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RICHARD RADO

Richard Rado was born in Berlin ; he was the second son of Leopold Rado, from

Budapest. At one stage of his education he had to decide whether to become a concert

pianist or a mathematician. He chose the latter in the belief that he could continue

with music as a hobby, but that he could never treat mathematics in that way. He

studied at the University of Berlin, but also spent some time in Go$ ttingen. He took

a DPh at Berlin with his thesis ‘Studien zur Kombinatorik’ [3] under Issai Schur in

1933. During this period he was also influenced by Erhard Schmidt.

On 16 March 1933, he married Luise Zadek, the elder daughter of Hermann

Zadek, whom he had earlier come to know when he needed a partner to play piano

duets. It was indeed a remarkable partnership.

As Hitler came to power in 1933, the Rados, being Jewish, made their way to

England, Richard having obtained a scholarship of £300 p.a. from Sir Robert Mond

through the recommendation of Professor Lindemann (later Lord Cherwell), who

had interviewed him in Berlin, to enable him to study at Cambridge.

Richard entered Fitzwilliam House (now College) in 1933, and studied for a PhD

under G. H. Hardy. He was awarded his degree in 1935 for his thesis on ‘Linear

transformations of sequences ’ [13]. He stayed on at Cambridge with a temporary

lectureship until 1936. During this period, 1933–36, the Hardy–Littlewood seminar

was the main meeting place for mathematicians at Cambridge, there being neither

department nor institute there at that time. Among the many resident mathematicians,

those who influenced Rado most seem to have been G. H. Hardy, J. E. Littlewood,

P. Hall and A. S. Besicovitch. B. H. Neumann, like Richard one of the many refugees

from Nazi Germany, also joined Fitzwilliam House in 1933, and became one of

Richard’s lifelong friends. For a time he lived in the same lodgings as Hans

Heilbronn. He also saw H. Davenport regularly. Paul Erdo% s, who had previously

written to Richard, first met him on 1 October 1934 ©2ª ; some of their joint work will

be described later.

In 1936, Richard obtained a post as Assistant Lecturer at Sheffield, and later

became a Lecturer there. When Leon Mirsky arrived at Sheffield in 1942, the Rados

befriended him and formed lasting friendships; see ©1ª.

In 1947 Richard was appointed Reader in Mathematics at King’s College,

London. In 1954 he became Professor of Mathematics in the University of Reading,

remaining there until and after his retirement in 1971. He spent the academic year

1971–72, immediately after his retirement, as Visiting Professor in the Department of

Combinatorics and Optimization at the University of Waterloo, Ontario.

Richard Rado had extremely wide mathematical interests. Many themes run

through his work. Erdo% s ©2ª, writing about their joint work, says ‘I was good at

discovering perhaps difficult and interesting special cases and Richard was good at

generalizing them and putting them in their proper perspective ’. Richard himself,
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when replying to a presentation that was made on his retirement, said: ‘There are

almost as many types of mathematician as there are types of human being. Among

them are technicians, there are artists, there are poets, there are dreamers, men of

affairs and many more. I well remember rising from my chair after having just solved

what seemed to me an interesting and difficult problem, and saying aloud to myself :

‘‘This is beautiful music ! ’’ And only after I had said this did it strike me that I had

strayed into the wrong category. ’ Richard was fascinated by mathematical beauty

and sought after it. He always tried to formulate his results at their natural level of

generality, so that their full power was exhibited without their content being obscured

by over-elaboration.

Richard was very methodical. He made verbatim shorthand notes of the lectures

and seminars (and even Senate meetings) that he attended. He also used his shorthand

in his mathematical workings and in the 64 diaries that he wrote. The National

Cataloguing Unit for the Archives of Contemporary Scientists at the University of

Bath is cataloguing Rado’s manuscripts for the Reading University Library.

Richard and Luise had a double partnership. She went with him to conferences and

meetings all over the world, and kept contact with all his mathematical friends. He

was an accomplished pianist, she was a singer of professional standard. They gave

many recitals, both public and private, often having musical evenings in their home

in Reading. A road accident in 1983 affected Richard’s health, and made it impossible

for Luise to walk more than a few steps, and then only on the level. This sadly

diminished their lives. Luise survived Richard by only a few months, leaving their son

Peter with his wife and two children alone.

He was the kindest and gentlest of men.

Mathematical work

Although two main themes dominate Rado’s mathematical work, it has many

minor themes and many apparently isolated notes. We first discuss some of the minor

themes in an attempt to show the breadth of his work, then turn to the major themes

in an attempt to examine its depth.

Con�ergence of sequences and series. See [13, 17, 18, 19, 59]. If (κ
i
, λ

i
), i¯ 1, 2,… ,

is an ordering of the pairs of positive integers, we have a formal product

03¢
κ="

xκ1 03¢
λ="

yλ1¯3
¢

i="

xκ
i

yλ
i

for two series. In one paper [19] Rado determines all the sequences (κ
i
, λ

i
), i¯ 1, 2,… ,

for which the series on the right converges to the product of the two series on the left,

whenever these two series converge. Surprisingly, his proof depends on an application

of Ramsey’s theorem; see below.

In a further paper [59] Rado proves that if f is a function from a real Banach space

X to a real Banach space Y, and Σ f(x
n
) has bounded partial sums in Y whenever

Σx
n

converges in X, then f is continuous and linear near the origin.

Inequalities. See [11, 12, 14, 27, 36, 39, 47, 50, 80, 82]. Here we quote a typically

atypical result. Whereas most of the papers on this theme are concerned with
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inequalities of classical types, in one paper [47] Rado investigates the minimal sum

that can be obtained by a suitable rearrangement of a transfinite sequence of ordinal

numbers. In particular, he determines the least sum that can be obtained by

rearranging the sum of all ordinals less than any given ordinal.

Geometry and measure theory. See [29, 34, 38, 40, 42, 43, 55, 72, 73, 74]. Let +
be a family of convex bodies in 2n. Write

σ*(+ )¯ inf
Ω

sup
Θ
()V

θ`Θ

Kθ)5)V
ω`Ω

Kω)*,
the infimum being over all bounded non-empty families ²Kω :ω `Ω´ of sets from +,

and the supremum being over all disjoint subfamilies ²Kθ :θ `Θ´ with ΘZΩ. Rado

introduces this definition in [34] and studies σ*(+ ) for various families + of convex

bodies. In particular, he shows that

(3n®7−n)−"!σ*(#
n
)% 2−n,

when #
n

is the family of all cubes in 2n with their faces parallel to the coordinate

planes. He conjectures that σ*(#
n
)¯ 2−n ; this conjecture remains open.

Besicovitch and Rado constructed a plane set of measure zero that contains circles

of each positive radius [74]. This particular result was obtained independently by J. R.

Kinney ©6ª at about the same time. The method of Besicovitch and Rado seems to

be more general ; they claim rather casually : ‘ It will be clear from the method we use

that there are other families of curves which can be treated in the same way, such as

confocal conics or, more generally, any one-parameter family of algebraic curves, and

many more. ’ It seems to me that the phrase ‘such as confocal conics ’ must be taken

to imply that the one-parameter family of algebraic curves depends in a very smooth

way on the parameter. These papers rekindled interest in this type of problem (see

J. R. Marstrand ©9ª). The problem of whether a set of measure zero can contain

translates of all plane algebraic curves remains open.

Graphs. See [56, 60, 64, 78, 86, 88, 91, 97, 106, 109], and other papers [22, 24, 32]

which we prefer to regard as part of the first main theme. Most of Rado’s work on

graph theory is concerned with properties of hypergraphs and of infinite graphs of

various types.

Number theory. See [3, 7–10, 20, 26, 30, 41, 89, 98]. Apart from one paper [3],

which we discuss in some detail below, most of these papers are expository.

Miscellaneous articles. See [1, 2, 25, 28, 37, 47, 49, 51, 54, 57, 61, 63, 72, 85, 87,

94, 95, 104, 105, 108, 110, 112–117]. Here and elsewhere, the titles usually indicate the

subject of the papers. We draw special attention to a paper [61], written with Chao

Ko and Erdo% s in 1938 but published only in 1961. It is shown that if n and k are

positive integers with k% "

#
n, and A

"
,A

#
,… ,A

t
are subsets of a set S with cardinal

rSr¯ n and

A
i
fA

j
1W, for 1% i% j% t,

A
i
^A

j
, for 1% i% t, 1% j% t,

rA
i
r%k, for 1% i% t,
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then necessarily

t%
n®1

k®1
.

This result and the problems raised in the paper have given rise to a substantial body

of combinatorial theory with many interesting results and conjectures (see Erdo% s
©2ª).

Some of the other articles are concerned with the popularization of mathematics,

most are of genuine interest, some are important, and others may well prove to be

important. Some of Rado’s work has borne its best fruit many years after it was

written.

Hall ’s theorem and abstract independence. See [6, 16, 21, 22, 24, 31, 32, 33, 53,

62, 67, 69, 70, 81, 90, 96, 99, 110, 111, 119]. The theorem of P. Hall ©5ª to which we

refer is simple to state. Let T
"
,T

#
,… ,T

m
be a finite system of subsets of a finite set S.

In order that it be possible to find a
"
, a

#
,… , a

m
with

a
i
1 a

j
, for 1% i! j%m,

and

a
i
`T

i
, for 1% i%m,

it is necessary and sufficient that for each k, 1%k%m, each selection of k sets from

T
"
,T

#
,… ,T

m
shall contain between them at least k distinct elements of S.

As Hall remarks, this generalizes a result of D. Ko$ nig ©7ª and also Rado’s [6]

generalization of Ko$ nig’s result. This beautiful result clearly captured Rado’s

imagination; he obtained various parallel results and generalizations. In particular, to

obtain a common generalization of a result on vectors and on polynomials [27], he

introduced an abstract notion of the independence of subsets of a given set, a notion

that he later realized had been introduced earlier by H. Whitney ©16ª. Rado proved

the following result.

Let a relation of independence, satisfying appropriate axioms, be defined on the

subsets of a given set S. Let A
"
,A

#
,… ,A

n
be subsets of S. There will be a set of

independent elements a
"
, a

#
,… , a

n
in S with

a
i
`A

i
, 1% i% n,

if, and only if, for each k, 1%k% n, and each set ν
"
, ν

#
,… , ν

k
with

1% ν
"
! ν

#
!…! ν

k
% n,

the union V²Aν
i

:1% i%k´ contains some set of k independent elements of S.

This theorem subsequently proved to be of great importance in transversal theory

(and in the equivalent theory of matroids).

Some articles [16, 22, 24] obtain Hall-type conditions on two-measure functions

f and g, of a very general nature, defined on the vertices of a directed graph, and are

necessary and sufficient to ensure that f can be transformed into g by a sequence of

moves that transfer positive elements of measure along the directed edges of the

graph. These give far-reaching versions of Hall’s theorem.

Marshall Hall ©4ª extended Philip Hall’s theorem to the case when ²Tν :ν `N ´ is

an arbitrary family of finite subsets of an arbitrary set S.
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A year later, Rado [33] extended Whitney’s theory of abstract independence for

finite sets to infinite sets. To do this, he introduced the concept of an independent base

for an infinite set, and showed that all independent bases for a given set have the same

cardinal. This cardinal becomes the cardinal rank of the infinite set. A key to this

theory is the following selection lemma.

Let A and N be sets and let Aν be a finite subset of A for each ν `N. Suppose that

for each finite set L contained in N, we are given a choice function f
L
:L!A such that

f
L
(ν) `Aν for ν `L,

and

f
L
(ν)1 f

L
(µ) when ν,µ `L with ν1µ.

Then there is a choice function f *:N!A such that

f *(ν)1 f *(µ) when ν,µ `N with ν1µ,

and for any finite subset L of N there is a second finite subset M of N with LZM

and

f *(ν)¯ f
M
(ν) for all ν in L.

The proof is rather complicated; Rado gave a much simpler proof [81]. Again, this

selection lemma has proved to be of great importance in transversal theory.

He obtained several results concerning the possibilities of representing in-

dependence structures by the linear independence of suitably chosen vectors in a

vector space over a field or a division ring [53].

Any attempt to describe the major significance of Rado’s work for transversal

theory would take us too far from our aim of describing Rado’s direct mathematical

contributions. So we refer the reader to the books by L. Mirsky ©10ª and D. J. A.

Welsh ©15ª.

Ramsey’s theorem and partition relations. See [3, 4, 5, 15, 19, 23, 35, 43–46, 48,

49, 52, 56, 58, 65, 66, 68, 71, 75, 76, 77, 79, 80, 83, 84, 92, 93, 100–103, 107, 118, 120].

The main starting points for Rado’s first substantial paper [3] were theorems of B. L.

van der Waerden and I. Schur. Van der Waerden (see ©14ª for an interesting account

of the discovery of this result) had proved that : if k and l are positive integers, then

there is a number f(k, l ) such that, if N is a positive integer with N& f(k, l ) and

²1, 2,…,N ´ is divided into k sets, then at least one set contains an arithmetic

progression of length l1.

Rado, with good reason, describes this result as extraordinarily interesting. When

he first heard about it, he disbelieved it and tried hard to disprove it. As often

happens, his attempts to disprove the result led to a deep understanding of its nature.

The result of I. Schur was of a similar nature concerning solutions of the Diophantine

equation xy¯ z in one at least of the subsets of ²1, 2,…,N ´.
Rado obtains far-reaching generalizations of these results. In particular, he

considers a system of equations

3
n

ν="

αµν xν ¯ 0, 1%µ%m,

with integral coefficients, having solutions (x
"
,x

#
,… ,x

n
) in positive integers. He gives

fairly complicated conditions on the coefficients αµν (that can be easily checked in
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special cases) that are necessary and sufficient to ensure that when the sequence of

positive integers is divided into a finite number of sequences, then at least one of the

sequences contains a solution of the system of equations. The results of van der

Waerden and Schur follow as immediate consequences. These investigations, which

include many other results, are taken further in [4, 23].

F. P. Ramsey ©12ª had shown that if n is a positive integer and ∆ is an arbitrary

distribution of all sets of n positive integers into a finite number of classes, then there

exists an infinite set M of positive integers which has the property that all sets of n

numbers from M belong to the same class of ∆. Early in 1934, Erdo% s wrote to Rado

and asked: ‘Is it true that when S is a set of infinite cardinal, and the countable

subsets of S are split into two classes, then there is always an infinite subset S* of S

all of whose countable subsets are in the same class? ’ Rado replied with a

counterexample almost immediately. A little later, Rado used Ramsey’s theorem in

a quite unexpected way in his paper [19] on products of infinite series ; see above.

In a further study [35] Erdo% s and Rado introduce canonical distributions. For

each positive integer n, they introduce 2n ‘canonical ’ distributions ∆(n)

i
, 1% i% 2n, of

the n-element subsets of the positive integers into a number (usually infinite) of

classes. There are two extreme canonical distributions, ∆(n)

i
say, where all n-element

sets belong to a single class, and ∆(n)

#
n say, where each n-element set is assigned to its

own class. They prove the following surprising and far-reaching generalization of

Ramsey’s theorem.

Let ∆ be an arbitrary distribution of the n-element sets of positive integers into

classes. Then there is an infinite subset N* of the positive integers and an i with

1% i% 2n such that the distribution ∆, when restricted to the n-element subsets of

N*, coincides with the distribution ∆(n)

i
. Later, this paper had a major influence on

the development of Ramsey theory (see R. L. Graham et al. ©3ª).

It is now time to introduce the notation of the partition calculus invented by

Rado. In one of its simpler forms, this uses the symbol

aMN (b
h
)r
h`H

if H is an arbitrary set, or more simply

aMN (b
"
, b

#
,… , b

k
)r

if H¯²1, 2, … ,k´, where a, r and b
h

for h `H are either cardinals or order types, as

an abbreviation of the following statement. If an arbitrary set A of type a (that is, of

cardinal a or order type a) is given and the system [A]r of subsets of A of type r is

partitioned in the form ²I
h
:h `H ´, then there is an h in H and a set B

h
of type b

h
such

that the system of subsets [B
h
]r of B

h
of type r all belong to I

h
. The symbol

aM. (b
h
)r
h`H

is used to abbreviate the negation of the above statement. One advantage of this

shorthand notation is that the statement

aMN (b
h
)r
h`H

implies

a«MN (b!
h
)r«
h`H
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whenever

a«, r, b
h
, h `H,

include

a, r«, b!
h
, h `H.

Thus the statement is stable if the variables on the left are reduced and those on the

right are increased. If all the b
h
, h `H, have a common value, b say, we can write

aMN (b)r
h`H

without risk of confusion.

In this notation, Ramsey’s theorem takes the form

b
!
MN (b

!
)r
"
%h%n

with r and n any positive integers. Rado’s negative response to Erdo% s’ 1934 question

becomes

b
!
M. (b

!
,b

!
)b

!.

In [65] Rado and Milner investigate the partition relation

αMN (α
!
,… ,ακ,…)κ!k

where k, α and ακ, κ!k, are all ordinal numbers. Note that the exponent r takes the

value 1 (by implication), and so the relation is concerned with elements from α rather

than with subsets of α. They describe a procedure that leads, in a finite number of

steps, from any choice of a finite sequence of ordinals α
!
,α

"
,… ,α

k−"
to a calculation

of the least ordinal α for which the relation

αMN (α
!
,α

"
,… ,α

k−"
)

holds. Once the reader is familiar with the notation, and provided note is taken of the

context within which it is used, it becomes a very convenient and concise way of

expressing partition relations and their negations.

Rado himself, and Rado with Erdo% s and with other collaborators, continued to

study partition relations for many years, investigating canonical partition relations

and partition relations for cardinals, for ordinals, for order types and for matrices.

Erdo% s ©2ª gives an excellent account of his joint work with Rado. Most of the work

is described in detail in the book [118] by Erdo% s, Hajnal, Ma! te! and Rado. This book

goes some way towards an exposition of the importance of the theory for the theory

of cardinal numbers and for mathematical logic. This lies, in part, in the fact that

the truth of various partition relations turns out to be independent of the

Zermelo–Fraenkel axioms, and so we are provided with whole scales of potentially

important new axioms for use in set theory.

Mathematical work in general

This inadequate account of Rado’s mathematical work can best be supplemented

by reading his original papers and the book he wrote with Erdo% s et al. [118]. The

paper by H. Lenz ©8ª is also worth study. The account by Erdo% s ©2ª of his joint work
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with Rado should certainly be read. An account edited by C. Richards ©13ª of the

presentation to Rado on his 65th birthday contains interesting speeches by Mirsky

and by Rado, and also a good photograph of Richard and Luise.

Honours and appointments

Lecturer, University of Sheffield, 1936–47. Reader, King’s College, University of

London, 1947–54. Professor of Pure Mathematics, University of Reading, 1954–71,

and Emeritus Professor from 1971. Canadian Commonwealth Fellow, University of

Waterloo, Ontario, 1971–72. Visiting Professor, University of Calgary, 1973–74.

London Mathematical Society : Council, 1948–57; Hon. Sec., 1953–54; Vice-

President, 1954–56; Senior Berwick Prize, 1972.

Fellow of the Royal Society, 1978.

Chairman of the British Combinatorial Committee, 1977–83; Richard Rado

Lecture instituted at the British Combinatorial Conference, 1985.

Dr rer. nat. hc., Freie University, Berlin, 1981. Hon. DMath, University of

Waterloo, Canada, 1986. Hon. Fellow, Fitzwilliam College, Cambridge, 1987.

Foundation editor of Mathematika, 1954. Member of the editorial boards of

Aequationes Mathematicae, Discrete Mathematics, Journal of Combinatorial Theory,

Combinatorica, Asian Journal of Graphs and Combinatorics.

A. I am most grateful to the late Mrs Rado and to Mr Peter

Rado for the information that they provided. I am also very grateful to Dr P. Erdo% s,
Professor B. H. Neumann and Mr C. R. Fletcher for their useful letters.

This article is reprinted from Biographical Memoirs of the Royal Society 37 (1991),

by kind permission of the Royal Society.
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