again mixing with both ambient
fluid and the rising core of the flow. The plume will only ever intrude at Hb in the
case that there is no mixing above the height Hb; in all other cases it will intrude
at a height somewhere between Hb and Hw. We introduce a formal definition of the
intrusion level in § 4. MTT also argued that Hw and Hb should obey the scaling law

Hs = c
(

F0

N3

)1/4

, (2.13)

with c a constant. A value of c=3.8 has often been proposed in order to match results
obtained in laboratory experiments (Turner 1986).

From this point forward, we work with a non-dimensional form of (2.5a–c) which
is obtained on taking L = 500 m as characteristic of the dominant length scale for
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32 B. Deremble
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FIGURE 1. (Colour online) The levels Hb (green with circles) and Hw (blue with crosses)
as a function of the buoyancy flux F0 in non-dimensional units. The black line is the
scaling law (2.13). The blue dashed line (slope = 0) is (A 11) and the green dashed line
(slope = 1) is (A 4).

oceanic convection and the corresponding characteristic velocity scale as U= 1 m s−1.
In order to assess the validity of this scaling law, we used a numerical solver to find
the solutions of (2.5a)–(2.5c) for several values of F0. It should be noted that we
need w0 6= 0 and R0 6= 0 to obtain a non-zero solution (throughout we consider the
virtual origin offset, Hunt & Kaye (2001), to be small compared with L, and hence we
neglect the effects of any virtual origin offset). In this example, we arbitrarily chose
w0=1.0, R0=0.02, N2=5, and varied B0 across several orders of magnitude. We take
α= 0.083 (Turner 1986). In figure 1 we plot Hw, Hb and the scaling law (2.13) as a
function F0 in log–log space. There is good agreement between Hw, Hb and the scaling
law for lazy plumes (Γ0 > 1): the slope of both Hw and Hb is 0.25. However, we
observe a deviation for forced plumes (Γ0 < 1): Hw is constant and Hb varies linearly
with F0 (as indicated by the green dashed line). We discuss in detail the solutions
of MTT’s model for forced plumes in appendix A. It should be noted that in our
results (§ 4), the ratio Γ0/Γ

′
0 = 0.3 is constant since we only vary B0. We repeated this

experiment for various values of Γ0/Γ
′

0 by varying the stratification, and we obtained a
qualitatively similar curve. In the absence of complete field data and an apparent lack
of experimental data, we are forced to use these scaling laws ((2.13) and appendix A)
to validate our axisymmetric model in the following section.

3. The axisymmetric model
While MTT’s model and the scaling laws are extremely attractive because of

their simplicity, we would like to study richer dynamics. We introduce a system of
equations to study an axisymmetric plume, and abandon the entrainment hypothesis
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Convective plumes in rotating systems 33

and the self-similarity hypothesis ((2) and (3) respectively). In fact, instead of
parameterizing the entrainment, we use an advanced turbulence closure scheme. The
ultimate goal is then to find the steady states of this set of equations.

3.1. Main equations
The non-hydrostatic Boussinesq equations for a radially symmetric flow on an f -plane
are

∂u
∂t
+ u

∂u
∂r
+w

∂u
∂z
− v

2

r
− fv = −∂p

∂r
+Du, (3.1a)

∂v

∂t
+ u

∂v

∂r
+w

∂v

∂z
+ uv

r
+ fu = Dv, (3.1b)

∂w
∂t
+ u

∂w
∂r
+w

∂w
∂z
= −∂p

∂z
− ρ

ρ0
g+Dw, (3.1c)

∂T
∂t
+ u

∂T
∂r
+w

∂T
∂z
= DT, (3.1d)

∂ru
∂r
+ ∂rw

∂z
= 0, (3.1e)

where T is the temperature, related to the density by the equation of state

ρ = ρ0αTT, (3.2)

with αT the thermal expansion coefficient. In (3.1a–d) Du,v,w,T are dissipative terms
described in § 3.2. The equation for v, the swirl velocity, can be rewritten as

∂λ

∂t
+ u

∂λ

∂r
+w

∂λ

∂z
=Dλ, (3.3)

where

λ= rv + f
2

r2 (3.4)

is the angular momentum of the fluid. The continuity equation is solved by means of
a stream function

∂ψ

∂r
= rw, (3.5a)

∂ψ

∂z
= −ru. (3.5b)

We also define the vorticity

ζ = ∂w
∂r
− ∂u
∂z
, (3.6)

or in terms of the stream function

ζ = 1
r

(
∂2ψ

∂r2
+ ∂

2ψ

∂z2
− 1

r
∂ψ

∂r

)
. (3.7)
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34 B. Deremble

At z= Lz ψ = 0 ζ = 0 ∂λ/∂z= 0 T = T top

At z= 0 ψ =w0R2
0/2(1− exp(−r2/R2

0)) ζ = 0 ∂λ/∂z= 0 ∂T/∂z= 0
At r= 0 ψ = 0 ζ = 0 λ= 0 ∂T/∂r= 0
At r= Lr ∂ψ/∂r= 0 ζ = 0 ∂λ/∂r= 1/r(λ+ 0.5fr2) ∂T/∂r= 0

TABLE 1. Boundary conditions for the system of (3.8).

Using these definitions, we can rewrite the original system as

∂ζ

∂t
= −J

(
ψ,

ζ

r

)
− 1

r3

∂λ2

∂z
+ gαT

∂T
∂r
+Dζ , (3.8a)

∂λ

∂t
= −1

r
J(ψ, λ)+Dλ, (3.8b)

∂T
∂t
= −1

r
J(ψ, T)+DT, (3.8c)

with J(a, b)= (∂a/∂r)(∂b/∂z)− (∂a/∂z)(∂b/∂r). We will consider these equations in
a cylinder of radial extent Lr and vertical extent Lz. The boundary conditions for this
system are given in table 1.

We set ψ =ψbc and ζ = 0 at z= 0, z=Lz and r= 0, which is equivalent to free-slip
boundary conditions. The constant ψbc is adjusted to have a non-zero injection velocity
through the bottom boundary,

w=w0 exp
(
− r2

R2
0

)
, (3.9)

and no flux at z= Lz and r= 0. At r= Lr, we consider an open boundary with zero
vertical velocity: ∂nψ = 0 (where ∂n is the derivative in the direction normal to the
boundary).

For the swirl speed, we have v = 0 at r = 0 (by construction), and we opt for
the free-slip boundary condition: ∂nv= 0 on all other boundaries. This translates into
λ = 0 at r = 0, ∂nλ = 0 at the bottom, and top, and the mixed boundary condition
∂nλ = (λ + fr2/2)/r at r = Lr. Interestingly, the effect of rotation only appears via
this boundary condition. However, the joint effect of this boundary condition and the
diffusion operator Dλ in fact implies that the angular momentum field at rest in the
domain is λ= fr2/2.

We use two different boundary conditions for the temperature at the top and bottom
in order to maintain a stratification N2. At the top we set the temperature to T = T top

(Dirichlet), and at the bottom we use a no-flux boundary condition.
The buoyancy flux is applied via a relaxation at the first grid point (T − T forc)/τ ,

with τ an arbitrarily small time constant and T forc a fixed reference temperature
profile. This choice is necessary to avoid a modulation of the buoyancy flux due to
the turbulence scheme (which caries a variable thermal diffusivity). The prescribed
temperature profile is

T forc = T0 exp
(
− r2

R2
0

)
, (3.10)

with T0 a constant and R0 a characteristic length for the radial extension of the
prescribed profile. We also apply a no-flux boundary condition at r = 0 and r = Lr
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Convective plumes in rotating systems 35

(∂nT = 0). The buoyancy flux driving the plume is given by

F0 = π

2
w0R2

0gαTT0 + 2πgαT1z
∫ R0

0

1
τ
(T − T forc)r dr, (3.11)

where the first term is the classical buoyancy flux (see (2.9)) and the second term is
a pseudo-diffusive flux, with 1z the vertical extension of the first grid point.

3.2. Turbulence closure
The idea behind a steady-state axisymmetric model of a convective plume is to let the
turbulence closure represent the mean effect of all the eddies present in the real plume.
In this study, we use a simplified version of the Smagorinsky (1963) closure scheme,
used in Rotunno & Emanuel (1987) to study tropical cyclones. The dissipative terms
in (3.1a–d) are computed via a Reynolds decomposition of the axisymmetric system:
each variable X is written as the sum of an azimuthally averaged component X plus
a departure X′. The resulting dissipative terms are

Du = 1
r
∂ru′u′

∂r
+ ∂u′w′

∂z
− v

′v′

r
, (3.12a)

Dv = 1
r2

∂r2u′v′

∂r
+ ∂v

′w′

∂z
, (3.12b)

Dw = 1
r
∂ru′w′

∂r
+ ∂w′w′

∂z
, (3.12c)

DT = 1
r
∂ru′T ′

∂r
+ ∂w′T ′

∂z
. (3.12d)

The Reynolds stresses are computed with a linear eddy viscosity model,

u′u′ = 2ν
∂u
∂r
, (3.13a)

u′w′ = ν

(
∂u
∂z
+ ∂w
∂r

)
, (3.13b)

v′v′ = 2ν
u
r
, (3.13c)

u′v′ = νr
∂

∂r

(v
r

)
, (3.13d)

v′w′ = ν
∂v

∂z
, (3.13e)

w′w′ = 2ν
∂w
∂z
, (3.13f )

u′T ′ = ν
∂T
∂r
, (3.13g)

w′T ′ = ν
∂T
∂z
, (3.13h)

where we have neglected the isotropic part of the stress tensor (Kundu & Cohen
2008) and used the same parameter ν for thermal diffusivity and momentum
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36 B. Deremble

kinematic viscosity. Henceforth, we also neglect all spatial derivatives of ν: these
terms mimic the effect of an additional advection operator. We verified that the effect
of this operator is negligible compared with the actual advective terms. We use the
Smagorinsky (1963) formulation for ν,

ν = l2
s S+ ν0, (3.14)

where ν0 is a background kinematic viscosity, S is the deformation given by

S2 = 2

[(
∂u
∂r

)2

+
(u

r

)2 +
(
∂w
∂z

)2
]
+
(
∂u
∂z
+ ∂w
∂r

)2

+
(
∂v

∂r
− v

r

)2

+
(
∂v

∂z

)2

(3.15)

and ls is the Smagorinsky length scale, usually chosen to be of the order of the grid
size to represent subgrid-scale processes. In our case, this turbulence closure is more
than a subgrid-scale model. Since it parameterizes all eddy activity, ls should then be
equal to the typical size of eddies. However, since we have no a priori value for ls,
we will use MTT’s model to calibrate ls. The final expressions of the dissipative terms
are

Dζ = ν

(
∂2ζ

∂r2
+ ∂

2ζ

∂z2
+ 1

r
∂ζ

∂r
− ζ

r2

)
, (3.16a)

Dλ = ν

(
∂2λ

∂r2
+ ∂

2λ

∂z2
− 1

r
∂λ

∂r

)
, (3.16b)

DT = ν

(
∂2T
∂r2
+ ∂

2T
∂z2
+ 1

r
∂T
∂r

)
. (3.16c)

3.3. Non-dimensional parameters
We make the system of equations non-dimensional using a reference length L, a
reference velocity U and a reference temperature T , and use typical values relevant
to oceanic convection: L= 500 m, U= 1 m s−1 and T = 1 ◦C. From this point forward,
all variables are in their non-dimensional form. The non-dimensional parameters that
are relevant to this system of equations are the Rossby number

Ro= U
fL

(3.17)

and the Froude number
Fr = U

NL
, (3.18)

which is proportional to
√
Γ ′/Γ . For oceanic convection, we have Ro = 20 and

Fr = 15 (Speer & Marshall 1995). In the absence of stratification (e.g. well mixed
shallow areas), Fr→∞. The plume is lighter than its surroundings and rises freely
(cf. the scaling law in § 2) until it eventually encounters the upper boundary. Since
the interaction of the plume with the boundary is beyond the scope of this study,
we use the Froude number (stratification) as a way to stop the upward motion. In
the numerical formulation, the background Reynolds number Re = UL/ν0 is only
meaningful in the absence of any motion, so we use ls to characterize the level of
turbulence. We now review the methodology used to analyse this set of equations.
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3.4. Methodology: bifurcation analysis
We use a bifurcation analysis to find the steady states of the system of (3.8) as
a function of the external parameters. We briefly recall the main steps of this
methodology. We first write (3.8) in a compact form,

M
∂x
∂t
=F(x, p), (3.19)

with x ≡ (ψ, λ, T) the state vector, F a map of Rn × R→ Rn (right-hand side of
(3.8)), p an adjustable parameter and M a weight matrix (stream function–vorticity
transformation matrix; (3.7)). We define the Jacobian

J(x0, p0) = ∂F(x, p)
∂x

∣∣∣∣
x0,p0

, (3.20a)

k(x0, p0) = ∂F(x, p)
∂p

∣∣∣∣
x0,p0

. (3.20b)

We look for the steady-state solutions such that

F(x, p)= 0. (3.21)

This steady-state search is performed using the pseudo-arclength continuation method
(Keller 1977), briefly described as follows. The implicit function theorem states that
the existence of a solution xp0 at p0, together with differentiability of F and non-
singularity of the Jacobian J, will imply the existence of xp for p near p0, and also
imply that xp is a smooth function of p.

In practice, J might be singular for certain values of p. The singularity disappears
if we introduce an additional variable s and solve the augmented system

F(x(s), p(s)) = 0, (3.22a)
n(x(s), p(s), s) = 0. (3.22b)

We find a solution of this system with Newton iterations. The second equation is the
normalization of the tangent vector with respect to the parameter

|x′(s)|2 + |p′(s)|2 = 1, (3.23)

where the prime (′) denotes the derivative with respect to the auxiliary variable s. We
discretize this equation as

x(s1)− x(s0)

1s
· x′(s0)+ p(s1)− p(s0)

1s
p′(s0)= 1, (3.24)

with 1s= s1 − s0. Hence, one can write (3.22b) as

n(x(s), p(s), s)= (x(s1)− x(s0)) · x′(s0)+ (p(s1)− p(s0))p′(s0)−1s= 0. (3.25)

Given (x0, p0, s0), a solution of (3.22), we use a predictor–corrector scheme to find
a nearby solution (x1, p1, s1). The predictor is computed using a Euler scheme,

(x1, p1, s1)= (x0, p0, s0)+1s(x′0, p′0, 1), (3.26)

and with x′0 and p′0, which are solutions of

J(x0, p0)x′0 + k(x0, p0)p′0 = 0, (3.27a)
|x′0|2 + |p′0|2 = 1. (3.27b)
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3.5. Numerical formulation
The system of (3.8) plus boundary conditions (table 1) is discretized with finite
differences on a regular A-grid (stream function, vorticity and temperature are
collocated on the same point). The lateral and vertical extensions of the domain
are Lr = 1, Lz = 2 in the experiments without rotation, and Lr = 2, Lz = 2 when
rotation is present. The grid step is 1r = 1z = 0.005 in all cases. The Jacobian
operator (advection term) is discretized with an energy–enstrophy conserving form
(Arakawa & Lamb 1977). We carried out the bifurcation analysis with the large-scale
library LOCA (Salinger et al. 2002), which is part of the trilinos software (Heroux
et al. 2005). We also performed several time integrations of the model to examine
the evolution of a passive tracer. In this case, the vorticity/stream function matrix
(3.7) was inverted using an LU decomposition (Amestoy et al. 2006). We used a
second-order Adams–Bashforth time stepping with a time step of 1t= 10−4.

4. Non-rotating limit (f = 0)

We begin our analysis with the solution of (3.8a–c) at the non-rotating limit ( f =
0). In this case, λ= v = 0 is a solution of (3.8b). No forcing term can increase the
swirl speed. The remaining vorticity equation is strictly two-dimensional (2D), and the
buoyancy is advected by a 2D velocity field. We use this configuration as a starting
point of our study. We describe the shape of the steady state and compare the solution
with the solution of MTT’s model (as reasoned in § 2.2).

4.1. General behaviour
In figure 2, we plot a typical steady-state solution of the model; more precisely, we
plot the non-dimensional stream function ψ and temperature in an azimuthal section
(r, z). The destabilizing source buoyancy flux (3.11) is obtained with R0= 0.02, T0=
200 and w0 = 1, such that F0 = 0.1. The buoyancy flux destabilizes the flow from
below and induces a local vertical velocity. Between z = 0 and z = 0.6, the plume
entrains the surrounding fluid (horizontal stream lines coming from the far edge). The
core of the plume overshoots above the neutral level Hb and reaches the height Hw,
where the plume is negatively buoyant. It falls back on the side (negative vertical
velocity), and the flow exits through the far edge (open) boundary at the intrusion
level. We define the intrusion level as

Hi = argmax(ur∞(z)), (4.1)

the height at which the outward radial velocity is maximum away from the core of
the plume (where w= ∂ψ/∂r' 0). In our model, we measure Hi at the open boundary
r= Lr.

At z = Hi, the stream lines are exactly horizontal, which means that the plume
expands to infinity. We changed the size of the domain to confirm that the dynamics
of the plume was not significantly impacted by the presence of the boundary (not
shown).

The turbulence scheme plays a crucial role in the establishment of the plume pattern.
The Smagorinsky scheme naturally increases the thermal diffusivity and kinematic
viscosity (diffusion of momentum) in places where the vorticity and shear are high.
In the present case, we used ls = 0.01 (see next section). The deformation S (see
(3.15)), which controls the diffusivity locally, is maximum at the base and at the top
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FIGURE 2. (Colour online) (a) Stream function ψ and (b) temperature T of a typical
steady state for F0 = 0.1. The levels Hw and Hb (green dotted lines) are computed in the
axisymmetric model at the first grid point and r = 0 respectively (see next section for
details). The level Hi (green dotted line) is computed at r = 1. The contour interval is
5× 10−4 in (a) and 1.0 in (b). Negative contours are plotted with dashed lines. The thick
red line in (b) is a contour level of a passive tracer released at the source of the plume
and advected with the flow shown in (a). The passive tracer reaches r= 1 at t= 28. The
thick blue line in (a) is R(z) computed with the original MTT model (2.5).

of the plume. The value of the background Reynolds number (5000 in the present and
subsequent experiments) has a negligible effect on the shape of the plume.

We obtain similar results (stream function and temperature profiles) when we
increase the buoyancy flux, while we remain in the lazy plume regime, as long as
the top of the plume does not interact with the upper boundary. In the forced plume
scenario (not shown), the plume rises from the bottom boundary with negligible
buoyancy flux, reaches its maximum height (Hw) and falls back to (or very close to)
the bottom boundary.

The red line in figure 2 corresponds to a contour level of a passive tracer steadily
released at the base of the plume and advected by the steady-state velocity field.
We stopped the time integration when the tracer reached the far edge boundary
so that the tracer envelope revealed the structure of an intermediate stage (if we
carry the time integration further, we reach the steady state where the red lines
flatten outside the core of the plume and closely follow the temperature lines). We
recognize the classical shape of a convective plume with a rising cone, an overshoot
and an intrusion level. For reference, plotted within figure 2 is the plume width R(z)
(blue line) computed using MTT’s equations (2.5) and with the same parameters
(R0, B0 and w0). It should be noted that in our derivation of MTT’s model (§ 2), we
used R(z) as a characteristic width of the plume (cf. (2.4)) and not as a measure
of the boundary of the plume. We are confident that the top of the plume is better
represented in the present axisymmetric model than in MTT’s model because we are
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H

FIGURE 3. (Colour online) The levels Hw (blue with crosses) and Hb (green with circles)
in the axisymmetric model (solid lines) and in MTT’s model (dashed lines). The solid
black line is F1/4

0 . The level Hi in the axisymmetric model (red line) is slightly above,
but almost indistinguishable from, the green line (Hb). The buoyancy flux F0 varies via
the bottom boundary condition T0. The parameters at the inlet are w0= 0.1 and R0= 0.02.

able to compute the downward vertical velocity in the overshoot region (which is
impossible in MTT’s model).

4.2. Comparison with MTT’s model
Since the axisymmetric model involves more physics than the scaling laws, it is
interesting to compare the two models. According to MTT’s model, Hw is expected
to vary with F1/4

0 for lazy plumes (2.13), and is expected to be constant for forced
plumes (A 10)–(A 11). To verify these power laws, we vary the buoyancy flux and
measure Hw and Hb in the model. We compute Hw using the vertical velocity
calculated at the first grid point in the radial direction to avoid the singularity at
r = 0. We compute Hb with the temperature at r = 0, calculated with the first-order
no-flux boundary condition

T(r= 0)= 4
3 T(r=1r)− 1

3 T(r= 21r). (4.2)

Among the three possible ways to increase the buoyancy flux, we chose to increase
the prescribed temperature at the boundary, T0, the two other ways being either
to increase the vertical velocity at the inlet, w0, or to increase the radius, R0. In
figure 3, we plot Hw, Hb and Hi as a function of the buoyancy flux F0 with solid
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lines (axisymmetric model) and dashed lines (MTT). We only plot Hw and Hb that
are higher than 21z and lower than Lz, where 1z is the vertical resolution in the
axisymmetric model. The black line is given as a reference ((2.13)). We recover the
two regimes (forced and lazy plume), and the transition occurs at the same value of
Γ0 = 1. For the chosen value of the Smagorinsky length scale (ls = 0.01), the power
law matches the prediction of the scaling law (slope of 0.25) for Γ0 > 1. This slope
increases for lower values of ls and decreases for higher values of ls. This good
correspondence between MTT’s model and the present model could not be achieved
without the Smagorinsky turbulent closure. We were not able to prove the linear
relationship between Hb and F0 for Γ0� 1 (A 4) due to a lack of vertical resolution
in our model.

Further, as pointed out by a reviewer, many of the differences between the curves
from MTT and from the axisymmetric model come down to the fact that the MTT
model does not allow for any interaction between dense fluid falling from Hw. For
example, the MTT model overpredicts the top of the plume for Γ0 < 1, presumably
because in a real plume the excess momentum carries the flow far above the intrusion
height and the plume mixes with falling fluid which would lower the top of the plume.
In addition, the mixing above Hb of lighter ambient fluid means that the intrusion
height is higher than Hb, which is what we obtain in figure 3.

For Γ0 > 1, the agreement between our axisymmetric model and the scaling laws
(MTT and appendix A) is far better. This is to be expected since for these plumes
the flow has little momentum at Hb and therefore only rises slightly higher; thereby
the mixing above Hb (not parameterized in the scaling laws) is minimal.

Due to its computational cost, we could not establish the stability of every single
steady state in the usual way (using an eigenvalue solver). However, we performed
several time integrations of the system with the steady state as the initial condition.
All of the steady states that we tested (either forced or lazy plumes) were stable.

Moreover, the open boundary at the far edge is a crucial element to get the right
behaviour of the model. It is still possible to perform a bifurcation analysis in a closed
domain, but the recirculation near the far edge boundary produces non-trivial deviation
from the scaling law (not shown).

To summarize, we have described the dynamics of a convective plume in the
absence of rotation. Typical flow patterns correspond to a rapid ascent near the centre
with an eventual overshoot. The radial flow is directed towards the centre of the
plume near its base and outward at the intrusion level. This investigation serves as a
reference case with which we will compare solutions in the presence of rotation.

5. The impact of rotation
When f 6= 0, the system has richer dynamics. At rest (quiescent ambient in solid-

body rotation), the angular momentum is λ= 0.5fr2. If we apply a flow pattern similar
to the one presented in the previous section, we can expect a convergence of angular
momentum near the centre at the bottom and a divergence at the intrusion level. This
corresponds to cyclonic and anticyclonic flow respectively (for f > 0). This non-trivial
swirl speed pattern will in turn affect the azimuthal vorticity (see (3.8)).

5.1. Increasing the buoyancy flux
We compute the steady-state solutions in a similar configuration to the reference case
(cf. figure 2), but with Ro = 20. As before, we increase the buoyancy flux F0 and
look for the steady-state solutions. The curve showing Hw as a function of F0 is
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FIGURE 4. (Colour online) Steady state for Ro= 20 and F0= 0.1. (a) Stream function, ψ ,
(b) temperature (black), T , envelope of the plume from the time integration of a passive
tracer (thick red), (c) angular momentum, λ, (d) swirl velocity (shaded area is negative),
v. The passive tracer reaches r= 1 at t= 55 (' 3f−1).

almost indistinguishable in the rotating axisymmetric and non-rotating axisymmetric
cases (figure 3). The level Hb is also identical in the forced plume regime; in the lazy
plume regime, the curve Hb(F0) has a slope of 0.25 but is closer to Hw (not shown).

We plot in figure 4 the stream function, temperature, angular momentum and swirl
velocity (simply derived from (3.4)) of the steady state computed with F0 = 0.1 and
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Ro = 20. This computation was performed in a larger domain (Lz = 2 and Lr = 2)
to minimize the effect of the far-field open boundary. Some tests with even wider
domains obtained similar solutions. The plots are truncated in the radial direction for
visualization purposes.

Figure 4(c) illustrates how the isolines of angular momentum are deflected under
the action of the plume; an undisturbed profile would exhibit vertical lines (λ= 0.5fr2).
The presence of the buoyant source squeezes these lines towards the centre (r= 0) at
the bottom. In other words, it corresponds to the entrainment of ambient fluid coming
from larger radial locations, i.e. with a relative excess of angular momentum when it
is in the plume. This convergence of angular momentum corresponds to a maximum
swirl speed of v= 0.2 (as shown in figure 4d), a value that is not negligible compared
with the vertical velocity at the source (w0 = 1). At the intrusion level, the deflection
of the isolines of angular momentum is less pronounced than at the base of the plume.
At this level, the order of magnitude for the swirl speed is v'−0.002 (shaded area in
figure 4d). In this experiment, the Rossby number controls the magnitude of the swirl
speed. A less obvious consequence of rotation is that the stream function is squeezed
between the neutral level and the top of the plume so that the vertical thickness of
the plume at the intrusion level is smaller in the rotating case. This feature is also
visible when comparing the two envelopes (red lines in figures 4b and 2b).

A striking feature in the rotating case is that the circulation in the (r, z)-plane
generated by the plume is laterally confined: the far-field stream lines are no longer
horizontal as they were in the non-rotating case. The tilt of these stream lines
indicates a downward flow just outside of the core of the plume and below the
intrusion level. This downward flow is accentuated in the immediate vicinity of the
central core. The signature of this effect is the bending of the temperature isolines
(figure 4b). This structure causes the radial distribution of velocity and buoyancy to
be drastically altered from the non-rotating case for which the time-averaged radial
profiles are approximately Gaussian (hypothesis (3)). Since the radial profiles are not
self-similar in the rotating case, one can never expect to find a power-law scaling
solution from a similarity solution. The horizontal spread at the intrusion level is
confined laterally as a consequence of the establishment of a geostrophic balance.
That is, the radial pressure gradient, which in the non-rotating case was inducing an
outward radial flow at the intrusion level, is now balanced by the Coriolis force, with
the effect of shutting off the radial flow. Such balance is responsible for confining
the fluid laterally. The relevant quantity to characterize the horizontal spread of the
plume is the first Rossby radius of deformation, which for a linear stratification is
simply

Rd = NH
πf
' (NF0)

1/4

f
, (5.1)

see for example Gill (1982). In (5.1), we used (2.13) as a scaling for the characteristic
height H and c'π. For the plume plotted in figure 4, Rd= 13.7, such that the aspect
ratio Hw/Rd � 1, i.e. the vertical extent of the plume is far less than the Rossby
deformation radius. Since this aspect ratio is small, we can still evaluate Hi (the height
of the intrusion level). We will not be able to do so when Hw/Rd . 1 (as is the case
in figure 5), because there is no clear radial distance at which ∂ψ/∂r= 0 for all z in
the computational domain (see figure 5).

The lateral extension decreases when the rotation rate increases. This is shown in
figure 5, where a similar steady-state calculation was carried with Ro = 0.4. In this
configuration, Rd = 0.27, and hence the time evolution of the passive tracer obeys
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FIGURE 5. (Colour online) The same as figure 4(a,b) but with Ro = 0.4. For this
configuration, Rd = 0.27 and is marked with a dotted green line. The envelope of the
passive tracer is shown at two different time intervals, t= 55 (' 137f−1) (solid red line)
and t= 1450 (' 3625f−1) (dashed red line).

different dynamics in this case. At t = 55 (' 137f−1), the passive tracer uniformly
fills the first envelope (red solid line in figure 5b). The envelope then expands in the
radial and vertical directions (above the top of the plume, at the intrusion level and
outside of the core of the plume) via diffusive processes. This situation differs from
the previous non-rotating cases where the passive tracer was confined at the intrusion
level by advective processes.

It should be noted that even if the plume is laterally confined, there is still a mass
flux at the far edge boundary, balancing the mass flux at the inlet to ensure mass
conservation (not visible in figure 4 because this flow is weak compared with the
circulation in the plume). As in the non-rotating case, we verified that these steady
states are stable through time integrations of the model for several values of the
buoyancy flux.

5.2. Multiple steady states
The model was initially calibrated using Hw and Hb of MTT’s model in the
non-rotating case. We now explore the robustness of the steady states when the
system is slightly pushed away from this state of reference. This step is in fact a
crucial aspect of dynamical system theory for two reasons. (i) The initial calibration
of ls does not guarantee that the axisymmetric model correctly captures all the details
of the plume. In fact, in Fabregat et al. (2016a), we highlighted some differences
between this axisymmetric model and a three-dimensional (3D) model, such as the
mixing rate at the base of the plume. (ii) A real-world turbulent system will often
make excursions in parameter space. The reasons for these excursions might be
non-uniformity of the turbulence level, non-stationarity of the buoyancy source or
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FIGURE 6. (Colour online) Bifurcation diagram (w as a function of ls) in the non-rotating
(black curve with stars) and rotating cases (red curve with crosses). Here, S1 and S2 mark
the positions of the two saddle-node bifurcations. All of these steady states are stable
except between S1 and S2.

inhomogeneity in the medium. Therefore, it is important to understand how the steady
states are perturbed when some parameters of the model are changed. In this section,
we first investigate the effect of a variation of ls, the Smagorinsky length scale, on
the structure of the steady states, and then introduce another bifurcation parameter
Cb.

Figure 6 shows the bifurcation diagram of the height-averaged vertical velocity w
at the centre of the plume when ls varies. This figure reads from right (ls = 0.01:
reference case) to left. The black curve is the bifurcation diagram in the absence of
rotation. In this case, w increases when ls decreases. A similar curve is obtained on
decreasing α in MTT’s model (not shown), suggesting that increasing ls is, in some
sense, equivalent to reducing the entrainment and mixing of the plume. The global
shape of the plume is the same for all the points of this curve, and both Hw and Hb
increase when ls decreases.

The red curve is a bifurcation diagram in the presence of rotation (Ro = 20). For
0.004 < ls < 0.01, this curve follows the reference case without rotation. In this
regime, the core of the plume is identical in both rotating and non-rotating cases,
but as we saw in § 5.1 the far field is different. For ls < 0.004, w decreases when
ls decreases. Two saddle-node bifurcations occur: S1 near ls = 0.002 and S2 near
ls = 0.004. The branch past S2 has the unconventional result w< 0, implying that the
average vertical velocity above the buoyant source is negative. We call this branch
the centrifugal branch for reasons that will become obvious at the end of this section.
In the range 0.002 < ls < 0.004, we have three coexisting steady states and we can
expect a hysteresis-type behaviour. The positions of the two saddle-node bifurcations
are functions of the other parameters of the problem, such as the buoyancy flux
and the Coriolis parameter. The exact positions of the two saddle-node bifurcations
depend on the choice of the continuation parameter. However, what really matters in
this analysis is the presence of two radically different solutions.
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FIGURE 7. (Colour online) Bifurcation diagram (w as a function of Cb) for the rotating
case only. In contrast to figure 6, this figure reads from left to right.

To prove the robustness of these two states, we repeat our bifurcation analysis with
another bifurcation parameter, Cb. Now, we keep ls constant when it appears in the
stream function and temperature equations and we use

lλs =
(

1− Cb

2
(1− tanh(40(z− 101z)))

)
ls (5.2)

for the angular momentum equation. The effect of this profile is to reduce ls near
the injection site for the angular momentum only. We arbitrarily chose the cutoff
to be located at 10 grid points above the source; other choices give similar results.
Variation of this parameter has a weak impact on the shape of the stream function
and temperature in the non-rotating case (with changes of Hw of less than 1 % when
Cb varies between 0 and 1). The bifurcation diagram obtained when Cb varies from 0
(lλs = ls) to 1 is shown in figure 7. We recover the same structure for the steady states:
two radically different solutions (w > 0 and w < 0) separated by two saddle-node
bifurcations.

We analyse the structure of this new solution in figure 8, where we plot the steady
state obtained at ls= 0.003. In this figure, the upward motion is no longer centred on
the axis of symmetry, but is deflected as a consequence of an outward radial velocity.
Near the centre, we now have downward vertical velocities, so that the dynamics
in the core of the plume is drastically different from in the non-rotating case. This
observation demonstrates the limit of the validity of the entrainment hypothesis for
plumes in rotating systems. This downward flow is particularly visible in figure 8(b),
where the maximum temperature at a given height is shifted from the centreline. The
height of the intrusion level remains comparable to the non-rotating case (not shown),
but the radial velocity at the intrusion level is now as intense as the vertical velocity
near the source. The quantities Hw and Hb are no longer adequate to describe the
plume since they reflect the dynamics at r = 0. In this case, we define H′w as the
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FIGURE 8. (Colour online) Typical steady state in the centrifugal branch (ls= 0.003). (a)
Stream function, ψ , (b) temperature (black), T , and envelope of passive tracer obtained
with a time integration (red). The passive tracer reaches r = 1 at t = 78 (' 4f−1). This
plot is very similar to the solution found at Cb = 1.

maximum height reached by the stream line ψ = 0. This solution no longer exhibits
an overshoot as there is no pronounced downward vertical velocity outside the core
of the plume near z=H′w. The time integration (red curve in figure 8) confirms that
the plume does not overshoot the intrusion level.

The presence of multiple steady states can also be highlighted with time integrations
of the model. We start from an initial state of rest and let the system reach an
equilibrium. After the initial transient phase, the model quickly settles into a state
that matches the non-rotating limit (black curve in figure 6). In fact, the angular
momentum is close to its initial condition and the effect of rotation is unimportant.
As time integration progresses, the system starts to feel the effect of rotation, and
the plume and its surroundings start to swirl. For time integration performed with
Cb = 1 (or ls < 0.002), we observe that, after a sudden jump, the system reaches the
centrifugal branch with negative mean vertical velocity at the centre.

From the previous analysis, it is obvious that this new branch of solution is a
consequence of rotation, and we provide a physical explanation for it. As we observed,
a convection pattern typically gathers angular momentum at the centre and at the
bottom, which translates to a non-zero swirl speed. For high values of this swirl speed,
the core of the plume is in cyclostrophic balance: the radial pressure gradient balances
the centrifugal force, (Smith 1980)

∂p
∂r
= v

2

r
. (5.3)

We integrate this equation between r = 0 and the edge of the core of the plume r′,
where the dynamic pressure field is negligible. Differentiating the result with respect
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to z gives

∂p
∂z

∣∣∣∣
r=0

=− ∂
∂z

∫ r′

r=0

v2

r
dr. (5.4)

According to this equation, an adverse pressure gradient occurs when the swirl speed
decays or spreads with height. In our model, the parameter Cb (or ls) controls the
sharpness of the gradient of the angular momentum λ and thus directly affects the
intensity of the adverse pressure gradient. We showed that, past a given threshold (the
saddle-node bifurcation S1), the adverse pressure gradient along the jet axis is strong
enough to create a stagnation point, also known as vortex breakdown (see, e.g., Billant,
Chomaz & Huerre 1998), near the base of the plume. In this axisymmetric model, the
steady states are stable when the stagnation point is either near the intrusion level or
near the base of the plume. The intermediate cases where the stagnation point is at
midheight (steady states between S1 and S2) are unstable according to figure 6.

It should be noted that the flow reversal (as shown in figure 8) is constrained by the
axisymmetric nature of the system. Such an axisymmetric pattern would naturally be
unstable to perturbations in the azimuthal direction. As a result, a real plume would
generally precess around the central axis; this centrifugal mode could then be seen as
a time mean of such a precessing plume.

5.3. Co-dimension-two bifurcations

According to the previous bifurcation diagram (figure 6), in the absence of rotation,
there is only one steady state, but when rotation is present, multiple steady states
may coexist. Our goal is now to clarify which type of plume (lazy or forced) can
reach the centrifugal mode, depending on the Rossby number. This will result in a
‘phase diagram’ in the (Γ0, Ro) space. To do so, we now use the classical results
of bifurcation theory (Kuznetsov 2004) to identify the origin of the two saddle-node
bifurcations.

There are two co-dimension-two bifurcations that could involve two saddle nodes
in a 2D-parameter space: the cusp and the Bogdanov–Takens (BT) bifurcations. The
cusp bifurcation corresponds to a merging of two saddle nodes, in which case, no
other branch exists. On the contrary, the BT bifurcation involves the collision of two
branches. The normal form of the BT bifurcation has been extensively studied, and
we know that it involves two Hopf bifurcations on either side of the saddle nodes (see
Kuznetsov 2004). In our case, let us add the dimension Γ0 to the bifurcation diagram,
so that figure 6 is just a slice in this new 3D space (ls, w, Γ0). We tracked the two
saddle nodes (S1 and S2) when decreasing Γ0 (from lazy plume to forced plume), and
noticed that S1 and S2 merged in a cusp bifurcation at Γ0=Γ c

0 . We see that, for this
value of the Rossby number, there is only one steady state for Γ0<Γ

c
0 . We repeat this

operation for different values of the Rossby number in order to obtain a curve of Γ c
0

as a function of Ro (plotted in figure 9). This figure indicates the region in parameter
space (Ro, Γ0) where multiple steady states may be found. This plot confirms that only
lazy plumes may evolve in the centrifugal mode, and provides the order of magnitude
of the threshold Γ0. It should be noted, however, that the quantitative results
obtained in this section might be biased due to the imperfection of the turbulence
closure scheme and would require more investigation (see the suggestions in the
conclusion).
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FIGURE 9. The position of the cusp bifurcation, Γ c
0 , as a function of Ro. The grey area

is the region where multiple steady states coexist.

6. Illustration in 3D dynamics
We now investigate whether these solutions are artefacts of the axisymmetric model

or whether they are also found in realistic configurations. The point is not to attempt
to find precisely the same patterns in the axisymmetric and three-dimensional models
since we know to expect differences (see § 5.2). Rather, it is to see whether we find
elements in the 3D configuration that are reminiscent of the axisymmetric model, such
as the vertical velocity profiles in the core of the plume. To address this question,
we use a non-hydrostatic ocean model: the MITgcm (Marshall et al. 1997) in a
3D configuration. Since this study was initially motivated by a desire to understand
the fate of oil after a deep-water blowout, we choose a configuration that mimics
just such a situation. The lateral extension of the domain is 7 km, with periodic
boundary conditions and a horizontal resolution of 20 m. The vertical extension is
1000 m, with a resolution of 5 m. At this resolution, we do not expect to fully
resolve turbulence, but our goal is merely to have an overview of a 3D plume in
a rotating environment. A buoyant tracer that represents the gas fraction is injected
at the bottom of the model by means of simple relaxation on four grid cells in the
middle of the domain. This method ensures that we are creating a lazy plume (Γ0 is
infinite since the injection velocity is zero). The density of this tracer is 1 kg m−3,
and it is relaxed to a target concentration of 0.01 with a time scale of 5 s such that
the buoyancy flux F0= 50 m4 s−1. This value is computed a posteriori by measuring
the flux at the top of the grid cell where a buoyancy flux is applied. The initial
vertical stratification is 10 K km−1, which corresponds to N2 = 2 × 10−5 s−2. The
Coriolis parameter is f = 10−4 s−1. The kinematic viscosity and thermal diffusivity
coefficients are set to 0.05 m2 s−1, which corresponds to Re' 106. We do not use any
other turbulence closure since we expect to partially resolve the turbulent processes
in this 3D configuration. Using these parameters, (2.13) predicts an intrusion level of
584 m.

In figure 10, we plot the mean vertical velocity in the early stages of the
development of the plume (a) and once the plume is mature (b). We interrupt
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FIGURE 10. (Colour online) Vertical cross-section in the middle of the domain showing
two time averages of the vertical velocity for two distinct periods: (a) early stage
(0< t< 2f−1) and (b) mature stage (4f−1 < t< 8f−1), shown in dimensional units (m for
the axis and m s−1 for the colour bar). To highlight negative velocities, the colour scales
do not extend over all positive values.

the numerical simulation after t ∼ 10f−1 because after that time baroclinic instability
will affect the dynamics of the plume, which is beyond the scope of this study
(see Helfrich & Battisti 1991). In figure 10(a), the plume penetrates almost to the
surface and corresponds to an overshoot profile. Indeed, the intrusion level (identified
as the height at which the tracer extends laterally) is approximately 400 m (36 %
lower than the prediction). Weak negative vertical velocities are also visible on the
edge of the core of the plume. Once the plume is in a mature stage (figure 10b),
the mean vertical velocity evolves in a ‘V-shape’ profile. The vertical penetration
is deflected away from the central axis. On this axis, we observe weak downward
velocities. This situation is clearly reminiscent of the steady states on the centrifugal
branch of the axisymmetric model. The shapes of the mean swirl speed and angular
momentum patterns are also similar to the axisymmetric case (not shown). We state
again that this 3D numerical simulation should not be regarded as a validation of the
2D axisymmetric model but rather as a preliminary experiment suggesting the need
for a systematic 2D/3D comparison.

7. Conclusions
While convective plumes are often described either by scaling laws or by large eddy

simulations (LES), it was our intent to bridge the gap between these two extremes by
proposing a model of intermediate complexity to see what new information we gain
from this midway step. To describe a convective plume, we used an axisymmetric
model where turbulent processes are parameterized by the Smagorinsky (1963) closure
scheme. We also take advantage of the continuation method to compute the steady
states of the model as a function of the parameters (source forcing Γ0, Smagorinsky
length scale ls and Rossby number Ro). When the system is not rotating (Ro→∞),
in the absence of sufficient observational or experimental data, we can calibrate our
axisymmetric model using the well-known MTT model. We separated the forced
plume regime, for which the height of the intrusion level is independent of the
buoyancy flux, and the lazy plume regime, for which the height of the intrusion layer
varies with F1/4

0 .
We then introduced the effect of rotation in the system. The intrusion layer is

thinner in the rotating case while the core of the plume remains largely unchanged.
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The swirl speed resulting from the displacement of angular momentum lines is
maximum near the base of the plume. As expected, we observe a cyclonic swirl
speed near the base of the plume and an anticyclonic swirl speed at the intrusion
level. The plume is laterally confined at the intrusion level due to the establishment
of a geostrophic balance.

We then explored the robustness of these patterns and investigated the effect of
a change of the Smagorinsky length scale ls. For lower values of ls (less turbulent
plumes), a new branch of solution emerges. On this branch, the convection occurs on
the outer part of the plume as a result of the centrifugal force. This convection pattern
is characterized by a downward velocity above the buoyancy source and the absence
of overshoot. At the intrusion level, the outward radial velocity is more intense than
in the non-rotating case. We also found a region in the parameter space where the
classical and centrifugal branches coexist. The coexistence of these two states is
important because it has an impact on the shape of the plume and can potentially
affect the subsequent development of a baroclinic instability. Last, we searched for a
co-dimension-two bifurcation which could indicate whether another branch could be
present. We found that the two saddle-node bifurcations merge in a cusp bifurcation
at a critical value of the buoyancy flux parameter Γ c

0 . We repeated this operation for
several values of the Rossby number and plotted a phase diagram in the (Ro, Γ0)

space, indicating where multiple steady states were to be expected.
Of course, further investigation with 3D models and laboratory experiments is

needed to get the correct quantitative details (e.g. exact positions of the bifurcation
points). These future quantitative laboratory of numerical experiments will have to
overcome the imperfections of the turbulence closure scheme that are inevitable in a
2D axisymmetric model.

Finally, we investigated the robustness of these solutions and showed that some
elements survive in a preliminary 3D model (where turbulence was partly resolved and
no longer parameterized). This was illustrated with an example of oceanic convection.
At the initial stage, when the system does not feel the effect of rotation, we obtained
the ‘classic’ solution. As time goes on, and angular momentum is advected by the
plume, a swirl speed develops and the convection pattern evolves into a centrifugal
solution. We observe downward vertical velocities above the source and a tilted
convection.

Although scaling laws and MTT’s model provide a very attractive description of the
plume in the non-rotating case, they have not been designed to describe the convective
pattern in the rotating case. Using a model of intermediate complexity, we were able
to highlight how a plume deforms in the presence of rotation. The next step is to
systematically compare this axisymmetric model with 3D LES or direct numerical
simulations (see, for example, the study of Craske & van Reeuwijk 2015, and Fabregat
et al. 2016b) in order to refine the description of the turbulence in the plume. We also
wish to make an extensive comparison of these convective patterns with laboratory
experiments. A precise understanding of the plume dynamics could help in adjusting
the parameterization of convection in ocean models. This could, in turn, improve our
knowledge of the abyssal circulation in the ocean.
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Appendix A. MTT’s solution for forced plumes

According to figure 1, we see that Hb is correctly predicted by the scaling law (2.13)
in the case of lazy plumes. In this appendix, we seek the solution of MTT’s model
in the asymptotic forced plume regime. First, we expand and combine (2.5a–c):

dw
dz
= −2wα

R
+ 2B

w
, (A 1a)

dR
dz
= 2α − RB

w2
, (A 1b)

dB
dz
= −2N2 − 2Bα

R
. (A 1c)

In the limiting case of a highly forced plume (B0→ 0; Γ0� 1 and Γ ′0� 1), let us
show that Hb varies linearly with F0 while Hw does not depend on F0. In the case of
a highly forced plume, we have from (A 1c)

dB
dz

∣∣∣∣
z=0

'−2N2, (A 2)

so that at leading order
B' B0 − 2N2z, (A 3)

and using the definition of Hb, we have

Hb = B0

2N2
= F0

πN2R2
0w0

, (A 4)

which demonstrates the linear relationship between Hb and F0 (see figure 1). Above
Hb, B is negative in the plume, and from (A 1b) we can infer a lower bound of R
above Hb:

R> 2αz. (A 5)

Using this limiting value, we can solve (A 1c) to show that at the limit (B0→ 0), the
buoyancy in the plume is negative and is bounded by

−2N2z< B<−N2z, (A 6)

where the first inequality is obtained by solving (A 1c) with the first term on the right-
hand side only and the second inequality is obtained by solving (A 1c) with the lower
bound R= 2αz (see (A 5)). Using Γ � 1 near the source, we can solve (A 1a–b) in
the vicinity of the source:

R= R0 + 2αz (A 7)
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FIGURE 11. (Colour online) The level Hw as a function of the stratification N in non-
dimensional units. The blue line with crosses is the numerical value obtained using (2.11),
when solving (2.5). The solid black line is (A 10) and the red dashed line is (A 11). We
used F0 = 2× 10−8, w0 = 1 and R0 = 0.02.

and
w=w0

R0

2αz+ R0
. (A 8)

Near the top of the plume, we know that w→0 and Γ →−∞. Because the right-hand
side of (A 1a) is of the form 2α/R(−w+ Γ/w), we can solve (A 1a) using only the
second term on the right-hand side and the lower bound for B in (A 6) (the latter
choice is validated a posteriori using figure 11):

w=
√

4N2(H2
w − z2), (A 9)

where we used the definition of Hw (2.11) to set the constant of integration. To find
Hw, we connect the two profiles ((A 8) and (A 9)) at a critical height zc so that the
full profile is continuous and differentiable. We obtain

Hw = w0

2N
and zc = R0

2α
Γ ′0
Γ0

if Γ ′0� Γ0, (A 10a,b)

and

Hw =
√

w0R0

2αN
and zc = R0

2α

(
Γ ′0
Γ0

)1/4

if Γ ′0� Γ0. (A 11a,b)

In both cases, Hw is independent of F0. We validate this analysis by plotting in
figure 11 these two solutions (A 10)–(A 11) and the numerical value obtained when
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integrating (2.5a–c) for several values of N. We find good agreement in both regimes,
Γ ′0 >Γ0 and Γ ′0 <Γ0.

Finally, as pointed out by a reviewer, it should be noted that the strategy of
keeping the same value of α when F0 is varied across several orders of magnitude is
questionable because the nature of the entrainment may change with F0. We checked
that when α varies from 0.083 (plume) to α = 0.054 (jet), the forced plume part
of figure 1 remains identical. However, for the lazy plume part, Hw and Hb are
multiplied by a factor of 1.25.
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