NOTE ON A STIELTJES TYPE OF INVERSION

PASQUALE PORCELLI

If $F(z)$ is an analytic function for $z \notin[-\infty,-1], g(t)$ of bounded variation and real valued for $0 \leqslant t \leqslant 1$ and

$$
F(z)=\int_{0}^{1}(1+z t)^{-1} d g(t)
$$

then the Stieltjes type of inversion between $F(z)$ and $g(t)$ (cf. 1, p. 339, Theorem 7a) is

$$
\lim _{y \rightarrow 0+} \frac{-1}{\pi} \int_{v}^{u} \frac{1}{t} I_{m} F\left(-\frac{1}{t}+i y\right) d t=\frac{g(u+)+g(u-)}{2}-\frac{g(v+)+g(v-)}{2}
$$

where $0 \leqslant v<u \leqslant 1, I_{m} F(z)$ is the imaginary part of $F(z)$ and $z=-t^{-1}+i y$.
A second type of inversion between $F(z)$ and $g(t)$ was obtained by Widder ($1, \mathrm{p} .340$, Theorem 7b) under the additional hypothesis that $g(t)$ is an absolutely continuous function. In the following theorem we shall establish an inversion between $F(z)$ and the right- and left-hand derivatives of $g(t)$ without the restriction that $g(t)$ be an integral.

Theorem. Let $F(z)$ be analytic for $z \notin[-\infty,-1], g(t)$ real valued and of bounded variation on $[0,1]$ and

$$
\begin{equation*}
F(z)=\int_{0}^{1}(1+z t)^{-1} d g(t) \tag{1}
\end{equation*}
$$

then

$$
\lim _{y \rightarrow 0+} \frac{-1}{\pi t} I_{m} F\left(\frac{-1}{t}+i y\right)=\frac{g^{\prime+}(t)+g^{\prime-}(t)}{2}
$$

for any t in $(0,1)$ at which the right- and left-hand derivatives $g^{\prime+}(t)$ and $g^{\prime-}(t)$ exist.

Proof. Let us suppose that $g(0)=0,0<t_{0}<1$ and that $g^{\prime}+\left(t_{0}\right)$ and $g^{\prime}-\left(t_{0}\right)$ exist. If we set

$$
R(t)=\left[\left(t_{0}-t\right)^{2}+\left(t_{0} y t\right)^{2}\right]^{-1}
$$

and $s=t_{0} \pi^{-1}$, then from (1) we have

$$
\begin{equation*}
\frac{-1}{\pi t_{0}} I_{m} F\left(\frac{-1}{t}+i y\right)=s y \int_{0}^{t_{0}} t R(t) d g(t)+s y \int_{t_{0}}^{1} t R(t) d g(t) . \tag{2}
\end{equation*}
$$

[^0]In the first integral of this expression we can replace $g(t)$ by $\left[g\left(t_{0}\right)+g^{\prime-}\left(t_{0}\right)\right.$ $\left.\left(t-t_{0}\right)+h(t)\left(t-t_{0}\right)\right]$, where $h(t)$ is continuous at t_{0} and $h\left(t_{0}\right)=0$, so that

$$
s y \int_{0}^{t_{0}} t R(t) d g(t)=s y g^{\prime-}\left(t_{0}\right) \int_{0}^{t_{0}} t R(t) d t+s y \int_{0}^{t_{0}} t R(t) d h(t)\left(t-t_{0}\right)
$$

The first term on the right side of this equation can be integrated directly and we can easily verify that it approaches $2^{-1} g^{\prime-}\left(t_{0}\right)$ as y approaches $0+$. Upon using the integration by parts formula, the second term reduces to

$$
-s y \int_{0}^{t_{0}} h(t)\left(t-t_{0}\right)\left[R(t)+t R^{\prime}(t)\right] d t
$$

If J denotes the value of the last expression, then

$$
|J|<\frac{2 y}{\pi} \int_{\theta}^{t_{0}}|h(t)| R(t) d t .
$$

For each $\epsilon>0$, there exists $\gamma>0$ such that $|h(t)|<\frac{1}{2} \epsilon t_{0}^{2}$ for $t_{0}-t<\gamma$, so that

$$
\frac{2 y}{\pi} \int_{t_{0}-\gamma}^{t_{0}}|h(t)| R(t) d t<\frac{2 \epsilon y t_{0}^{2}}{\pi} \int_{0}^{1} R(t) d t<\epsilon
$$

for $y>0$. Since $h(t)$ is a bounded function, there exists $\gamma^{\prime}>0$ such that, for $y<\gamma^{\prime}$,

$$
\frac{2 y}{\pi} \int_{0}^{t_{0}-\gamma}|h(t)| R(t) d t<\epsilon .
$$

In order to treat the second integral appearing in (2) we replace $g(t)$ by

$$
\left[g\left(t_{0}\right)+g^{\prime}+\left(t_{0}\right)\left(t-t_{0}\right)+k(t)\left(t-t_{0}\right)\right]
$$

and proceed as above. However, in this case the integration by parts formula yields the additional term

$$
\pi^{-1} y\left[k(1)\left(1-t_{0}\right) / t_{0}^{2}\left(1+y^{2}\right)\right]
$$

which approaches zero with y. This completes the proof of the Theorem.
Remark added in the revision. I am indebted to the referee for suggesting the revised form of the Theorem. Also, as he points out, the Theorem is valid if we replace the interval of integration $[0,1]$ by the ray $[0, \infty]$ and restrict z so that $z \notin[-\infty, 0]$.

Reference

1. D. V. Widder, The Laplace Transform, (Princeton, 1946).

Illinois Institute of Technology, Chicago

[^0]: Received December 20, 1955 and in revised form March 9, 1956. Work on this paper was sponsored by the Air Research and Development Command, under Contract AF 18 (600) 1393.

