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Abstract

For every group G, the set P(G) of its subsets forms a semiring under set-theoretical union ∪ and
element-wise multiplication ·, and forms an involution semigroup under · and element-wise inversion −1.
We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring (P(G),∪, ·) nor
the involution semigroup (P(G), ·, −1) admits a finite identity basis. We also solve the finite basis problem
for the semiring of Hall relations over any finite set.
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1. Introduction

An additively idempotent semiring (ai-semiring, for short) is an algebra S = (S,+, ·)
whose operations + and · are associative and fulfill the distributive laws

x( y + z) = xy + xz and ( y + z)x = yx + zx,

and furthermore, addition is commutative and fulfills the idempotency law x + x = x.
We refer to the semigroup (S, ·) as to the multiplicative reduct of S.

Examples of ai-semirings are plentiful and include many objects of importance
for computer science, idempotent analysis, tropical geometry, and algebra such as,
for example, semirings of binary relations [17], syntactic semirings of languages
[27, 28], tropical semirings [26], endomorphism semirings of semilattices [16].
A natural family of ai-semirings comes from the powerset construction applied to an
arbitrary semigroup. Namely, for any semigroup (S, ·), one can multiply its subsets
element-wise: for any A, B ⊆ S, put

A · B := {ab | a ∈ A, b ∈ B}.
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[2] Semiring and involution identities of power groups 355

It is known and easy to verify that this multiplication distributes over the set-theoretical
union of subsets of S. Thus, denoting the powerset of S by P(S), we see that (P(S),∪, ·)
is an ai-semiring, called the power semiring of (S, ·). In semigroup theory, there
exists a vast literature on power semigroups, that is, the multiplicative reducts of
power semirings. The interest in power semigroups is mainly motivated by their
applications in the algebraic theory of regular languages; see [1, Ch. 11] and references
therein. Power semirings have attracted less attention so far, but we think they deserve
study no less than power semigroups as (P(S),∪, ·) carries more information than its
multiplicative reduct (P(S), ·). (For instance, it is known that in general, the power
semigroup (P(S), ·) does not determine its ‘parent’ semigroup (S, ·) up to isomorphism
[21, 22] while it is easy to see that the power semiring (P(S),∪, ·) does.)

The power semigroups of finite groups have quite a specific structure discussed in
detail in [1, Section 11.1]. In particular, they satisfy the following implications:

e f = e2 = e & f e = f 2 = f → e = f , (1-1)

e f = f 2 = f & f e = e2 = e→ e = f . (1-2)

Semigroups satisfying Equations (1-1) and (1-2) are called block-groups. We refer
the reader to Pin’s survey [25] for an explanation of the name ‘block-group’ and an
overview of the remarkable role played by finite block-groups in the theory of regular
languages. In this paper, we deal with power semirings of finite groups, which we call
power groups for brevity, and more broadly, with ai-semirings whose multiplicative
reducts are block-groups. We address the finite axiomatizability question (also known
as the finite basis problem) for semiring identities satisfied by such ai-semirings. For
power groups, we prove the following theorem.

THEOREM 1.1. For any finite nonabelian solvable group (G, ·), the identities of the
power group (P(G),∪, ·) admit no finite basis.

In 2009, Dolinka [6, Problem 6.5] asked for a description of finite groups whose
power groups have no finite identity basis (provided such finite groups exist, which
was unknown at that time). Theorem 1.1 gives a partial answer to Dolinka’s question.

Theorem 1.1 is a consequence of quite a general condition ensuring the absence of
a finite identity basis for ai-semirings whose multiplicative reducts are block-groups
with solvable subgroups (see Theorem 4.2). Yet another application of this condition,
combined with a result from [14], gives a complete solution to the finite basis problem
for a natural family of semirings of binary relations. Recall that a Hall relation on a
finite set X is a binary relation that contains all pairs (x, xπ), x ∈ X, for a permutation
π : X → X. Clearly, the set H(X) of all Hall relations on X is closed under unions and
products of relations, and hence (H(X),∪, ·) is a subsemiring of the (∪, ·)-semiring of
all binary relations on X.

THEOREM 1.2. The identities of the ai-semiring of all Hall relations on a finite set X
admit a finite basis if and only if |X| = 1.
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Our techniques apply equally well to yet another algebra carried by the powerset
of a group. An involution semigroup is a semigroup equipped with an extra unary
operation x �→ x∗ that fulfills the laws

(xy)∗ = y∗x∗ and (x∗)∗ = x.

If (G, ·) is a group, each g ∈ G has the inverse g−1 and the map g �→ g−1 naturally
extends to the powerset of G: for each A ∈ P(G), let A−1 := {g−1 | g ∈ A}. Clearly,
(P(G), ·, −1) forms an involution semigroup. The finite basis problem for involution
semigroups is relatively well studied (see, for example, [2, 3, 7, 19]), but involution
power semigroups of groups do not fall into any previously studied class. Our next
result applies to involution power semigroups of finite solvable groups containing at
least one nonnormal subgroup. Recall that a group all of whose subgroups are normal
is called a Dedekind group.

THEOREM 1.3. For any finite non-Dedekind solvable group (G, ·), the identities of the
involution semigroup (P(G), ·, −1) admit no finite basis.

The paper is structured as follows. Section 2 collects the necessary properties of
block-groups. The technical core of the paper is Section 3, where we show that every
finite block-group with solvable subgroups satisfies certain semigroup identities from
a family of identities introduced in our earlier paper [11]. This allows us in Section 4
to quickly deduce Theorems 1.1 and 1.2 from the main result of [11]. In Section 5, we
prove an involution semigroup variant of the main result of [11], which allows us to
infer Theorem 1.3.

2. Preliminaries

The present paper uses a few basic notions of semigroup theory such as idem-
potents, ideals, and Rees quotients. They all can be found in the early chapters of
any general semigroup theory text, for example, [5, 13]. We also assume the reader’s
acquaintance with rudiments of group theory, including the concept of a solvable
group, see, for example, [12].

We recall the definition of a Brandt semigroup as we will need some calculations
in such semigroups. Let I be a nonempty set, G = (G, ·) a group, and 0 � G a fresh
symbol. The Brandt semigroup BG,I over G has the set BG,I := I × G × I ∪ {0} as its
carrier, and the multiplication in BG,I is defined by

(�1, g1, r1) · (�2, g2, r2) :=

⎧⎪⎪⎨⎪⎪⎩(�1, g1g2, r2) if r1 = �2,
0 otherwise,

for all �1, �2, r1, r2 ∈ I, g1, g2 ∈ G,

(�, g, r) · 0 = 0 · (�, g, r) = 0 · 0 := 0 for all �, r ∈ I, g ∈ G.

We register a property of Brandt semigroups that readily follows from the definition.
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LEMMA 2.1. Let I be a nonempty set, let G = (G, ·) be a group, and for any �, r ∈ I, let
G�r := {(�, g, r) | g ∈ G}. Then, (G�r, ·) is a maximal subgroup of the Brandt semigroup
BG,I if � = r; otherwise the product of any two elements from G�r is 0.

An element a of a semigroup (S, ·) is said to be regular if there exists b ∈ S
satisfying aba = a and bab = b; any such b is called an inverse of a. A semigroup
is called regular [respectively, inverse] if every element has an inverse [respectively,
a unique inverse]. Every group G = (G, ·) is an inverse semigroup, and the unique
inverse of an element g ∈ G is nothing but its group inverse g−1. The Brandt semigroup
BG,I over G is inverse as well: for �, r ∈ I and g ∈ G, the unique inverse of (�, g, r) is
(r, g−1, �) and the unique inverse of 0 is 0.

Now we present a few properties of block-groups needed for Section 3. They all are
known, but in some cases, we failed to find any reference that could be used directly
(rather one has to combine several facts scattered over the literature). In such cases, we
include easy direct proofs for the reader’s convenience.

The definition of a block-group can be restated in terms of inverse elements, and
it is this version of the definition that is often used in the literature to introduce
block-groups.

LEMMA 2.2. A semigroup (B, ·) is a block-group if and only if every element in B has
at most one inverse.

PROOF. The ‘if’ part. Take any e, f ∈ B that satisfy the antecedent of the implication
in Equation (1-1), that is, e f = e2 = e and f e = f 2 = f . Multiplying e f = e by e on
the right and using e2 = e, we get e f e = e, and similarly, multiplying f e = f by f on
the right and using f 2 = f , we get f e f = f . Hence, f is an inverse of e. However,
we have e = e2 = e3 so that e is an inverse of itself. Since e has at most one inverse,
we conclude that e = f so that Equation (1-1) holds. By symmetry, the implication in
Equation (1-2) holds as well.

The ‘only if’ part. Take any a ∈ B and suppose that both b and c are inverses
of a. Letting e := ba and f := ca, we have e f = baca = ba = e, e2 = baba = e, and
similarly, f e = caba = ca = f , f 2 = caca = f . Since (B, ·) satisfies the implication
in Equation (1-1), we get e = f , that is, ba = ca. By symmetry, the implication in
Equation (1-2) ensures ab = ac. Now we have b = bab = cab = cac = c. �

Lemma 2.2 shows that regular block-groups are inverse, so that one can think of
block-groups as nonregular analogs of inverse semigroups.

For any semigroup (S, ·), we denote the set of all its idempotents by E(S).
A semigroup (S, ·) is called J-trivial if every principal ideal of (S, ·) has a unique
generator and periodic if every one-generated subsemigroup of (S, ·) is finite. In [20,
Proposition 2.3], it is proved that a finite monoid (S, ·) is a block-group if and only if
the subsemigroup (〈E(S)〉, ·) generated by E(S) is J-trivial. In fact, the proof in [20]
uses periodicity of (S, ·) rather than its finiteness and does not use the identity element
of (S, ·). Thus, we have the following characterization of periodic block-groups.
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PROPOSITION 2.3. A periodic semigroup is a block-group if and only if the subsemi-
group generated by its idempotents is J-trivial.

As a consequence, we have the following observation.

LEMMA 2.4. If (S, ·) is a periodic block-group, then every regular element of the
subsemigroup (〈E(S)〉, ·) lies in E(S).

PROOF. Let a ∈ 〈E(S)〉 be a regular element and b its inverse. The FitzGerald trick
[9, Lemma 1] shows that b ∈ 〈E(S)〉 as well. Since a = aba and b = bab generate
the same ideal in (〈E(S)〉, ·), Proposition 2.3 implies a = b. Thus, a = a3, whence
a and a2 also generate the same ideal in (〈E(S)〉, ·). Now Proposition 2.3 implies
a = a2 ∈ E(S). �

LEMMA 2.5. If a Brandt semigroup (B, ·) occurs as an ideal in a periodic block-group
(S, ·), then for all b ∈ B, f ∈ E(S), either f b = b or f b = 0.

PROOF. If the semigroup (B, ·) is represented as BG,I for some group (G, ·) and some
nonempty set I, then each nonzero idempotent is of the form (i, e, i), where i ∈ I and e is
the identity element of the group G. Take an arbitrary element b = (�, g, r) ∈ I × G × I.
Then b = (�, e, �)b, whence f b = f (�, e, �)b for each f ∈ E(S). The product f (�, e, �)
lies in B and so it is regular. By Lemma 2.4, f (�, e, �) is an idempotent. If f (�, e, �) � 0,
then f (�, e, �) = ( j, e, j) for some j ∈ I. Multiplying the equality through by ( j, e, j)
on the right yields f (�, e, �)( j, e, j) = ( j, e, j), whence j = �. We conclude that either
f (�, e, �) = (�, e, �) or f (�, e, �) = 0, whence either f b = b or f b = 0. �

A principal series of a semigroup (S, ·) is a chain

S0 ⊂ S1 ⊂ · · · ⊂ Sh = S (2-1)

of ideals Sj of (S, ·) such that S0 is the least ideal of (S, ·) and there is no ideal of (S, ·)
strictly between Sj−1 and Sj for j = 1, . . . , h. The factors of the series in Equation (2-1)
are the Rees quotients (Sj/Sj−1, ·), j = 1, . . . , h. The number h is called the height of the
series in Equation (2-1).

Recall that a semigroup (Z, ·) with a zero element 0 is called a zero semigroup if
ab = 0 for all a, b ∈ Z. A semigroup (T , ·) with a zero element 0 is 0-simple if it is not a
zero semigroup, and {0} and T are the only ideals of (T , ·). A semigroup (T , ·) is simple
if T is its only ideal. (Observe that a simple semigroup may consist of a single element
while any 0-simple semigroup has at least two elements.) By [5, Lemma 2.39], if
Equation (2-1) is a principal series, then (S0, ·) is a simple semigroup and every factor
(Sj/Sj−1, ·), j = 1, . . . , h, is either a 0-simple semigroup or a zero semigroup with at
least two elements.

Restricting a classical result of semigroup theory (see [5, Theorem 3.5] or [13,
Theorem 3.2.3]) to the case of periodic block-groups yields the following lemma.

LEMMA 2.6. If a periodic block-group is simple, it is a group, and if it is 0-simple, it
is a Brandt semigroup.
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COROLLARY 2.7. If a periodic block-group possesses a principal series, then its least
ideal is a group and the nonzero factors of the series are Brandt semigroups.

We call Equation (2-1) a Brandt series if (S0, ·) is a group and every factor
(Sj/Sj−1, ·) with j = 1, . . . , h, which is not a zero semigroup, is a Brandt semigroup.
Thus, Corollary 2.7 can be restated as saying that a principal series of a periodic
block-group is a Brandt series (provided the series exists). The converse is also true,
even without periodicity.

LEMMA 2.8. If a semigroup possesses a Brandt series, it is a block-group.

PROOF. Let Equation (2-1) be a Brandt series in a semigroup (S, ·). Take any regular
element a ∈ S and let j ∈ {0, 1, . . . , h} be the least number with a ∈ Sj. Recall that
each inverse of a generates the same ideal of (S, ·) as does a. Therefore, if j = 0, all
inverses of a lie in the least ideal of (S, ·) which is a group. Then all inverses of a are
equal since they coincide with the group inverse of a in the group (S0, ·). If j > 0, we
have a ∈ Sj \ Sj−1, and all inverses of a also lie in Sj \ Sj−1. Their images in the Rees
quotient (Sj/Sj−1, ·) are inverses of the image of a, and hence, they coincide as the
quotient must be an inverse semigroup. Since nonzero elements of Sj/Sj−1 are in a 1–1
correspondence with the elements of Sj \ Sj−1, all inverses of a are equal also in this
case. Now Lemma 2.2 shows that (S, ·) is a block-group. �

We also need the following property of J-trivial semigroups.

LEMMA 2.9 [1, Lemma 8.2.2(iii)]. If a J-trivial semigroup (S, ·) satisfies the identity
xp = xp+1 and w is an arbitrary semigroup word, then (S, ·) satisfies the identity
wp = up where u is the product, in any order, of the variables that occur in w.

3. Identities holding in block-groups with solvable subgroups

Here we aim to show that every finite block-group with solvable subgroups satisfies
certain identities constructed in [11]. For the reader’s convenience, we reproduce the
construction in detail so that no acquaintance with [11] is necessary for understanding
the results and the proofs of this section.

For any i, h ≥ 1, consider the set X(h)
i := {xi1i2···ih | i1, i2, . . . , ih ∈ {1, 2, . . . , i}}. We fix

arbitrary n, m ≥ 1 and introduce a family of words v(h)
n,m over X(h)

2n , h = 1, 2, . . . , by
induction.

For h = 1, let

v(1)
n,m := x1x2 · · · x2n (xnxn−1 · · · x1 · xn+1xn+2 · · · x2n)2m−1. (3-1)

Assuming that h > 1 and the word v(h−1)
n,m over X(h−1)

2n has already been defined, we
create 2n copies of this word over the alphabet X(h)

2n as follows. We start by taking
for every j ∈ {1, 2, . . . , 2n}, the substitution σ(h)

2n,j : X(h−1)
2n → X(h)

2n that appends j to the
indices of its arguments, that is,

σ(h)
2n,j(xi1i2...ih−1 ) := xi1i2...ih−1j for all i1, i2, . . . , ih−1 ∈ {1, 2, . . . , 2n}. (3-2)
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Then we let v(h−1)
n,m,j := σ(h)

2n,j(v
(h−1)
n,m ) and define

v(h)
n,m := v(h−1)

n,m,1 · · · v
(h−1)
n,m,2n(v(h−1)

n,m,n · · · v
(h−1)
n,m,1 · v

(h−1)
n,m,n+1 · · · v

(h−1)
n,m,2n)2m−1. (3-3)

Comparing the definitions in Equations (3-1) and (3-3), one readily sees that
the word v(h)

n,m is nothing but the image of v(1)
n,m under the substitution xj �→ v(h−1)

n,m,j ,
j ∈ {1, 2, . . . , 2n}.

REMARK 1. It is easy to see that the word v(h+r)
n,m is the image of the word v(h)

n,m under
a substitution ζ that sends every variable from X(h)

2n to a word obtained from v(r)
n,m by

renaming its variables. Indeed, in terms of the substitutions σ(h)
2n,j from Equation (3-2),

ζ expresses as follows:

ζ(xi1i2...ih ) := σ(r+h)
2n,ih

(· · · (σ(r+2)
2n,i2

(σ(r+1)
2n,i1

(v(r)
n,m))) · · · ) for all i1, i2, . . . , ih ∈ {1, 2, . . . , 2n}.

For any n, k ≥ 0 with n + k > 0 and any m ≥ 1, we define the following word over
X(1)

n+k:

un,k,m := x1x2 · · · xn+k (xnxn−1 · · · x1 · xn+1xn+2 · · · xn+k)2m−1.

Notice that un,n,m = v(1)
n,m.

LEMMA 3.1. Let I be a nonempty set, G = (G, ·) a group, and BG,I the Brandt
semigroup over G. For any m ≥ 1 and n, k ≥ 0 with n + k > 0 and any substitution
τ : X(1)

n+k → BG,I , the element τ(un,k,m) lies in a subgroup of BG,I .

PROOF. Lemma 2.1 implies that for any a ∈ BG,I , the power a2m lies in a subgroup
of BG,I . Since u0,k,m = (x1x2 · · · xk)2m and u1,k,m = (x1x2 · · · xk+1)2m, the claim holds for
n ∈ {0, 1}.

For the rest of the proof, assume n ≥ 2. If τ(un,k,m) = 0, there is nothing to prove. Let
τ(un,k,m) � 0. Then all elements τ(xi), i = 1, 2, . . . , n + k, must lie in the set I × G × I
of nonzero elements of BG,I . Hence, τ(xi) = (�i, gi, ri) for some �i, ri ∈ I and gi ∈ G.

First, consider the case k = 0. Since un,0,m = x1x2 · · · xn (xnxn−1 · · · x1)2m−1, we have
τ(un,0,m) = (�1, g, r1) for some g ∈ G. By Lemma 2.1, we have to show that �1 = r1. We
verify that �j = rj for all j = n, n − 1, . . . , 1 by backward induction. Since x2

n occurs as a
factor in the word un,0,m, we must have τ(x2

n) � 0, whence �n = rn. If j > 1, both xj−1xj

and xjxj−1 occur as factors in un,0,m. We then have

rj−1 = �j since τ(xj−1xj) � 0,
= rj by the induction assumption,
= �j−1 since τ(xjxj−1) � 0.

Now, let k > 0. Since

un,k,m = x1x2 · · · xn+k (xnxn−1 · · · x1 · xn+1xn+2 · · · xn+k)2m−1,
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we have τ(un,k,m) = (�1, g, rn+k) for some g ∈ G. Here we have to show that �1 = rn+k.
Since τ(x1x2 · · · xnxn+1) � 0 and τ(xn+kxn) � 0, we have

r1 = �2, r2 = �3, . . . , rn−1 = �n, rn = �n+1 and rn+k = �n. (3-4)

Since τ(xnxn−1 · · · x1xn+1) � 0, we also have

rn = �n−1, rn−1 = �n−2, . . . , r2 = �1, r1 = �n+1. (3-5)

Therefore, we obtain

rn+k
(3−4)
= �n

(3−4)
= rn−1

(3−5)
= �n−2

(3−4)
= rn−3 = · · · =

⎧⎪⎪⎨⎪⎪⎩�1 if n is odd,
r1 if n is even.

In addition, if n is even, then

r1
(3−5)
= �n+1

(3−4)
= rn

(3−5)
= �n−1

(3−4)
= rn−2

(3−5)
= �n−3 = · · · = �1.

We see that rn+k = �1 in either case. �

Several statements in this section deal with semigroups that possess Brandt series
and have subgroups subject to certain restrictions. To keep the premises of these
statements compact, we introduce a few short names. In what follows:

• groups of exponent dividing m are called m-groups;
• solvable m-groups of derived length at most k are called [m, k]-groups;
• a semigroup with a Brandt series of height h all of whose subgroups are

m-groups (respectively, [m, k]-groups) is called an (h, m)-semigroup (respectively,
an (h, m, k)-semigroup).

LEMMA 3.2. Any (h, m)-semigroup satisfies the identity x2hm = x2h+1m.

PROOF. Let (S, ·) be an (h, m)-semigroup and Equation (2-1) its Brandt series. We
induct on h. If h = 0, then (S, ·) is an m-group, and any m-group satisfies xm = x2m.

Let h > 0 and let a be an arbitrary element in S; we have to verify that

a2hm = a2h+1m. (3-6)

If a lies in a subgroup of (S, ·), then am = a2m since all subgroups of (S, ·) are m-groups.
Squaring this h times gives Equation (3-6). If a lies in no subgroup of (S, ·), then
a2 ∈ Sh−1 — this is clear if a ∈ Sh−1 or the factor (Sh/Sh−1, ·) is a zero semigroup
and follows from Lemma 2.1 if (Sh/Sh−1, ·) is a Brandt semigroup. By the induction
assumption, (a2)2h−1m = (a2)2hm, that is, Equation (3-6) holds again. �

Recall that if (S, ·) is a semigroup, (〈E(S)〉, ·) stands for its subsemigroup generated
by the set E(S) of all idempotents of (S, ·).

LEMMA 3.3. Let (S, ·) be an (h, m)-semigroup. For any k ≥ 1, if a substitution
τ : X(k)

2n → S is such that τ(xi1i2...ik ) ∈ 〈E(S)〉 for all i1, i2, . . . , ik ∈ {1, 2, . . . , 2n}, then
τ(v(k)

n,2hm) ∈ E(S).
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PROOF. By Lemma 3.2, the semigroup (S, ·) satisfies x2hm = x2h+1m, whence for each
p ≥ 2hm and each a ∈ 〈E(S)〉, the elements ap and ap+1 generate the same ideal in the
subsemigroup (〈E(S)〉, ·). The periodic semigroup (S, ·) is a block-group by Lemma 2.8,
whence the subsemigroup (〈E(S)〉, ·) is J-trivial by Proposition 2.3. Therefore, we have
ap = ap+1, that is, (〈E(S)〉, ·) satisfies the identity xp = xp+1.

Letting

aj :=

⎧⎪⎪⎨⎪⎪⎩τ(xj) if k = 1,
τ(v(k−1)

n,2hm,j) if k > 1,

for j = 1, 2, . . . , 2n, we have from Equations (3-1) and (3-3)

τ(v(k)
n,2hm) = a1a2 · · · a2n (anan−1 · · · a1 · an+1an+2 · · · a2n)2h+1m−1

= a1a2 · · · a2n (a1 · · · an−1an · an+1an+2 · · · a2n)2h+1m−1 by Lemma 2.9

= (a1 · · · an−1an · an+1an+2 · · · a2n)2h+1m

= (a1 · · · an−1an · an+1an+2 · · · a2n)2hm as x2hm = x2h+1m

= ((a1 · · · an−1an · an+1an+2 · · · a2n)2hm)2 = (τ(v(k)
n,2hm))2.

Hence, τ(v(k)
n,2hm) ∈ E(S) as required. �

LEMMA 3.4. Let (S, ·) be an (h, m)-semigroup with Brandt series in Equation (2-1).
If (S1, ·) is a Brandt semigroup and S = 〈E(S)〉 ∪ S1, then for an arbitrary substitution
τ : X(1)

2n → S, the element τ(v(1)
n,2hm) lies in a subgroup of S.

PROOF. If τ(xk) ∈ 〈E(S)〉 for all k ∈ {1, 2, . . . , 2n}, then τ(v(1)
n,2hm) ∈ E(S) by Lemma 3.3.

Otherwise, let {k1, k2, . . . , kp+q} with

1 ≤ k1 < k2 < · · · < kp ≤ n < kp+1 < kp+2 < · · · < kp+q ≤ 2n

be the set of all indices k such that τ(xk) � 〈E(S)〉. (Here, p = 0 or q = 0 is possible
but p + q > 0.) Since S = 〈E(S)〉 ∪ S1, we have τ(xk1 ), τ(xk2 ), . . . , τ(xkp+q ) ∈ S1. By
Lemma 2.5 and its dual, either τ(v(1)

n,2hm) = 0 or removing all τ(xk) such that τ(xk) ∈
〈E(S)〉 does not change the value of τ(v(1)

n,2hm). If τ(v(1)
n,2hm) = 0, the claim holds.

Otherwise, consider the substitution τ′ : X(1)
p+q → S1 given by τ′(xs) := τ(xks ) for all s ∈

{1, 2, . . . , p + q}. Then τ(v(1)
n,2hm) = τ′(up,q,2hm). By Lemma 3.1, the element τ′(up,q,2hm)

lies in a subgroup of the Brandt semigroup (S1, ·). Therefore, τ(v(1)
n,2hm) belongs to a

subgroup of (S, ·). �

LEMMA 3.5. Any [m, k]-group satisfies the identity v(k)
n,m = 1.

PROOF. Let G = (G, ·) be an [m, k]-group and a ∈ G. Since am is the identity element
of G, we have a2m−1 = a−1. Consider any substitution τ : X(1)

2n → G and let ai := τ(xi).
Then
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τ(v(1)
n,m) = a1a2 · · · a2n (anan−1 · · · a1 · an+1an+2 · · · a2n)−1 = a1a2 · · · an · a−1

1 a−1
2 · · · a

−1
n .

(3-7)

Recall that the commutator of elements a and b of a group is defined as
[a, b] := a−1b−1ab. It is easy to verify that the right-hand side of Equation (3-7)
can be written as a product of commutators, namely,

a1a2 · · · an · a−1
1 a−1

2 · · · a
−1
n = [a−1

1 , a−1
2 ][(a2a1)−1, a−1

3 ] · · · [(an−1an−2 · · · a1)−1, a−1
n ].
(3-8)

Therefore, τ(v(1)
n,m) belongs to the derived subgroup (G(1), ·) of G. We use this as the

induction basis and show by induction on h that any substitution θ : X(h)
2n → G sends

the word v(h)
n,m to the h th derived subgroup (G(h), ·) of G.

Indeed, let h > 1. Since for each j ∈ {1, 2, . . . , 2n}, the word v(h−1)
n,m,j is obtained

from the word v(h−1)
n,m by renaming its variables, θ(v(h−1)

n,m,j ) ∈ G(h−1) by the induction
assumption. Combining Equations (3-3) and (3-7), we see that

θ(v(h)
n,m) = θ(v(h−1)

n,m,1 )θ(v(h−1)
n,m,2 ) · · · θ(v(h−1)

n,m,n ) · (θ(v(h−1)
n,m,1 ))−1(θ(v(h−1)

n,m,2 ))−1 · · · (θ(v(h−1)
n,m,n ))−1.

Now rewriting the last expression as in Equation (3-8), we see that θ(v(h)
n,m) is a product

of commutators of elements from G(h−1). Hence, θ(v(h)
n,m) ∈ G(h). Since the group G

is solvable of derived length at most k, its k th derived subgroup is trivial, whence the
word v(k)

n,m is sent to the identity element of G by any substitution X(k)
2n → G. This means

that G satisfies the identity v(k)
n,m = 1. �

LEMMA 3.6. Let (S, ·) be an (h, m, k)-semigroup and Equation (2-1) its Brandt series.
If S0 = {0} and S = 〈E(S)〉 ∪ S1, then (S, ·) satisfies the identity v(k+1)

n,2hm = (v(k+1)
n,2hm)2.

PROOF. We have to verify that τ(v(k+1)
n,2km) ∈ E(S) for every substitution τ : X(k+1)

2n → S.

Recall from Remark 1 that the word v(k+1)
n,2hm is the image of the word v(k)

n,2hm under the

substitution that sends every variable xi1...ik ∈ X(k)
2n to the word v(1)

n,2hm,i1,...,ik
obtained from

v(1)
n,2hm by renaming its variables. Hence, if all elements of the form τ(v(1)

n,2hm,i1,...,ik
) lie

in 〈E(S)〉, then τ(v(k+1)
n,2hm) ∈ E(S) by Lemma 3.3. So, we may assume that at least one

element of the form τ(v(1)
n,2hm,i1,...,ik

) lies in S1 \ 〈E(S)〉.
By the definition of an (h, m, k)-semigroup, (S1, ·) is either a zero semigroup or

a Brandt semigroup over an [m, k]-group. If (S1, ·) is a zero semigroup, we have
τ(v(k+1)

n,2km) = 0 since S1 is an ideal of (S, ·) and each factor of the form v(1)
n,2hm,i1,...,ik

occurs in the word v(k+1)
n,2km at least twice. If (S1, ·) is a Brandt semigroup, Lemma 2.5

and its dual imply that either τ(v(k+1)
n,2hm) = 0 or removing all factors τ(v(1)

n,2hm,i1,...,ik
) that

lie in 〈E(S)〉 does not change the value of τ(v(k+1)
n,2hm). In the former case, the claim

holds, and in the latter case, the remaining elements belong to subgroups of (S1, ·) by
Lemma 3.4. If some of these elements belong to different maximal subgroups of (S1, ·),
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then τ(v(k+1)
n,2hm) = 0 by the definition of multiplication in Brandt semigroups. Thus, it

remains to consider only the situation when, for all i1, i2, . . . , ik ∈ {1, 2, . . . , 2n}, all
elements τ(v(1)

n,2hm,i1,...,ik
) ∈ S1 \ 〈E(S)〉 belong to the same maximal subgroup (G, ·) of

(S1, ·).
Denote by e the identity element of (G, ·) and define the substitution τ : X(k)

2n → G
by

τ(xi1...ik ) :=

⎧⎪⎪⎨⎪⎪⎩τ(v
(1)
n,2hm,i1,...,ik

) if τ(v(1)
n,2hm,i1,...,ik

) belongs to G,

e otherwise,

for each i1, i2, . . . , ik ∈ {1, 2, . . . , 2n}. As we know that τ(v(1)
n,2hm,i1,...,ik

) ∈ 〈E(S)〉 ∪ G for
all i1, i2 . . . , ik ∈ {1, 2, . . . , 2n} and f g = g f = g for all g ∈ G, f ∈ E(S), we conclude
that τ(v(k+1)

n,2hm) = τ(v(k)
n,2hm). Since (G, ·) is an [m, k]-group (and so a [2hm, k]-group), it

satisfies the identity v(k)
n,2hm = 1 by Lemma 3.5. Hence, τ(v(k+1)

n,2km) = τ(v(k)
n,2hm) = e. Since

the substitution τ is arbitrary, (S, ·) satisfies the identity v(k+1)
n,2hm = (v(k+1)

n,2hm)2. �

PROPOSITION 3.7. Let (S, ·) be an (h, m, k)-semigroup with Brandt series in Equation
(2-1) and S0 = {0}. For any n ≥ 2, (S, ·) satisfies the identity

v(kh+h)
n,2hm = (v(kh+h)

n,2hm )2. (3-9)

PROOF. We induct on h. If h = 1, then the claim follows from Lemma 3.6. Let
h > 1. The Rees quotient (S/S1, ·) is an (h − 1, m, k)-semigroup whose Brandt series
starts with the zero term. By the induction assumption, (S/S1, ·) satisfies the iden-
tity v(kh−k+h−1)

n,2h−1m = (v(kh−k+h−1)
n,2h−1m )2 for any n ≥ 2. By Lemma 3.2, (S/S1, ·) satisfies the

identity v(kh−k+h−1)
n,2hm = (v(kh−k+h−1)

n,2hm )2 as well. This readily implies that any substitution

X(kh−k+h−1)
2n → S sends the word v(kh−k+h−1)

n,2hm to either an idempotent in S \ S1 or an

element in S1. Recall from Remark 1 that the word v(kh+h)
n,2hm is the image of the word

v(k+1)
n,2hm under the substitution that sends every variable xi1...ik+1 ∈ X(k+1)

2n to the word

v(kh−k+h−1)
n,2hm,i1,...,ik+1

obtained from v(kh−k+h−1)
n,2hm by renaming its variables. Therefore, for every

substitution τ : X(kh+h)
2n → S, all elements of the form τ(v(kh−k+h−1)

n,2hm,i1,...,ik+1
) lie in either E(S)

or S1.
Now consider the substitution τ : X(k+1)

2n → E(S) ∪ S1 defined by

τ(xi1...ik+1 ) := τ(v(kh−k+h−1)
n,2hm,i1,...,ik+1

) for each i1, i2, . . . , ik+1 ∈ {1, 2, . . . , 2n}.

Clearly, τ(v(kh+h)
n,2hm ) = τ(v(k+1)

n,2hm). However, (〈E(S)〉 ∪ S1, ·) is an (h, m, k)-semigroup satis-
fying the assumption of Lemma 3.6. By this lemma, the semigroup (〈E(S)〉 ∪ S1, ·)
satisfies the identity v(k+1)

n,2hm = (v(k+1)
n,2hm)2. This ensures that the element τ(v(kh+h)

n,2hm ) =

τ(v(k+1)
n,2hm) is an idempotent. Since the substitution τ is arbitrary, (S, ·) satisfies the

identity in Equation (3-9). �

Finally, we remove the restriction S0 = {0}.
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PROPOSITION 3.8. The identity v(kh+h+k)
n,2hm = (v(kh+h+k)

n,2hm )2 with n ≥ 2 holds in each
(h, m, k)-semigroup.

PROOF. Let (S, ·) be an (h, m, k)-semigroup with Brandt series in Equation (2-1).
Consider the Rees quotient (S/S0, ·). This is an (h, m, k)-semigroup whose Brandt
series starts with the zero term. By Proposition 3.7, the semigroup (S/S0, ·) satisfies
Equation (3-9). Recall from Remark 1 that the word v(kh+h+k)

n,2hm is the image of

the word v(k)
n,2hm under the substitution that sends every variable xi1...ik ∈ X(k)

2n to the

word v(hk+h)
n,2hm,i1,i2,...,ik

obtained from v(hk+h)
n,2hm by renaming its variables. Then, for every

substitution τ : X(kh+h+k)
2n → S, the element τ(v(kh+h)

n,2hm,i1,...,ik
) is an idempotent of (S/S0, ·).

Therefore, τ(v(kh+h)
n,2hm,i1,...,ik

) lies in either E(S) \ S0 or S0. Recall that by the definition
of an (h, m, k)-semigroup, (S0, ·) is an [m, k]-group. Denote by e the identity element
of this group. For each f ∈ E(S), the product f e lies in S0 because S0 is an ideal
in S. Then f e is an idempotent in S0 by Lemma 2.4 which applies since (S, ·)
is a periodic block-group by Lemmas 3.2 and 2.8. Hence, f e = e since a group
has no idempotents except its identity element. Consequently, for every g ∈ S0, we
have f g = f eg = eg = g. Dually, g f = g for all g ∈ S0, f ∈ E(S). Now consider the
substitution τ : X(k)

2n → S0 defined by

τ(xi1...ik ) :=

⎧⎪⎪⎨⎪⎪⎩τ(v
(kh+h)
n,2hm,i1,...,ik

) if τ(v(kh+h)
n,m,i1,...,ik

) belongs to S0,

e otherwise,

for each i1, i2, . . . , ik ∈ {1, 2, . . . , 2n}. As we know that τ(v(kh+h)
n,2hm,i1,...,ik

) ∈ E(S) ∪ S0

for all i1, i2 . . . , ik ∈ {1, 2, . . . , 2n} and f g = g f = g for all g ∈ S0, f ∈ E(S), we
conclude that τ(v(kh+h+k)

n,2hm ) = τ(v(k)
n,2hm). Since (S0, ·) is an [m, k]-group (and so a

[2hm, k]-group), it satisfies the identity v(k)
n,2hm = 1 by Lemma 3.5. Hence, τ(v(kh+h+k)

n,2hm ) =

τ(v(k)
n,2hm) = e. Since the substitution τ is arbitrary, (S, ·) satisfies the identity v(kh+h+k)

n,2hm =

(v(kh+h+k)
n,2hm )2. �

Now we are ready to complete the mission of this section.

PROPOSITION 3.9. For each finite block-group (S, ·) with solvable subgroups, there
exist positive integers q and r such that (S, ·) satisfies the identities v(r)

n,q = (v(r)
n,q)2 for all

n ≥ 2.

PROOF. Clearly, each finite semigroup possesses a principal series. By Corollary 2.7,
every principal series of a block-group is a Brandt series. Let h be the height of
a Brandt series of (S, ·), let m be the least common multiple of the exponents of
subgroups of (S, ·), and let k be the maximum of the derived lengths of these subgroups.
Then (S, ·) is an (h, m, k)-semigroup. Now Proposition 3.8 applies, showing that
(S, ·) satisfies all identities v(kh+h+k)

n,2hm = (v(kh+h+k)
n,2hm )2 with n ≥ 2. Hence, one can choose

q = 2hm and r = kh + k + h. �
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Proposition 3.9 gives a vast generalization of [11, Proposition 2.4] where a similar
result was established for finite inverse semigroups with abelian subgroups.

4. Proofs of Theorems 1.1 and 1.2

Recall that the 6-element Brandt monoid (B1
2, ·) is formed by the following zero–one

2 × 2-matrices (
0 0
0 0

) (
1 0
0 1

) (
0 1
0 0

) (
0 0
1 0

) (
1 0
0 0

) (
0 0
0 1

)
(4-1)

under the usual matrix multiplication ·. In terms of the construction for Brandt
semigroups presented in Section 2, (B1

2, ·) is obtained by adjoining the identity element
to the Brandt semigroup over the trivial group with the 2-element index set. It is known
and easy to verify that the set B1

2 admits a unique addition + such that B1
2 := (B1

2,+, ·)
becomes an ai-semiring. The addition is nothing but the Hadamard (entry-wise)
product of matrices:

(aij) + (bij) := (aijbij).

The identities of the semiring B1
2 were studied by the second author [31] and,

independently, by Jackson et al. [14]; it was proved that these identities admit no finite
basis. Moreover, in [11], we proved that this property of B1

2 is very contagious: if
all identities of an ai-semiring hold in B1

2, then under some rather mild conditions,
the identities have no finite basis. Here is the key result of [11] stated in the notation
adopted here.

THEOREM 4.1 [11, Theorem 4.2]. Let S be an ai-semiring whose multiplicative reduct
satisfies the identities v(r)

n,q = (v(r)
n,q)2 for all n ≥ 2 and some q, r ≥ 1. If all identities of

S hold in the ai-semiring B1
2, then the identities admit no finite basis.

In [11], Theorem 4.1 was applied to finite ai-semirings whose multiplicative reducts
were inverse semigroups with abelian subgroups. Due to Proposition 3.9, we are in a
position to enlarge its application range as follows.

THEOREM 4.2. Let S = (S,+, ·) be a finite ai-semiring whose multiplicative reduct is
a block-group with solvable subgroups. If all identities of S hold in the ai-semiring B1

2,
then the identities admit no finite basis.

PROOF. Proposition 3.9 implies that the semigroup (S, ·) satisfies the identities
v(r)

n,q = (v(r)
n,q)2 for all n ≥ 2 and some q, r ≥ 1, and therefore, Theorem 4.1 applies. �

We are ready to deduce Theorems 1.1 and 1.2.

PROOF OF THEOREM 1.1. We aim to prove that for any finite nonabelian solvable
group G = (G, ·), the identities of the power group (P(G),∪, ·) admit no finite basis. It
is shown in [24, Proposition 2.4], see also [1, Proposition 11.1.2], that the semigroup
(P(G), ·) is a block-group and all maximal subgroups of (P(G), ·) are of the form
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(NG(H)/H, ·), where (H, ·) is a subgroup of G and NG(H) := {g ∈ G | gH = Hg} is the
normalizer of (H, ·) inG. Hence, each subgroup of (P(G), ·) embeds into a quotient of a
subgroup of G and so it is solvable. We see that the multiplicative reduct of (P(G),∪, ·)
is a block-group with solvable subgroups.

First, suppose that G is not a Dedekind group, that is, some subgroup (H, ·) is not
normal in G. Then, of course, 1 < |H| < |G| and one can find an element g ∈ G with
g−1Hg � H. Denote by E the singleton subgroup of G, let J := {A ⊆ G | |A| > |H|}, and
consider the following subset of P(G):

B := {E, H, g−1H, Hg, g−1Hg} ∪ J. (4-2)

Observe that g−1H � Hg: indeed g−1H · Hg = g−1Hg while Hg · g−1H = H, so that the
assumption g−1H = Hg forces the equality g−1Hg = H which contradicts the choice
of g. It is easy to verify that B is closed under union and element-wise multiplication
of subsets so that (B,∪, ·) is a subsemiring in (P(G),∪, ·). Define a map B→ B1

2 via
the following rule:

A ∈ J E Hg g−1H H g−1Hg
↓ ↓ ↓ ↓ ↓ ↓(

0 0
0 0

) (
1 0
0 1

) (
0 1
0 0

) (
0 0
1 0

) (
1 0
0 0

) (
0 0
0 1

) . (4-3)

It can be routinely verified that this map is a homomorphism from the subsemiring
(B,∪, ·) onto the ai-semiring B1

2. SinceB1
2 is the homomorphic image of a subsemiring

in (P(G),∪, ·), all identities of (P(G),∪, ·) hold in B1
2. Thus, Theorem 4.2 applies to

(P(G),∪, ·), showing that its identities admit no finite basis.
If G is a Dedekind group, then since G is nonabelian, it has a subgroup isomorphic

to the 8-element quaternion group; see [12, Theorem 12.5.4]. This subgroup is
isomorphic to a subgroup in (P(G), ·), and by [14, Theorem 6.1], the identities of every
ai-semiring whose multiplicative reduct possesses a nonabelian nilpotent subgroup
admit no finite basis. We see that (P(G),∪, ·) has no finite identity basis in this case as
well. �

REMARK 2. Given a semigroup (S, ·), one sometimes considers, along with the power
semigroup (P(S), ·), its subsemigroup (P′(S), ·), where P′(S) is the set of all nonempty
subsets of S; see, for example, [1, Ch. 11]. Clearly, the empty set serves as a zero in
power semigroups so that one can think of (P(S), ·) as the result of adjoining a new
zero to (P′(S), ·). It is well known that the property of a semigroup to have or not
to have a finite identity basis does not change when a new zero is adjoined; see [30,
Section 3]. Therefore, (P(S), ·) and (P′(S), ·) admit or do not admit a finite identity
basis simultaneously.

Since the set P′(S) is closed under unions, one can consider the semiring
(P′(S),∪, ·). The power semiring (P(S),∪, ·) can be thought of as the result of
adjoining a new element, which is both an additive identity and multiplicative zero, to
(P′(S),∪, ·). However, it is not yet known whether adjoining such an element preserves
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the property of having/not having a finite identity basis. Nevertheless, the above proof
of Theorem 1.1 applies without a hitch to ai-semirings of the form (P′(G),∪, ·), where
(G, ·) is any finite nonabelian solvable group and shows that the identities of every
such ai-semiring admit no finite basis.

REMARK 3. It is quite natural to consider (P(S),∪, ·,∅) as an algebra with an extra
nullary operation of taking the constant ∅; this was actually the setting adopted by
Dolinka [6]. One can verify that the conclusion of Theorem 1.1 persists in this case
as well. The ‘non-Dedekind’ part of the proof of Theorem 1.1 invokes our results
from [11] via Theorem 4.2. These results continue to work for ai-semirings with
multiplicative zero treated as a constant; this is explicitly registered in [11, Remark 3].
In the part of the proof that deals with Dedekind groups, one should refer to [14,
Theorem 7.6] which transfers the result of [14, Theorem 6.1] to semirings with
multiplicative zero treated as a constant.

PROOF OF THEOREM 1.2. The theorem claims that the identities of the semiring
(H(X),∪, ·) of all Hall relations on a finite set X admit a finite basis if and only if
|X| = 1. The ‘if’ part is obvious, since if |X| = 1, then |H(X)| = 1, and the identities of
the trivial semiring have a basis consisting of the single identity x = y.

For the ‘only if’ part, assume that X = Xn := {1, 2, . . . , n} and n ≥ 2. The semigroup
(H(Xn), ·) is a block-group; see, for example, [10, Proposition 2]. It can be easily
verified that the ai-semiring B1

2 embeds into (H(X2),∪, ·) via the following map:(
0 0
0 0

) (
1 0
0 1

) (
0 1
0 0

) (
0 0
1 0

) (
1 0
0 0

) (
0 0
0 1

)
↓ ↓ ↓ ↓ ↓ ↓(

1 1
1 1

) (
1 0
0 1

) (
0 1
1 1

) (
1 1
1 0

) (
1 0
1 1

) (
1 1
0 1

) .

The matrices in the bottom row are matrices over the Boolean semiring
B := ({0, 1},+, ·) with 0 · 0= 0 · 1= 1 · 0= 0+ 0= 0, 1 · 1= 1+ 0= 0+ 1= 1+ 1= 1,
and we mean the standard representation of binary relations as matrices over the
Boolean semiring (in which Hall relations correspond to matrices with permanent 1).
Obviously, the ai-semiring (H(X2),∪, ·) embeds into (H(Xn),∪, ·) for each n ≥ 2,
whence so does B1

2. Therefore, all identities of (H(Xn),∪, ·) hold in B1
2.

Let Symn stand for the group of all permutations of the set Xn. It is known that all
subgroups of the semigroup of all binary relations on Xn embed into Symn; see, for
example, [23, Theorem 3.5]. In particular, all subgroups of the semigroup (H(Xn), ·)
with n ≤ 4 embed into Sym4, and hence, are solvable. We see that Theorem 4.2 applies
to the ai-semiring (H(Xn),∪, ·) with n = 2, 3, 4, whence the identities of the ai-semiring
admit no finite basis.

To cover the case n > 4, observe that the semigroup (H(Xn), ·) has Symn as its group
of units, and for n > 4 (even for n ≥ 4), this group possesses nonabelian nilpotent
subgroups, for instance, the 8-element dihedral group. By [14, Theorem 6.1], the
ai-semiring (H(Xn),∪, ·) has no finite identity basis in this case as well. �

https://doi.org/10.1017/S1446788722000374 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000374


[16] Semiring and involution identities of power groups 369

In the introduction, we mentioned Dolinka’s problem [6, Problem 6.5] as the main
motivation of our study. Recall that the problem asks for a description of finite groups
whose power groups have no finite identity basis. Combining Theorem 1.1 of the
present paper and [14, Theorem 6.1] reduces the problem to two special cases.

First, the problem remains open for nonsolvable groups whose nilpotent subgroups
are abelian. The structure of such groups is well understood, see [4]; an interesting
example here is the sporadic simple group of order 175 560 found by Janko [15]. While
the arguments in the proof of Theorem 1.1 do not cover this case, we conjecture that
the conclusion of the theorem persists. In other words, we believe that the power group
of any finite nonabelian group has no finite identity basis.

Second, the problem is open for the majority of abelian groups. This may seem
surprising as power groups of abelian groups have commutative multiplication, but
finite ai-semirings with commutative multiplication and without finite identity basis
are known to exist, see [14, Corollary 4.11]. This does not exclude, of course, that all
power groups of finite abelian groups admit a finite identity basis, but to the best of
our knowledge, the only group for which such a basis is known is the 2-element group.
Namely, Ren and Zhao [29] have shown that the identities xy = yx and x = x3 form
a basis for identities of a 4-element ai-semiring that can be easily identified with the
power group of the 2-element group.

5. Proof of Theorem 1.3

Recall that in an inverse semigroup (S, ·), every element has a unique inverse; the
inverse of a ∈ S is denoted a−1. This defines a unary operation on S, and it is well
known (and easy to verify) that (S, ·, −1) is an involution semigroup. In particular, the
6-element Brandt monoid can be considered as an involution semigroup. (Observe that
in terms of the matrix representation in Equation (4-1), the involution of (B1

2, ·, −1) is
just the usual matrix transposition.)

We need the following result that translates Theorem 4.1 into the language of
involution semigroups. Its proof is parallel to that of [11, Theorem 4.2].

THEOREM 5.1. Let S = (S, ·, ∗) be an involution semigroup whose multiplicative
reduct satisfies the identities v(r)

n,q = (v(r)
n,q)2 for all n ≥ 2 and some q, r ≥ 1. If all

identities of S hold in the involution semigroup (B1
2, ·, −1), then the identities admit

no finite basis.

PROOF. As in the proof of [11, Theorem 4.2], we employ a family of inverse semi-
groups constructed by Kad’ourek in [18, Section 2]. First, for all n, h ≥ 1, define terms
w(h)

n of the signature (·, −1) over the alphabet X(h)
n = {xi1i2···ih | i1, i2, . . . , ih ∈ {1, 2, . . . , n}}

by induction on h. Put

w(1)
n := x1x2 · · · xn x−1

1 x−1
2 · · · x

−1
n .

Then, assuming that, for any h > 1, the unary term w(h−1)
n over the alphabet X(h−1)

n has
already been defined, we create n copies of this term over the alphabet X(h)

n as follows.
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FIGURE 1. The generators of the inverse semigroup (S(2)
2 , ·, −1).

For every j ∈ {1, 2, . . . , n}, we put

w(h−1)
n,j := σ(h)

n,j (w
(h−1)
n ),

where the substitution σ(h)
n,j : X(h−1)

n → X(h)
n appends j to the indices of its arguments,

that is,

σ(h)
n,j (xi1i2...ih−1 ) := xi1i2...ih−1j for all i1, i2, . . . , ih−1 ∈ {1, 2, . . . , n}.

Then we put

w(h)
n := w(h−1)

n,1 w(h−1)
n,2 · · ·w(h−1)

n,n (w(h−1)
n,1 )−1(w(h−1)

n,2 )−1 · · · (w(h−1)
n,n )−1.

Now, for any n ≥ 2 and h ≥ 1, let (S(h)
n , ·, −1) stand for the inverse semigroup of partial

one-to-one transformations on the set {0, 1, . . . , 2hnh} generated by nh transformations
χi1i2...ih with arbitrary indices i1, i2, . . . , ih ∈ {1, 2, . . . , n} defined as follows:

• χi1i2...ih (p − 1) = p if and only if in the term w(h)
n , the element in the p th position

from the left is xi1i2...ih ;
• χi1i2...ih (p) = p − 1 if and only if in the term w(h)

n , the element in the p th position
from the left is x−1

i1i2...ih
.

We borrow the following illustrative example from [11]. Let n = 2, h = 2; then

w(2)
2 = x11x21x−1

11 x−1
21︸���������︷︷���������︸

w(1)
2,1

x12x22x−1
12 x−1

22︸���������︷︷���������︸
w(1)

2,2

x21x11x−1
21 x−1

11︸���������︷︷���������︸
(w(1)

2,1)−1

x22x12x−1
22 x−1

12︸���������︷︷���������︸
(w(1)

2,2)−1

,

and the generators of the inverse semigroup (S(2)
2 , ·, −1) act as shown in Figure 1.

We need two properties of the inverse semigroups (S(h)
n , ·, −1).

(A) [18, Corollary 3.2] For each n ≥ 2 and h ≥ 1, any inverse subsemigroup of
(S(h)

n , ·, −1) generated by less than n elements satisfies all identities of the
involution semigroup (B1

2, ·, −1).
(B) [11, Proposition 3.3] For each n ≥ 2 and h ≥ 1 and any m ≥ 1, the semigroup

(S(h)
n , ·) violates the identity v(h)

n,m = (v(h)
n,m)2.
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Now, arguing by contradiction, assume that for some k, the involution semigroup S
has an identity basis Σ such that each identity in Σ involves less than k variables. Fix
an arbitrary identity u = v in Σ and let x1, x2, . . . , x� be all variables that occur in u
or v. Consider an arbitrary substitution τ : {x1, x2, . . . , x�} → S(r)

k and let (T , ·, −1) be the
inverse subsemigroup of (S(r)

k , ·, −1) generated by the elements τ(x1), τ(x2), . . . , τ(x�).
Since � < k, property (A) implies that (T , ·, −1) satisfies all identities of the involution
semigroup (B1

2, ·, −1). Since by the condition of the theorem, (B1
2, ·, −1) satisfies all

identities of S, the identity u = v holds in (B1
2, ·, −1). Hence, the identity u = v holds

also in the involution semigroup (T , ·, −1), and so u and v take the same value
under every substitution of elements of T for the variables x1, . . . , x�. In particular,
τ(u) = τ(v). Since the substitution τ is arbitrary, the identity u = v holds in the
involution semigroup (S(r)

k , ·, −1). Since u = v is an arbitrary identity from the
identity basis Σ of S, we see that (S(r)

k , ·, −1) satisfies all identities of S. In
particular, the multiplicative reduct (S(r)

k , ·) satisfies all identities of the multiplicative
reduct (S, ·) of S. By the condition of the theorem, (S, ·) satisfies the identity
v(r)

k,q = (v(r)
k,q)2. However, property (B) shows that this identity fails in (S(r)

k , ·), which is a
contradiction. �

Now, we deduce Theorem 1.3 from Theorem 5.1, applying exactly the same
construction that was used in the ‘non-Dedekind’ part of the proof of Theorem 1.1.

PROOF OF THEOREM 1.3. We aim to prove that for any finite non-Dedekind solvable
group G = (G, ·), the identities of the involution semigroup (P(G), ·, −1) admit no finite
basis. As observed in the first paragraph of the proof of Theorem 1.1, the multiplicative
reduct (P(G), ·) is a block-group with solvable subgroups. By Proposition 3.9, the
reduct satisfies the identities v(r)

n,q = (v(r)
n,q)2 for all n ≥ 2 and some q, r ≥ 1.

As the group (G, ·) is not Dedekind, one can choose a subgroup (H, ·) of G and
an element g ∈ G such that g−1Hg � H. Consider the subset B of P(G) defined
by Equation (4-2). Applying the element-wise inversion to the elements of B,
we see that

E−1 = E, H−1 = H, (g−1H)−1 = Hg, (Hg)−1 = g−1H, (g−1Hg)−1 = g−1Hg,

and A−1 ∈ J for all A ∈ J. Hence, (B, ·, −1) is an involution subsemigroup of (P(G), ·, −1)
and the map in Equation (4-3) is a homomorphism of this involution subsemigroup
onto (B1

2, ·, −1). Hence, all identities of (P(G), ·, −1) hold in the involution semigroup
(B1

2, ·, −1). Now Theorem 5.1 applies to (P(G), ·, −1) and shows that its identities have
no finite basis. �

REMARK 4. The analogy between Theorems 1.1 and 1.3 is not complete since the latter
theorem does not cover finite groups that are Dedekind but nonabelian. In particular,
we do not know whether the involution power semigroup of the 8-element quaternion
group admits a finite identity basis.
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REMARK 5. The semigroup of all binary relations on a set X has a useful involution:
for each ρ ⊆ X × X, one sets ρ−1 := {( y, x) | (x, y) ∈ ρ}. The set H(X) of all Hall
relations on X is closed under this involution so that one can consider the involution
semigroup (H(X), ·, −1). The reader might wonder if a result related to Theorem 1.2
as Theorem 1.3 relates to Theorem 1.1 holds, and if it does, why it is missing from
this paper. In fact, the exact analog of Theorem 1.2 does hold: the identities of the
involution semigroup of all Hall relations on a finite set X admit a finite basis if and
only if |X| = 1. This follows from [2, Remark 3.6] which establishes a stronger fact that
we briefly describe now.

Recall that an involution semigroup is said to be weakly finitely based if it fulfills
a finite set Σ of identities such that every finitely generated involution semigroup
that satisfies Σ is finite. An involution semigroup that is not weakly finitely based is
called inherently nonfinitely based. In [2, Remark 3.6], it is shown that the involution
semigroup (H(X), ·, −1) with |X| > 1 is inherently nonfinitely based. This property is
known to be much stronger than the absence of a finite identity basis and it cannot be
achieved via the approach of the present paper.

In contrast, Dolinka [8, Theorem 6] has proved that for every finite group (G, ·),
the involution semigroup (P(G), ·, −1) is weakly finitely based. This means that the
finite basis problem for involution power semigroups of groups is out of the range of
methods developed in [2, 7], and therefore, this justifies including Theorem 1.3.

REMARK 6. An involution ai-semiring is an algebra (S,+, ·, ∗) such that (S,+, ·) is an
ai-semiring, (S, ·, ∗) is an involution semigroup and, in addition to that, the law

(x + y)∗ = x∗ + y∗

holds. It is easy to see that (P(G),∪, ·, −1) is an involution ai-semiring for any group
G = (G, ·). The above proofs of Theorems 1.1 and 1.3 can be fused to show that this
involution ai-semiring has no finite identity basis whenever the group G is finite,
solvable, and non-Dedekind.
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