Again
$$\sin a = \frac{\sin b \sin A}{\sin B} \quad \text{by I.}$$
and
$$\cos a = \frac{\cos A}{\sin B} \quad \text{by II.} \quad \text{Divide}$$

$$\therefore \quad \tan a = \tan A \sin b$$
so
$$\tan b = \tan B \sin a$$

Note on Napier's Rules.

By Professor John Jack.

Denote the parts
$$b$$
 A c B a of \triangle ABC (Fig. 9) by 1 2 3 4 5

then the parts corresponding of the A BEF, namely,

$$\frac{\pi}{2} - c$$
, B, $\frac{\pi}{2} - a$, $\frac{\pi}{2} - b$, $\frac{\pi}{2} - A$

will be denoted by $\frac{\pi}{2} - 3$, 4, $\frac{\pi}{2} - 5$, $\frac{\pi}{2} - 1$, $\frac{\pi}{2} - 2$.

Now a third \triangle can similarly be derived from this second, a fourth from the third, and a fifth from the fourth. But when the process is applied to the fifth, the first \triangle is obtained. Hence only 5 \triangle s can be obtained, which are the following:—

1	2	3	4	5
$\frac{\pi}{2}$ – 3	4	$\frac{\pi}{2}$ – 5	$\frac{\pi}{2}-1$	$\frac{\pi}{2}-2$
5	$\frac{\pi}{2}-1$	2	3	$\frac{\pi}{2}-4$
$\frac{\pi}{2}$ – 2	3	4	$\frac{\pi}{2}-5$	1
$\frac{\pi}{2}-4$	$\frac{\pi}{2}$ – 5	$\frac{\pi}{2}-1$	2	$\frac{\pi}{2}$ – 3
1	2	3	4	5

where the mid-column contains the hypotenuse, the two next to it contain the angles, and the extreme columns the sides of the several right-angled triangles.

Now assume cos hypotenuse = product of cosines of sides = product of cotangents of angles;

that is sine complement of hypotenuse

= product of cosines of sides

= product of tangents of complements of angles.

Now change the 2nd, 3rd, and 4th columns to complements and we have

1	$\frac{\pi}{2}-2$	$\frac{\pi}{2}$ – 3	$\frac{\pi}{2}-4$	5
$\frac{\pi}{2}-3$	$\frac{\pi}{2}-4$	5	1	$\frac{\pi}{2}$ – 2
5	1	$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$	$\frac{\pi}{2}$ – 4
$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$	$\frac{\pi}{2}-4$	5	1
$\frac{\pi}{2}-4$	5	1	$\frac{\pi}{2}-2$	$\frac{\pi}{2}-3$

where, taking any horizontal line,
sine of mid column = product of tangents of adjoining columns
= product of cosines of extreme columns;
and this proves completely Napier's rules, for each horizontal

line contains Napier's parts in the same (cyclic) order.