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Abstract Let R be a commutative ring. Let M respectively A denote a Noetherian respectively Artinian
R-module, and a a finitely generated ideal of R. The main result of this note is that the sequence of
sets (AttRTorR1 ((R/an), A))n∈N is ultimately constant. As a consequence, whenever R is Noetherian,
we show that AssRExt1

R((R/an),M) is ultimately constant for large n, which is an affirmative answer
to the question that was posed by Melkersson and Schenzel in the case i = 1.
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1. Introduction

Let R be a commutative ring with identity, a an ideal in R, and M a Noetherian R-
module. It follows (see [1]) that the sequence of sets AssR(M/anM) is ultimately constant
for large n. Assume A is an Artinian R-module. Dual to this result, Sharp has shown in
[6,7] that the sequence of sets AttR(0 :A an) is ultimately constant for large n. Recently,
in [3], Melkersson and Schenzel showed, in the case where R is Noetherian, that for
each i the set of prime ideals AssR TorRi ((R/an),M) and AttR ExtiR((R/an), A) become,
for n large, independent of n. They also asked whether the sets AssR ExtiR((R/an),M)
become stable for sufficiently large n. The aim of this note is to show that, for a finitely
generated ideal a of R, the sequence of sets AttR TorR1 ((R/an), A) is ultimately constant
for large n. This implies, under the Noetherian hypothesis on R, that the sequence of
sets AssR Ext1

R((R/an),M) become stable for sufficiently large n, which is an affirmative
answer to the above question in the case i = 1.

Throughout this note, R will denote a commutative ring with identity and a a finitely
generated ideal of R. Also, M (respectively A) will denote a Noetherian (respectively
Artinian) R-module. We use N to denote the set of positive integers.
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2. The results

For a positive integer n, we use fn,A to denote the natural homomorphism from

TorR1

(
R

an+1 , A

)
to TorR1

(
R

an
, A

)
.

Note that if a is a finitely generated ideal of R and A is an Artinian R-module, then
TorR1 ((R/an), A) is also an Artinian R-module. We say that x ∈ a is an A-coregular
element if xA = A. We start with the following lemma.

Lemma 2.1. Let a contain an A-coregular element. Then

(i) fn,A is epimorphism for all n ∈ N; and

(ii) AttR TorR1 ((R/an), A) = AttR TorR1 ((R/an+1), A) for all sufficiently large n.

Proof. Let x ∈ a be an A-coregular element and let n ∈ N. Then, using the exact
sequence

0→ (0 :A xn+1)→ A
xn+1

−−−→ A→ 0,

we obtain a commutative square:

TorR1

(
R

an+1 , A

)
−−−−→ R

an+1 ⊗R (0 :A xn+1)yfn,A y
TorR1

(
R

an
, A

)
−−−−→ R

an
⊗R (0 :A xn+1)

in which the rows are isomorphism and the right vertical arrow is an epimorphism.
Hence fn,A is an epimorphism. Now, in order to prove (ii), consider the exact sequence
0→ (0 :A x)→ A

x−→ A→ 0 to deduce the commutative diagram:

TorR1

(
R

an+1 , A

)
x−−−−→ TorR1

(
R

an+1 , A

)
−−−−→ R

an+1 ⊗R (0 :A x) −−−−→ 0y y y
TorR1

(
R

an
, A

)
x−−−−→ TorR1

(
R

an
, A

)
−−−−→ R

an
⊗R (0 :A x) −−−−→ 0

in which the rows are exact and, for sufficiently large n, the right vertical arrow is an
isomorphism. Hence, by (i), it is enough to show that

AttR TorR1

(
R

an+1 , A

)
⊆ AttR

(
R

an+1 ⊗R (0 :A x)
)
.

Assume the contrary. Let p ∈ AttR(T ) \ AttR((R/an+1) ⊗R (0 :A x)), where T =
TorR1 ((R/an+1), A). Then there exists a submodule L of T such that p =

√
(0 :R (T/L))

and xT +L = T . Since xn+1T = 0, it is routine to check that xT ⊆ L. Therefore L = T ,
which is the required contradiction. �
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Theorem 2.2. The set AttR TorR1 ((R/an), A) is ultimately constant for large n.

Proof. Let k be a positive integer. Our first aim is to show that the sequence of sets
AttR TorR1 ((R/an), (A/akA)) are, for all sufficiently large n, independent of n. Let n ∈ N.
Then the exact sequence 0→ an → R→ (R/an)→ 0 induces an exact sequence

0→ TorR1

(
R

an
,
A

akA

)
→
(

an ⊗R A

akA

)
→
(
R⊗R A

akA

)
→
(
R

an
⊗R A

akA

)
→ 0.

It follows that TorR1 ((R/an), (A/akA)) ∼= an ⊗R (A/akA) for sufficiently large n, since,
for large n,

A

akA
∼= R

an
⊗R A

akA
.

Now, by using [4, Proposition 5.2], we can deduce that

AttR TorR1

(
R

an
,
A

akA

)
= SuppR(an) ∩AttR

A

akA
,

which stabilizes for large n. Let k ∈ N be such that akA = ak+1A. Hence there exists
t1 ∈ N such that

AttR TorR1

(
R

an
,
A

akA

)
= AttR TorR1

(
R

at1
,
A

akA

)
(2.1)

for all n > t1. On the other hand, by [2, Theorem 2] and the above lemma, there exists
t2 ∈ N such that

AttR TorR1

(
R

an
, akA

)
= AttR TorR1

(
R

at2
, akA

)
(2.2)

for all n > t2. Set t := max{t1, t2}. Let n ∈ N be such that n > t. Then we claim that

AttR TorR1

(
R

an
, A

)
⊆ AttR TorR1

(
R

an+1 , A

)
.

To see this, consider the following commutative diagram:

TorR1

(
R

an+1 , a
kA

)
−−−−→ TorR1

(
R

an+1 , A

)
−−−−→ TorR1

(
R

an+1 ,
A

akA

)
−−−−→ 0yfn,akA yfn,A

TorR1

(
R

an
, akA

)
h−−−−→ TorR1

(
R

an
, A

)
−−−−→ TorR1

(
R

an
,
A

akA

)
−−−−→ 0

in which the rows are exact and the left vertical map is an epimorphism. Let p ∈
AttR TorR1 ((R/an), A). Then there exists a submodule N of TorR1 ((R/an), A) such that
p =

√
(0 :R (TorR1 ((R/an), A))/N). If p ∈ AttR TorR1 ((R/an), (A/akA)), then we have

nothing to do any more. So, suppose that p 6∈ AttR TorR1 ((R/an), (A/akA)). Thus

h

(
TorR1

(
R

an
, akA

))
+N = TorR1

(
R

an
, A

)
.
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Since, by the above lemma, fn,akA is an epimorphism, it is easy to see that

TorR1

(
R

an
, A

)
= N + fn,A

(
TorR1

(
R

an+1 , A

))
.

Hence p ∈ AttR TorR1 ((R/an+1), A) and the claim follows. Now, use the exact sequence

TorR1

(
R

an
, akA

)
→ TorR1

(
R

an
, A

)
→ TorR1

(
R

an
,
A

akA

)
→ 0,

in conjunction with (2.1) and (2.2), to deduce that the set AttR TorR1 ((R/an), A) con-
tained in the finite set

AttR TorR1

(
R

at
, akA

)
∪AttR TorR1

(
R

at
,
A

akA

)
.

The proof now follows from the above claim. �

Let E be the injective hull of the direct sum of all the R/m, with m a maximal ideal of
R. In the following corollary, we denote the Matlis duality functor HomR(·, E) by D(·).

Corollary 2.3. Let R be Noetherian and let a be an ideal of R. Then

AssR Ext1
R

(
R

an
,M

)
is ultimately constant for large n.

Proof. By [5, Theorem 1.6(2)], D(M) is an Artinian R-module. Hence, by the above
theorem, the sequence of sets AttR TorR1 ((R/an), D(M)) are, for all sufficiently large n,
independent of n. Now the result follows from the isomorphism

TorR1

(
R

an
, D(M)

)
∼= D

(
Ext1

R

(
R

an
,M

))
and [8, 2.1]. �

The following remark will provide a direct proof of the above corollary. Its idea was
sketched by the referee.

Remark 2.4. Let H0
a(M) denote the 0th local cohomology of M with respect to a.

Then the short exact sequence 0 → an → R → (R/an) → 0 provides, for large n, an
isomorphism

HomR(an, H0
a(M)) ∼= Ext1

R(R/an, H0
a(M)).

That is, AssR Ext1
R(R/an, H0

a(M)) becomes ultimately constant. Now the short exact
sequence 0→ H0

a(M)→M →M ′ → 0 provides, for large n, an exact sequence

0→ Ext1
R

(
R

an
, H0

a(M)
)
→ Ext1

R

(
R

an
,M

)
→ Ext1

R

(
R

an
,M ′

)
.
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So it will be enough to prove that the claim in case M admits an M -regular element
x ∈ a. Under this additional circumstance there is an isomorphism

Ext1
R

(
R

an
,M

)
∼= HomR

(
R

an
,
M

xnM

)
for all n > 1. Because x is M -regular it follows that

AssR Ext1
R

(
R

an
,M

)
= Ass

(
M

xM

)
∩ V (a),

which is independent of n.
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