
The Positivity of Intersection Multiplicities and
Symbolic Powers of Prime Ideals

KAZUHIKO KURANO1 and PAUL C. ROBERTS2
1Department ofMathematics, TokyoMetropolitan University,Minami-Ohsawa 1-1, Hachioji,
Tokyo 192-0397, Japan. e-mail: kurano@math.metro-u.ac.jp
2Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, U.S.A.
e-mail: roberts@math.utah.edu

(Received: 11 August 1998)

Abstract. Serre's nonnegativity conjecture for intersection multiplicities has recently been
proven by O. Gabber. In this paper we investigate Serre's positivity conjecture using the methods
which he developed.We show in particular that the positivity conjecture has implications for
properties of symbolic powers of prime ideals in regular local rings.

Mathematics Subject Classi¢cations (1991): Primary 13H05, 14C17; Secondary 13D15, 14H15.

Key words: Serre's positivity conjecture, symbolic power, regular local ring, intersection
multiplicity.

Introduction

Around 40 years ago, Serre [16] introduced a homological de¢nition of intersection
multiplicity for modules over a regular local ring and showed that it satis¢ed many
of the properties which should hold for intersection multiplicities. We denote this
multiplicity wR�M;N�, where M and N are ¢nitely generated modules over the reg-
ular local ring R such that M 
R N is a module of ¢nite length (we recall the de¢-
nition of wR�M;N� in Section 1). Serre showed that the condition that M 
R N
has ¢nite length implies that dim�M� � dim�N�W dim�R�, and he made the
following conjectures:

(1) (Vanishing) If dim�M� � dim�N� < dim�R�, then wR�M;N� � 0.
(2) (Nonnegativity) It is always true that wR�M;N�X 0.
(3) (Positivity) If dim�M� � dim�N� � dim�R�, then wR�M;N� > 0.

Serre proved these results for equicharacteristic local rings and unrami¢ed rings of
mixed characteristic, leaving open the case in which R is a rami¢ed regular local ring
of mixed characteristic. The vanishing conjecture was proven about ten years ago by
Roberts [13] and Gillet and Soulë [5] using K-theoretic methods. Recently, Gabber
(see Berthelot [2], Hochster [6], or Roberts [15]) proved the nonnegativity conjecture
using a recent result on resolution of singularities of de Jong [7]. In this paper we
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discuss some implications of these new results and investigate the conditions which
are necessary for the positivity conjecture to hold.

In Section 1, we describe Gabber's construction and give a criterion for positivity
which follows from this construction in a fairly straightforward manner. We identify
a certain subring and a certain ideal of a bigraded ring which is used in Gabber's
construction, and we show that positivity is equivalent to the condition that the
intersection of this subring with this ideal is zero. In the Section 2 we prove a
reduction which shows that we may restrict attention to a smaller subring which
is easier to investigate. Finally, in Section 3, we discuss the existence of nonzero
elements in this intersection in detail and show that the positivity conjecture implies
a condition on the intersections of symbolic powers of prime ideals in regular local
rings.

1. A Criterion for Positivity

In this Section we set up notation, describe the construction of Gabber that we use,
and give a criterion (Theorem 1.2) for the positivity conjecture to hold.

Let �R;m� be a d-dimensional regular local ring with residue class ¢eld k � R=m.
Let p and q be prime ideals of R that satisfy

(1)
�����������
p� q
p � m,

(2) htR p� htR q � d.

Serre de¢ned the intersection multiplicity of R=p and R=q to be

wR�R=p;R=q� �
Xd
i�0
�ÿ1�i length�TorRi �R=p;R=q��:

Serre's positivity conjecture states that in this situation, it follows that
wR�R=p;R=q� is positive.

In the next few paragraphs we describe the construction used in Gabber's proof of
the nonnegativity conjecture, after which we state the consequence of his theorem
that we will use. The whole proof is based on a theorem of de Jong [7] on the existence
of regular alterations, which can be considered a slightly weaker version of resol-
ution of singularities. It follows from de Jong's theorem that there exists a graded
prime ideal I in the graded polynomial ring A � R�X0;X1; . . . ;Xn� for some n such
that the following three conditions hold:

(1) I \ R � q.
(2) Proj�A=I� is a regular scheme.
(3) The morphism Proj�A=I� ! SpecR=q is generically ¢nite; that is, the extension

of function ¢elds de¢ned by this morphism is ¢nite.

We remark that the existence of the ideal I with the above properties requires that
the regular local ring R is essentially of ¢nite type over a ¢eld or a complete discrete
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valuation ring, but that the multiplicity conjectures can be reduced to this case. We
refer to Berthelot [2] and Hochster [6] for details of this reduction. Throughout this
section we assume that these properties hold and that this construction can be carried
out. We let X denote Proj�A=I�.

The ¢rst step in Gabber's proof of nonnegativity reduces the computation of
intersection multiplicities to a computation on associated graded rings. Let
grI �A� be the associated graded ring of I ; since I is a graded ideal of the graded
ring A, grI �A� is a bigraded ring. One grading, which we sometimes refer to as
the ¢rst grading, is induced by the grading on A, while the second grading is deter-
mined by the powers of I . To the ring grI �A� we associate a scheme Y as follows.
The component of grI �A� of degree 0 in the second grading is A=I , which de¢nes
the projective scheme X � Proj�A=I�. For each element x of degree one in A=I there
is an open af¢ne subset of Proj�A=I� with associated ring consisting of the elements
of degree zero in the localization �A=I�x. Each such x de¢nes an element of
grI �A� of degree zero in the second grading. For each such x, we de¢ne an open
af¢ne subset of Y by taking Spec�grI �A��x��, where grI �A��x� is the ring of elements
of degree zero in the ¢rst grading in the localization grI �A�x. We denote Y by
Proj�grI �A�� and use similar notation for analogous schemes de¢ned by other
bigraded rings. Note that since I is locally generated by a regular sequence, the
associated graded ring grI �A� is locally isomorphic to the symmetric algebra of
I=I2 over A=I . Thus if we de¢ne a scheme Proj�SymA=I �I=I2�� associated to the
bigraded ring SymA=I �I=I2� using a similar de¢nition, the map induced on schemes
by the natural surjection from SymA=I �I=I2� to grI �A� is an isomorphism.

Throughout this paper, we are concerned both with graded rings and with the
schemes that they de¢ne. To maintain consistency, when we speak of the dimension
of a graded ring or module, we mean the dimension of the associated scheme or
sheaf, which is generally one less than the dimension as a ring or module.

Let p and q be prime ideals of R satisfying the conditions stated at the beginning of
this section. Let ~I be the image of the ideal I in A=pA. We have a surjective map from
SymA=I �I=I2� to gr~I �A=pA�. Let K denote the kernel of this map, and letK denote the
associated sheaf of ideals in OY , where OY denotes the structure sheaf of Y . Then K
de¢nes a closed subscheme of Y which is the projective scheme de¢ned by gr~I �A=pA�.
The dimension of this subscheme is equal to the dimension of Proj�A=pA�, which is
n� dim�R=p�. Let I denote the sheaf of ideals in OY de¢ned by the ideal
I=I2 � I2=I3 � � � � of grI �A�.

We wish to de¢ne an Euler characteristic wY �OY=I ;OY=K�. We ¢rst recall the
construction of TorOY

i �OY=I ;OY=K�. The sheaf TorOY
i �OY=I ;OY=K� can be com-

puted using a locally free resolution in either variable and tensoring with the other,
or by taking the associated sheaves of the local computations of Tor. The locally
free resolutions are ¢nite since the graded ring grI �A� is locally a polynomial ring
over a regular ring, which follows from the fact that Proj�A=I� is a regular scheme.
Each TorOY

i �OY=I ;OY=K� is a coherent sheaf over Proj�A=I�, so we can then take
its sheaf cohomology and obtain a ¢nitely generated R-module. Furthermore, since
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p� q is primary to m, the support of OY=I 
 OY=K lies over the closed point of R.
Hence the same is true for TorOY

i �OY=I ;OY=K� for each i, and the sheaf cohomology
modules they de¢ne are thus R-modules of ¢nite length. For any coherent sheaf F of
Proj�A=I�with support lying over the maximal ideal of R, we de¢ne the Euler charac-
teristic to be the alternating sum of lengths of sheaf cohomology:

w�F� �
X
i

�ÿ1�ilength�Hi�X ;F��:

We then de¢ne

wY �OY=I ;OY=K� �
X
i

�ÿ1�iw�TorOY
i �OY=I ;OY=K��

�
X
i

X
j

�ÿ1�i�jlength�Hj�X ;TorOY
i �OY=I ;OY=K���:

We will use these de¢nitions and this notation in similar situations below for other
modules and for ideals and modules in other graded rings.

The ¢rst main step in this construction is to reduce the computation of
wR�R=p;R=q� to that of the Euler characteristic wY �OY=I ;OY=K� which we just
de¢ned (we refer to the references [2], [6], and [15] cited above for details of
how this is done). The second step of the construction is to replace the graded ring
grI �A� by a polynomial ring over a quotient of A=I . Let B � �A=I� 
R k, where
k � R=m. We de¢ne a map a : I=I2 ! OA 
A B by sending x to dx
 1, where
OA is the module of differentials on A. Since I annihilates B and d is a derivation,
a is a graded A-module homomorphism and induces a ring homomorphism
b : SymA=I �I=I2� ! SymB�OA 
A B�. The main point is that the assumption that
Proj�A=I� is regular implies that a
A 1 : I 
A B! OA 
A B is locally a split injec-
tion so that the image in SymB�OA 
A B� can be used compute Euler characteristics.
We give an algebraic version of this construction.

Let s1; . . . ; sd be a minimal set of generators for m. At this point we must assume
that R is equicharacteristic or rami¢ed, so that OA 
A B is a free B-module with
basis ds1, . . ., dsd , dX0, . . ., dXn (see [2], [6], or [15]). For simplicity of notation,
we put Si � dsi, Tj � dXj for i � 1; . . . ; d and j � 0; . . . ; n. Let fUjk j j; k �
0; . . . ; ng be an additional set of �n� 1�2 variables. Then we de¢ne a ring
homomorphism

j : B�S1; . . . ;Sd ;T0; . . . ;Tn�ÿ!B�S1; . . . ;Sd ;U00;U01; . . . ;Unn�
by letting j�Tj� � X0Uj0 � X1Uj1 � � � � � XnUjn for each j. We then have maps

SymA=I �I=I2� ÿ!
b

SymB�OA 
A B�
� B�S1; . . . ;Sd ;T0; . . . ;Tn� ÿ!

j
B�S1; . . . ;Sd ;U00; . . . ;Unn�:

We denote B�S1; . . . ;Sd ;T0; . . . ;Tn� by F and B�S1; . . . ;Sd ;U00; . . . ;Unn� by G.
Both F and G have natural structures of bigraded rings. In this case the ¢rst grading
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is induced by that of A; in the ¢rst grading we let Si and Ujk have degree zero, and we
let Tj have degree one. All of the variables have degree 1 in the second grading. With
these assumptions, the above maps are maps of bigraded rings. We thus have
schemes Proj�F � and Proj�G� de¢ned as above. Put Z � Proj�F � and
W � Proj�G�. We denote IF and IG the ideals generated by Si, Tj and Si;Ujk respect-
ively in F and G, and IF and IG the associated ideal sheaves to IF and IG,
respectively. We let KF and KG denote the ideals generated by the images of K
in F and G respectively, and KF and KG the associated ideal sheaves to KF and
KG, respectively. Since the maps from SymA=I �I=I2� 
R k to F and G are locally
inclusions of polynomial rings obtained by adjoining variables, the dimension of
F=KF is n� d � 1 and the dimension of G=KG is d � �n� 1�2. We have Euler charac-
teristics wZ�OZ=IF ;OZ=KF � and wW �OW=IG;OW=KG� de¢ned by the same process
which we outlined above. These Euler characteristics are simpler to compute than
those on Y , since the ideals IF and IG are generated by variables in a polynomial
ring, so that the Tors in the ¢rst step can be computed using Koszul complexes.
We note that in the case of F the degrees of the Ti must be taken into account
in computing Euler characteristics. We then have

THEOREM 1.1. (Gabber). With notation as above, we have

(1) �R�X � : Q�R=q�� � wR�R=p;R=q� � wY �OY=I ;OY=K�, where R�X � is the function
¢eld of X � Proj�A=I� and Q�R=q� is the ¢eld of fractions of R=q.

(2) wY �OY=I ;OY=K� > 0 if and only if

wY 0 ��OY=I� 
R k; �OY=K� 
R k� > 0;

where we put Y 0 � Proj�grI �A� 
R k�.
(3) We have the equalities

wY 0 �OY=I 
R k;OY=K
R k� � wZ�OZ=IF ;OZ=KF �
� wW �OW=IG;OW=KG�:

Proof. For the proof of everything except statement 2 we refer to the references
Berthelot [2], Hochster [6], or Roberts [15] cited above. Statement 2 is not proven
explicitly there. Let r be the codimension of X � Proj�A=I� in Proj�A�. Then Gabber
shows that wY �OY=I ;M� is nonnegative for modules of dimension at most r such
that the support of M lies over the maximal ideal of R, and that it vanishes for
modules of dimension less than r. Hence we have that whether
wY �OY=I ;OY=K� > 0 or not depends only on the support of OY=K (and, in fact,
only on the prime ideals of dimension r in the support). Since a power of m

annihilates OY=K, the support of OY=K is the same as the support of
�OY=K� 
R k. This proves the second statement. &

From the theorem above, it suf¢ces to test the positivity of the Euler characteristic
wW �OW=IG;OW=KG�. We note that k�Si;Ujk� is a subring ofG. In what follows, if J is
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an ideal of one of the graded rings we are considering, we denote J the ideal of
elements a such that �X0; . . . ;Xn�ka � J for some integer k. The aim of this section
is to prove the next theorem:

THEOREM 1.2. With notation as above, the following statements are equivalent:

(1) wR�R=p;R=q� > 0.
(2) KG \ k�S1; . . . ;Sd ;U00; . . .Unn� � 0.

In the remainder of this section, we give a proof of Theorem 1.2.
We recall that we have shown that it suf¢ces to show that the second condition of

the theorem is equivalent to the fact that wW �OW=IG;OW=KG� > 0.We next examine
the computation of this Euler characteristic more closely.

Let C denote the ring k�Si;Ujk�. We then have a commutative diagram of
inclusions of rings:

G  B
" "
C  k

and G � C 
k B. These maps induce a commutative diagram of maps of schemes

Proj�G� ! Proj�B�
# #

Spec�C� ! Spec�k�:
In this diagram the vertical arrows are projective morphisms. For a scheme T we let
K0�T � denote the Grothendieck group of coherent sheaves on T . We then have a
corresponding diagram of Grothendieck groups

K0�Proj�G�� ! K0�Proj�B��
# #

K0�Spec�C�� ! K0�Spec�k��:
�1�

The vertical maps are obtained by taking alternating sums of sheaf cohomology. The
top horizontal map is obtained by taking a coherent sheafM to the alternating sums
of TorOW

i �OW=IG;M�, while the bottom horizontal map is obtained by taking a
C-moduleM to the alternating sum of TorCi �C=�Si;Ujk�;M�. To see that the diagram
commutes, let K� be the Koszul complex on the d � �n� 1�2 elements Si;Ujk over C,
and let C� be the Cech complex of B with respect to X0; . . . ;Xn. Then, since
G � B 
k C, and since the variables Si and Ujk have degree zero in the ¢rst grading
on G, the complex K� 
k B induces a locally free resolution of OW=IG, and
C� 
k C is a Cech complex ofGwith respect toX0; . . . ;Xn. Hence the commutativity
follows from the isomorphism of complexes

�K� 
k B� 
B C� � �C� 
k C� 
C K�

and a standard spectral sequence argument.
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Let b and g denote the vertical map on the left and the bottom horizontal map
respectively in diagram (1). The commutativity of diagram (1) implies that we
have

wW �OW=IG;OW=KG� � gb�OW=KG�:

We recall that the sheaf OW=KG has support of dimension r � d � �n� 1�2.
It follows from results of Serre [16] that for any ¢nitely generated C-module M, if

we identify K0�Spec�k�� with Z, then g��M�� is equal to the rank ofM as a C-module.
Thus we have

gb�OW=KG� �
X
�ÿ1�irankC�Hi�Proj�G�;OW=KG��:

To prove the theorem, we must show that this alternating sum is positive if and
only if there is no nonzero element x of C such that �X0; . . . ;Xn�kx � KG for some
k. If there were such an x, it would annihilate Hi�Proj�G�;OW=KG� for all i, so
the ranks of these modules would be zero, and thus we would have
gb�OW=KG� � 0. This proves one implication.

Conversely, assume that no element x with these properties exists. Let L be the
quotient ¢eld of C. Then our assumption implies that the ideal generated by
X0; . . . ;Xn in L
C G=KG is not nilpotent, so Proj�L
C �G=KG�� is not empty.
On the other hand, since the dimension of G=KG is r � dim�C�, we must have that
the dimension of L
C �G=KG� is zero. Hence Proj�L
C �G=KG�� is ¢nite over
Spec�L�, and therefore Hi�Proj�L
C G=KG�; �L
C G=KG��� � Hi�Proj�G�;
OW=KG� 
C L is zero for i 6� 0 and is nonzero for i � 0. Thus the rank of
Hi�Proj�G�;OW=KG� is zero for i 6� 0 and is positive for i � 0, so the alternating
sum of ranks is positive. This completes the proof.

Remark 1.3. It is not dif¢cult to check directly that the second condition of
Theorem 1.2 is equivalent to the condition that the coef¢cient of nr in the Hilbert
polynomial PM is nonzero in Theorem 3 (3) in [15].

Remark 1.4. If the vector bundleN on Proj�B� de¢ned by the dual of I=I2 
A B (in
the proof of Theorem 1.2) is ample in the sense of 12.1 in Fulton [4], then
wY 0 �OY 
R k;OT � > 0 for any subscheme T of Y 0 � Proj�grI �A� 
R k� of dimension
r. More generally, if the disamplitude locus Damp�N� is not equal to Proj�B�
(Example 12.1.10 in Fulton [4]), then wY 0 �OY 
R k;OTi � > 0 for some component
Ti of the support of OY=K since the support (as a subcone of N) of at least one
of Ti's is not contained in Damp�N� in that case. Therefore, if N is ample or
Damp�N� 6� Proj�B�, then wR�R=p;R=q� > 0 (cf. Theorem 3 (2) in [15]).

If q 6� m2, then it is easy to show that N is not ample. Now we give an example in
which N is not ample even though q is contained in m2.
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Let k be a ¢eld. Put R � k��s1; . . . ; s4�� and q � �s21 ÿ s22s3s4�. Furthermore, we put
A � R�X0;X1� and

I � qA� I2
X0 X1 s2
ÿs3X1 ÿs4X0 s1

� �
:

Then, I �mA � mA and Proj�B� � P1
k in this case. It is easy to see that

Proj�A=I� ! SpecR=q is a desingularization and the sheaf of sections of N is equal
to OP1 �OP1 �2�. Therefore, it is not ample. By de¢nition, Damp�N� � Proj�B�
in this case.

In the terminology of Theorem 1.2 this states that there is an element of k�Si;Ujk�
which is annihilated by a power of �X0; . . . ;Xn� modulo the image of I=I2 in G.
However, this element does not come from an element of an ideal of the form
KG de¢ned by a prime ideal of R satisfying the conditions which we have been
considering.

2. A Reduction Lemma

In the previous section we showed that the positivity of intersection multiplicities is
equivalent to the condition that a certain ideal KG in the ring G � B�Si;Ujk� has
zero intersection with the ring k�Si;Ujk�. In this section we re¢ne this condition
and show that it is equivalent to the condition that the corresponding ideal KF

in F has zero intersection with the smaller subring k�S1; . . . ;Sd �.
We keep the notation of the previous section. Let P be a bigraded prime ideal of F .

The situation which arises in the investigation of the Serre positivity conjecture is
where the quotient F=P has dimension n� d � 1, and we wish to ¢nd the Euler
characteristic wZ�OZ=IF ; �F=P���, where IF is the ideal sheaf of OZ generated
by the Si and the Tj. We recall that we have a map j : F ! G de¢ned by letting
j�Ti� �

P
j XjUij. For an ideal J, we let J denote the ideal of elements which

are annihilated by a power of �X0; . . . ;Xn� modulo J.

THEOREM 2.1.Let P be a bigraded prime ideal in B�S1; . . . ;Sd ;T0; . . . ;Tn�. Suppose
that

(1) k�S1; . . . ;Sd � \ P � 0.
(2) j�P�G \ k�Si;Ujk� 6� 0.

Then the dimension of F=P is at most d � n.

Using this theorem, we obtain the following corollary immediately.

COROLLARY 2.2. With notation as in Theorem 1.2, the following statements are
equivalent:

(1) wR�R=p;R=q� > 0.
(2) KF \ k�S1; . . . ;Sd � � 0.
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In order to prove the corollary, we need the fact that Proj�F=KF � is equi-
dimensional, which follows since Proj�gr~I �A=pA�� is equidimensional.

To prove Theorem 2.1, we ¢rst reduce to the case in whichB is a polynomial ring in
X0; . . . ;Xn. To achieve this, we map a graded polynomial ring k�Y0; . . . ;Yn�, which
we denote by B0, onto B by mapping Yi to Xi. The surjective map from B0 to B
induces surjective maps from F 0 � B0�Si;Tj � to F and from G0 � B0�Si;Ujk� to G.
Furthermore, if we de¢ne j0 from F 0 to G0 by mapping Tj to
Y0Uj0 � � � � � YnUjn in analogy with the de¢nition of j , we have a commutative
diagram

B0 ÿ! F 0 ÿ!j
0

G0

# # a #
B ÿ! F ÿ!j G

:

Let P0 be the inverse image of P in F 0. We then have an isomorphism F 0=P0 � F=P.
We must check that the theorem is true for P if and only if it is true for P0. Since

F 0=P0 � F=P, it is clear that dim�F=P�W d � n if and only if dim�F 0=P0�W d � n.
We thus only have to check that the hypotheses are also equivalent.

To check the ¢rst hypothesis, we note that there is a commutative diagram

k�S1; . . . ;Sd � ! F 0=P0

& #
F=P

:

Since the ¢rst hypothesis is satis¢ed for P if and only if the diagonal map in this
diagram is injective and for P0 if and only if the horizontal map is injective, and
since the vertical map is an isomorphism, the equivalence of the two conditions
is clear. For the equivalence of condition (ii) in the two cases, we use a similar
argument; we must show that if we let Q and Q0 denote the ideals generated by
P and P0 in G and G0 respectively, we have an isomorphism G0=Q0 � G=Q. We prove
this fact directly; let a be the surjective map from G0 to G. Since the map induced
by a from G0=Q0 to G=Q is clearly surjective, it suf¢ces to show that it is injective.
Let c0 be an element of G0 such that a�c0� 2 Q. Since Q is generated by j�P�, this
means that we can write a�c0� �P cij�pi� with ci 2 G and pi 2 P. We can lift these
elements to elements c0i and p0i in G0 and P0, and then d 0 �Pj0�p0i�c0i is in Q0 and
a�c0 ÿ d 0� � 0. Now the kernel of a is generated by the kernel of the map from
B0 to B, and this kernel is clearly contained in P0 and hence the ideal it generates
in G0 is contained in Q0. This completes the proof that we can reduce to the case
of B0, F 0, G0, and P0.

We now change notation, replace B, F , G, P, and Q with B0, F 0, G0, P0, and Q0 and
assume that X0; . . .Xn are algebraically independent over k.

We next show that it suf¢ces to prove that under the given hypotheses the height of
P is at least equal to n� 1. Since we have

ht�P� � dim�F=P� � dim�F � � dim�B� � n� d � 1;
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we have that ht�P�X dim�B� � 1 if and only if

dim�F=P�W dim�F � ÿ dim�B� ÿ 1 � n� d:

Thus it suf¢ces to show that the height of P is at least the dimension of B (or of
Proj�B�) plus 1, which, now that we have reduced to the case in which B is the poly-
nomial ring k�X0; . . . ;Xn�, is n� 1.

We next localize at the multiplicatively closed set S consisting of nonzero elements
of k�S1; . . . ;Sd � and reduce the problem to a question on graded rings over a ¢eld. Let
L denote the quotient ¢eld of k�S1; . . . ;Sd �. Hypothesis (i) of the theorem implies that
P de¢nes a prime ideal of the localization, and its height will remain the same.
Furthermore, the second hypothesis implies that there is a non-zero element in
L�U00; . . . ;Unn� such that some power of the ideal generated by X0; . . . ;Xn

annihilates this element modulo the image of P after localization at S. Changing
notation, we use F ;G;P and Q to denote the localizations of the original rings
F and G and ideals P and Q at S. In the localization we consider the grading induced
by the grading in the ¢rst component; that is, elements of L have degree zero, the
degrees of the Xi and Ti are 1, and the degrees of Uij are zero. It suf¢ces to prove
the following lemma.

LEMMA 2.3. Let L be a ¢eld, and let P be a graded prime ideal of the polynomial ring
F � L�X0; . . .Xn;T0; . . . ;Tn�. Let Q be the ideal generated by j�P� in
G � L�X0; . . . ;Xn;U00; . . . ;Unn�, and let

Q � fc 2 Gj9k with �X0; . . . ;Xn�kc � Qg:

If Q \ L�U00; . . . ;Unn� 6� 0, then the height of P is at least n� 1.

If P contains �X0; . . . ;Xn�, then the height of P is clearly at least n� 1. Therefore,
we may assume P 6� �X0; . . . ;Xn�. Since the ideal P is graded, it suf¢ces to localize
at one of the Xi, which we can take to be X0, take the part of degree zero, and show
that the height of the resulting prime is at least n� 1. After localization, the ideals
Q and Q are equal, so Q will be generated by j�P�. Denote Xi=X0 by ai and denote
Ti=X0 by ti. Then the part of degree zero of the localization of F is the polynomial
ring L�a1; . . . ; an; t0; . . . ; tn�. The part of degree 0 of the localization of G is
L�a1; . . . ; an;U00; . . . ;Unn�, and the localization of the map de¢ned by j sends ai
to itself and sends ti to Ui0 � a1Ui1 � � � � � anUin. We identify ti with its image in
G, and we now have

Ui0 � ti ÿ a1Ui1 ÿ � � � ÿ anUin

for each i.
Replace F (resp. G) by the part of degree 0 of the localization of F (resp. G). Using

this substitution, we may identify F with a subring of G, and G is now a polynomial
ring over F on the set of Uij with 0W iW n and 1W jW n. Since G is a polynomial
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ring over F , it is easy to describe the ideal Q generated by P in G. If we write an
element of G as a polynomial in the Uij with 1W jW n with coef¢cients in F , then
this polynomial is in Q if and only if every coef¢cient lies in P. We now reverse
the point of view, and start with an element c of G. If we write c as a polynomial
with coef¢cients in F as above, then its coef¢cients generate an ideal a of F ,
and if c is in Q, then P must contain a. We refer to a as the minimal ideal of F
de¢ned by c. To ¢nd a, we substitute ti ÿ a1Ui1 ÿ � � � ÿ anUin for Ui0 and take
the ideal generated by the coef¢cients of the resulting polynomial in the Uij with
1W jW n. The proof of Lemma 2.3 will be completed by showing that if c is a
nonzero element of L�U00;U01;; . . . ;Unn�, then the minimal ideal of F de¢ned by
c has height at least n� 1.

Let c be as above, and let a be the minimal ideal de¢ned by c. We will show that a
has height at least n� 1 by showing that for any subset of the set of variables
fa1; . . . ; an; t0; . . . tng consisting of n elements, there is a nonzero element of a which
does not involve these elements. Thus, it will follow that such an element is a nonzero
polynomial in the remaining n� 1 elements of the set. Hence no subset of
fa1; . . . ; an; t0; . . . ; tng consisting of n� 1 elements is algebraically independent over
L in F=P, so the transcendence degree of F=P over L is at most n for any prime
ideal P containing a. Thus the dimension (as a ring) of F=P is at most n and the
height of P is at least n� 1 .

Let c � f �Uij� be a nonzero polynomial with coef¢cients in L in the variables Uij

with i � 0; . . . ; n and j � 0; . . . ; n. Choose a subset of fa1; . . . ; an; t0 . . . ; tng consisting
of n elements; renumbering, we may assume that these elements are t0; . . . ; tm and
am�2; . . . ; an. The strategy is to take a monomial in the Uij with nonzero coef¢cient
in f for which a certain linear function of the exponents (we de¢ne this function
below) is maximal and show that the coef¢cient of a certain monomial in the
expansion after substituting ti ÿ a1Ui1 ÿ � � � ÿ anUin for Ui0 for each i is nonzero
and does not involve t0; . . . ; tm or am�2; . . . ; an.

We note that when ti ÿ a1Ui1 ÿ � � � ÿ anUin is substituted for Ui0 in a monomial
with factor Uk

i0, the result has several terms, including one with factor tki and
one with factor �ÿajUij�k for each j. We will choose the monomial under consider-
ation and the term of the expansion so that the only terms we need to consider
are those involving these factors for certain i and j which we can determine.

We choose a monomial M �QUkij
ij for which

Xm
i�0
�ki0 � ki;i�1� ÿ

Xn
i�m�1
�ki1 � ki2 � � � � � kin�

is maximal among all monomials with nonzero coef¢cients in f . We then consider the
monomial in the expansion of M with exponents which are equal to kij for all
i � 0; . . . ; n and j � 1; . . . ; n except that the exponent of Ui;i�1 is ki0 � ki;i�1 for
i � 0; . . . ;m. Denote this monomial N. We claim that the coef¢cient of N in the
expansion of f is nonzero and does not involve t0; . . . ; tm or am�2; . . . ; an.
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Let M0 �QUnij
ij be a monomial whose expansion contributes to this coef¢cient.

Let i be an integer with 0W iWm. Then, since Ui;i�1 occurs with exponent
ki0 � ki;i�1 in N, and since the largest exponent of Ui;i�1 which can possibly occur
in any term of the expansion of M0 is ni0 � ni;i�1, we must have

ni0 � ni;i�1 X ki0 � ki;i�1: �2�

For i between m� 1 and n, we consider the total degree of N in the variables
Ui1; . . . ;Uin. By our construction and choice of N, this degree is ki1 � � � � � kin.
On the other hand, the degree of any monomial in the expansion of M0 in these
variables is at least equal to ni1 � � � � � nin. Hence if the monomial N occurs in
the expansion, we must have

ni1 � � � � � nin W ki1 � � � � � kin: �3�

If any of the inequalities (2) or (3) were strict, we would then have that

Xm
i�0
�ni0 � ni;i�1� ÿ

Xn
i�m�1
�ni1 � ni2 � � � � � nin�

was strictly greater than

Xm
i�0
�ki0 � ki;i�1� ÿ

Xn
i�m�1
�ki1 � ki2 � � � � � kin�:

However, the monomial was chosen to maximize this quantity. Thus all the
inequalities (2) and (3) are equalities.

We now compute the contribution of the monomialM0 to the coef¢cient ofN. Let i
be between 0 and m. Then, as shown above, we have

ni0 � ni;i�1 � ki0 � ki;i�1:

To ¢nd the coef¢cient of N, we need to take the part of the expansion of

�ti ÿ a1Ui1 ÿ � � � ÿ ai�1Ui;i�1 ÿ � � � ÿ anUin�ni0Uni1
i1 � � �Uni;i�1

i;i�1 � � �
for which the exponent of Ui;i�1 is ni0 � ni;i�1. Every term will have exponent strictly
lower than ni0 � ni;i�1 except one, and that is the one coming from �ÿai�1Ui;i�1�ni0 .
Hence the only terms which end up contributing to the coef¢cient of N are obtained
by substituting �ÿai�1Ui;i�1� for Ui0.

We next consider i between m� 1 and n. As shown above, we have

ni1 � � � � � nin � ki1 � � � � � kin:

This time the only terms which can appear in the coef¢cient of N are those which
contain the power tni0i , since any other term has degree in Ui1; . . . ;Uin larger than
that of N. Thus the only terms which contribute are obtained by substituting ti
for Ui0.
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We now summarize the situation. To contribute to the coef¢cient of N, the
monomial must have ni0 � ni;i�1 � ki0 � ki;i�1 for i � 0; . . . ;m and nij � kij for all
other i; j with jX 1. The resulting coef¢cient is then obtained by substituting
ÿai�1Ui;i�1 for Ui0 for i � 0; . . . ;m and substituting ti for Ui0 for i � m�
1; . . . ; n. The resulting contribution to the coef¢cient is the monomialQm

i�0�ÿai�1�ni0
Qn

i�m�1 t
ni0
i . Our conditions imply that all of the ordered sequences

of exponents are distinct and that there is at least one with non-zero coef¢cient.
Thus, since ai; tj are algebraically independent the resulting coef¢cient is nonzero
and does not involve t0; . . . ; tm or am�2; . . . ; an. This proves Lemma 2.3.

3. Positivity and Symbolic Powers

For a prime ideal q of a commutative ring R, q�k� � qkRq \ R is called the k-th
symbolic power of q. The k-th symbolic power can also be de¢ned as the set of
r 2 R such that there exists s 62 p with sr 2 pk.

In this section we discuss the following conjecture:

CONJECTURE 3.1. Let �R;m� be a regular local ring. Let p and q be prime ideals of R
that satisfy

�����������
p� q
p � m and htR p� htR q � d. Then

p \ q�k� � mk�1

for any k > 0.

We show below that in the case where R � Q, we can easily solve the conjecture
af¢rmatively.

The aim of the section is to prove the following theorem:

THEOREM 3.2. Let �R;m� be a regular local ring that is equicharacteristic or
rami¢ed. Let p and q be prime ideals of R that satisfy the following three conditions;

(1)
�����������
p� q
p � m,

(2) htR p� htR q � d,
(3) wR�R=p;R=q� > 0.

Then we have p \ q�k� � mk�1 for any positive integer k.

If �R;m� is equicharacteristic in Theorem 3.2, then the third assumption for p and q
follows from the ¢rst and second ones by the positivity theorem due to Serre [16].
Therefore, if �R;m� is equicharacteristic, Conjecture 3.1 is true.

By Theorem 3.2, Serre's positivity conjecture implies Conjecture 3.1 in the case
where R is rami¢ed.

Since the connection between the positivity conjecture and Conjecture 3.1 depends
on the construction of section 1, which requires that R is equicharacteristic or
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rami¢ed, we do not know whether Theorem 3.2 is true in the case of an unrami¢ed
regular local ring of mixed characteristic. Conjecture 3.1 is open in that case.

Before proving Theorem 3.2, we give a remark on symbolic powers.

Remark 3.3. Let �R;m� be a regular local ring and q a prime ideal of R.

(a) For any k > 0, q�k� � mk (see Theorem (38.3) in Nagata [12]).
(b) Assume that q � m2. If R contains a ¢eld of characteristic 0 (resp. p > 0), then

q�k� � mk�1 for any k > 0 (resp. 0 < k < p) by Proposition 3.4 below.
On the other hand, we now present an example in positive characteristic in

which q � m2 but q�p� 6� mp�1.
Let E be a three-dimensional regular local ring with regular system of par-

ameters x, y, z, and let

F : R � E��S;T ;U;V ��ÿ!E��W ��

be the ring homomorphism of formal power series rings over E de¢ned by letting
F�S� � x3W , F�T � � y3W, F�U� � z3W, and F�V � � �xyz�2W . Put
q � Ker�F�. Then, q is generated by the following 7 elements:

y3S ÿ x3T ; z3T ÿ y3U; x3U ÿ z3S;
xV ÿ y2z2S; yV ÿ z2x2T ; zV ÿ x2y2U;
V 2 ÿ xyz4ST

Therefore q is contained in m2, where m � �x; y; z;S;T ;U;V �R.
If E contains a ¢eld of characteristic 0, then q�k� � mk�1, but it can be shown

(see [14]) that q�k� 6� mk�2 for any k > 0, and it follows that the symbolic Rees
ring �kX 0q

�k� is not Noetherian in this case. It is shown in [14] that a certain
subring of �kX 0q

�k� gives a counterexample to the Hilbert's fourteenth problem
which is in many ways simpler than that of Nagata [11].

If E contains a ¢eld of characteristic p > 0, then q�k� � mk�1 for 0 < k < p, but
q�p� 6� mp�1 for each prime integer p (see [9]; this example is similar to the one
described below in mixed characteristic). In this case, an element in
q�p� nmp�1 makes the symbolic Rees ring �kX 0q

�k� Noetherian for each p ([8, 9]).
We give an example in the case where E has mixed characteristic. Assume that

E is a regular local ring ofmixed characteristic such that its residue class ¢eld is of
characteristic 2 and that x divides 2. Since q \ E � 0, we have

V 2 ÿ 2xÿ1y2z2SV � xy4zSU � xyz4ST ÿ x4yzTU

� 1
x2
�xV ÿ y2z2S�2 � yz�y3S ÿ x3T ��x3U ÿ z3S�� 	 2 q�2�:

Therefore q�2� 6� m3 in this case.

(c) Eisenbud^Mazur [3] studied conditions that imply mq�k� � q�k�1�.

The next proposition implies Conjecture 3.1 in the case where R � Q.
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PROPOSITION 3.4. Let R be a regular local ring containing a ¢eld and q a prime
ideal of R. Suppose that q�k� � ml for some positive integers k and l.

(a) If the characteristic of R is 0, then q�k�1� � ml�1.
(b) If the characteristic of R is p > 0 and if l < p, then q�k�1� � ml�1.

Proof.Assume the contrary. Then there exist a 2 ml nml�1 and b 2 R n q such that
ab 2 qk�1. We denote by R̂ the completion of R and put I � qR̂. Then, for any t > 0,
we have

Ik :R̂ bt � �qk :R bt�R̂ � q�k�R̂ � ml R̂ �4�

since bt 62 q. We will use this fact later.
Put R̂ � k��s1; . . . ; sd ��, where k is the coef¢cient ¢eld of R̂. Since a 2 ml R̂ nml�1R̂

(and l < p in the case where ch�k� � p > 0), there exists i such that

@a=@si 2 mlÿ1R̂ nml R̂: �5�

Put a0 � @a=@si, b0 � @b=@si and �ab�0 � @�ab�=@si. Since �ab�0 � a0b� ab0, we have

b2a0 � ÿb0ab� b�ab�0:

On the other hand, since ab 2 qk�1R̂ � Ik�1, we have �ab�0 2 Ik. Therefore, we have
b2a0 2 Ik. Hence, a0 2 Ik :R̂ b2. By (4), we obtain a0 2 ml R̂, which contradicts
(5). &

It follows immediately from Proposition 3.4 that ifR � Q and q is contained inm2,
then p \ q�k� � mk�1. The general case in which R � Q can be reduced to this case by
induction on dimk�q�m2�=m2.

In order to prove Theorem 3.2, we need the following stronger version of the
existence of regular alterations:

PROPOSITION 3.5. Assume that R is a regular local ring essentially of ¢nite type
over a ¢eld or a complete discrete valuation ring. Then, there exists a graded prime
ideal I � A � R�X0; . . . ;Xn� for some n, where each Xi is of degree 1, that satis¢es
the following four conditions:

(1) I \ R � q.
(2) Proj�A=I� is regular.
(3) Proj�A=I� ! SpecR=q is generically ¢nite.
(4) Proj�A=I �mA� is an e¡ective Cartier divisor of Proj�A=I�.

This statement is identical to that of section 1 except that we have added the con-
dition that I �mA de¢nes a Cartier divisor in Proj�A=I�. This condition will be
needed to show that certain maps on graded rings which we de¢ne below agree.
The stronger version also follows from the theorem of de Jong [7], this time applied
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to the proper transform of Spec�R=q� in the blowup of Spec�R� at the maximal ideal
of R.

We now prove Theorem 3.2. Suppose that the theorem is not true, and that there
exists a k such that p \ q�k� is not contained in mk�1. By the approximation theorem
due to M. Artin [1], we may assume that R is a regular local ring essentially of ¢nite
type over a ¢eld or a complete discrete valuation ring. Applying Proposition 3.5,
we can ¢nd a regular alteration of Spec�R=q� satisfying the fourth condition in
the proposition.

We use the criterion proven there for positivity (Theorem 1.2). We show
that the assumption just made implies that there is a nonzero element in
KF \ k�S1; . . . ;Sd �. (It is easy to see that the second condition of Theorem 1.2 implies
KF \ k�S1; . . . ;Sd � � 0.)

For a graded ideal J of A contained in I �mA, we de¢ne a map from J=J2 to
OA 
A B induced by the differential of A (we will apply this in particular for J equal
to mA, I , and I �mA itself). Since J annihilates B, the map above is A-linear and
induces the map of symmetric algebras

bJ : SymA=J�J=J2� ÿ!SymB�OA 
A B�:

Since mA is generated by an A-regular sequence, the natural map

SymA=mA�mA=m2A� ! grmA�A�

is an isomorphism. Therefore bmA induces bmA : grmA�A� ! SymB�OA 
A B�.
Take x 2 p \ q�k� nmk�1. By Remark 3.3 (a), x is contained in mk. We denote by x

the image of x in mkA=mk�1A. By de¢nition, bmA�x� is a nonzero element in
k�S1; . . . ;Sd �, which is the subring of F � SymB�OA 
A B�. To complete the proof,
we will show that bmA�x� 2 KF , which is equivalent to bmA�Xr

i x� 2 KF for
i � 0; . . . ; n and r� 0.

We denote by ����s;t� the homogeneous component of degree s (resp. t) with respect
to the ¢rst grading (resp. the second grading). Let J be a graded ideal of A contained
in I �mA such that Proj�A=J� is locally a complete intersection in Proj�A�. Then the
kernel of the natural map SymA=J�J=J2� ! grJ�A� is annihilated by a power of
�X0; . . . ;Xn�. Therefore

�bJ ��r;k� : �Symk
A=J�J=J2��r ! �Symk

B�OA 
A B��r

induces

�bJ ��r;k� : �Jk=Jk�1�r ! �Symk
B�OA 
A B��r

for r� 0. Let J1 � J2 be ideals of A, and let gJ2;J1 : grJ1 �A� ! grJ2�A� be the ring
homomorphism induced by the natural inclusion J1 � J2. If both �bJ1 ��r;k� and
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�bJ2 ��r;k� are de¢ned, then we obtain

�bJ2 ��r;k� � gJ2;J1 � �bJ1 ��r;k�
immediately.

Since Proj�A=mA�, Proj�A=I� and Proj�A=I �mA� are locally complete
intersections in Proj�A� (by the fourth condition in Proposition 3.5), �bmA��r;k�,
�bI ��r;k� and �bI�mA��r;k� can be de¢ned for r� 0. Then, we get

bmA�Xr
i x� � �bmA��r;k��Xr

i x� � �bI�mA��r;k��Xr
i x� � �bI ��r;k��Xr

i x�;
where we choose r large enough so that Xr

i x 2 Ik. The existence of such an r follows
since x 2 q�k� � I �k� and since I �k� is locally equal to Ik, which follows from the fact
that Proj�A=I� is regular.

Since x 2 p, we have

�bI ��r;k��Xr
i x� 2 KF

for r� 0. Thus bmA�x� 2 KF , so bmA�x� is a nonzero element of KF \ k�S1; . . . ;Sd �.
This completes the proof of Theorem 3.2.
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