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1. Introduction. The problem of the field equations and the equations of 
motion in general relativity theory is now sufficiently clarified. The equations 
of motion can be deduced from pure field equations by treating matter as 
singularities, [2; 3], or from field equations with the energy momentum tensor 
[4]. Recently two papers appeared in which the problem of the coordinate 
system was considered [5; 8]. The two papers are in general agreement as far 
as the role of the coordinate system is concerned. Yet there are some differences 
which require clarification. 

For this purpose it will be useful to analyse a very simple and well-known 
example that will emphasize some of the essential ideas by which field and 
motion are connected. The problem of motion is complicated in the case of two 
bodies but much simpler in the case of one body, when we may use the geodetic 
principle, which, by the way, can also be deduced from the field equations 
[1 ; 6]. Therefore, we shall begin by returning to this rather elementary problem 
and analyse some of its features, which appear in a changed form in the two-body 
problem. An interesting by-product of this work is a method of deducing 
perihelion motion, which seems to me simpler and more instructive than any 
others I know. 

2. The Schwarzschild solution and the change of the coordinate system. 
It is usual to write the quadratic form of the Schwarzschild solution in the 
following way : 

(2.1) ds = ( l - lj~)de - ( l - ~)~ldr2 - r\dd2 + sin20 d<t>2). 

What are the characteristic features of this coordinate system? For large r 
the only difference between the Galilean and the Schwarzschild field consists of 
additional terms that are essentially the Newtonian potentials. For r —> oo the 
field becomes Galilean. As a rule it is in such a coordinate system that we 
calculate the perihelian motion. We ask: Is it possible to find a coordinate 
system in which the equations of the path are the ordinary equations of a 
conic without any perihelion motion? This does not mean that the perihelion 
motion can be wiped out. But it does mean that we can introduce an artificial 
observer moving with the angular velocity of the perihelion motion. 

To show this, at least for the mean path, it is sufficient to introduce a change 
in one variable, that is </>. We write: 
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18 L. INFELD 

(2.2) * = * + «(*). 

We shall assume not that co(^) is small, but that its derivatives are small, that 
is we shall consistently omit all expressions of higher order than dœ/d\p. This is 
our only assumption. 

Thus from (2.2) it follows that: 

** - «K1+# d\[/J 

Therefore, in our new coordinate system, the metrical form (2.1) takes the 
following form : 

(2.3) ds2 = ( l - ?f)dt2 - ( l - ^ff'dr2 - rW - r%m26 d^{l + 2 ^ ) . 

The next step is to calculate the differential equations of the geodetic line. 
This calculation is absolutely straightforward and little difficulty is added by 
taking (2.3) instead of (2.1) We begin with the procedure described extensively 
in any book on general relativity theory and take 0 = %w. We then obtain three 
equations. The first is simply (2.1) or, in our coordinate system, (2.3) for 6 = \ir 
and do = 0. Then we have two integrals. One of them which represents the 
conservation of momenta is, because of (2.2), 

rr> A\ 2 d\p , 2dœ 

The third equation, also integrated, is 

or precisely the same as in the original coordinate system represented by (2.1). 
Thus (2.3), (2.4), (2.5) represent our equations of motion. 

We can write (2.4) : 

(2.4a) r.£ + r.££,A, 
therefore : 

ds d\(/ ds 

d\p _ h dœ d\p 
ds r2 dip ds ' 

Thus, neglecting higher powers of doo/d\p, we can write (2.4) : 

<"> ~i - A 1 - d*y 
Besides this, we have equations (2.5) and (2.3) for dd = 0, 6 = \-K, which we 

shall rewrite now: 
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Here we replace: 

- j - by C[ 1 ) , according to (2.5), 

dr . dr_ cfy 
Js y df ds ' 

— by Z*\ 1 ~~ T7/» according to (2.6). 

We obtain 
ds r \ d\f/J 

<"> ^ - W - ^ - T C ' - T ) - ' -
2m 

W^/ V "d\/// r* r J V r / A r ' 

We could have done this still more simply by taking the usual equation in 
the coordinate system (2.1), that is the equation: 

n2 (dr\h2 Ifi'l 2m\ 
c ~ W / 7 ~~ A 1 - TV = " 

2m 
r 

and introducing into this equation the transformation (2.2). Equation (2.7) 
follows immediately. 

Now we write (2.7) in the following form, introducing as usual u — r~l\ 

< 2 - ? > c 2 - hi%)2 - *v - i + 2 m u + 2 h i Z ) \ l ù + 2 m h V = ° -
Our question is whether by a proper choice of the function co we can rigorously 

solve the equation (2.8) by 

(2.9) u = l±|~ii. 

This is indeed possible and to show it we split the equation (2.8) into two parts 
which we shall satisfy separately: 

(2.10) C'2 - h2{~f - k2u2 -l+2mu = 0, 

(2.11) c* - C« + 2k{lf)\lf) + 2M = 0. 

Here (2.10) is the Newtonian equation, in which, provisionally, the constant 
C may be regarded as unknown. Its solution therefore is (2.9), where e and p 
are functions of C and h. Now as to the equation (2.11), we introduce into it 
(2.9), regarding it as an equation for co and C. We obtain from (2.11): 

(2.11a) e 2 ( J r ) s i n V + j(l + Se cos ^ + 3e2cosV + e W *) 

, (c2 - C2)P2
 n 
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or, assuming sin2 \p T^ 0: 

ro i i u \ du \ 3m c o s ^ 3M me cos i/' 
ai/' pe sin ^ £ £ sin \p 

1 ( m 3m C2 - C2
 2 \ ft 

_|_ -r-2—1 —g -f- — - j - —g £ I = 0. 
sm ^ \ £ e p 2h r / 
sin"'\l/\pe* p 

Thus we can solve this equation, by putting: 

(2.12) C't=Ci+^- + ^ 
p e" p 

and 
n n v dco 3m cos ^ 3m me cos' ^ 

d\p pe sin ^ £ £ sin ^ 

Equation (2.12) says that the ellipse is slightly changed from the one which 
corresponds to the constant C. Remembering that 

h2 is of the order r4œ2 

(r being the ''distance" of the planet from the sun) and that 

p is of the order of r, 
we see that 

C2 — C'2 is of the order mv2/r 

(v being the "velocity"). Therefore (2.10) in which C2 was replaced by C'2 

gives the "relativistic" correction to the "energy." 
Equation (2.13) is not sufficient to determine co in the neighbourhood of 2wn. 

But it is sufficient to determine the perihelion motion. We have: 

<t> = * + «(*) = / ( * ) . 
Let us write 

4>n = f(2irn) = 2im + œn 

<t>n+i = f(2irn + 2?r) = 2w(n + 1) + w„+i, 

then the definition of the perihelion motion is: 

<t>n+l — <l>n — 2-IT = 0)n+\ — C0n. 

Now integrating (2.13) from 27m to 2ir(n + 1) we have 

un+i — ccn = ômir/p, 

which formula expresses the famous perihelion motion. 
In order that the perihelion motion describe reality, it must be, in a certain 

sense at least, independent of the coordinate system. Indeed, the perihelion 
motion is independent of the coordinate system, as long as the coordinate 
system is Galilean at infinity. 

The description of the perihelion motion of, say, Mercury is based on the 
assumption that the observer is so far away and in such a coordinate system 
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that his field is Galilean. Otherwise, nothing else is required from the coordinate 
system. The one represented by (2.1) would do just as well as any other as long 
as it is Galilean at infinity. 

Imagine an observer (in a Galilean local coordinate system) very far from the 
"sun," pointing with one rigid rod towards the sun and with another towards 
Mercury, at a moment when the angle between the two rods is smallest. In 
principle, this can be done, since, in a Galilean coordinate system, all the 
concepts—rigid rods, angles, etc., are the familiar Euclidean concepts. Then the 
rigid rod pointing toward Mercury will describe an ellipse. But after one rota­
tion, the perihelion position (that is, the minimum angle between the two rods) 
will be slightly shifted. After very many rotations, the original perihelion position 
from which the idealized observer started will be reached again. We can ask: 
After how many rotations of Mercury will the perihelion point complete one 
rotation? Such a formulation of the question has nothing to do with any special 
coordinate system but it does assume that the chosen coordinate system is 
Galilean at infinity, because only in such a coordinate system can we use freely 
the concepts of rigid body, angles, etc. Thus we can have either Newtonian 
motion and a non-Galilean field at infinity, or perihelion motion and a Galilean 
field at infinity. 

3. The two-body problem. The above discussion should help to clarify the 
problem of the coordinate system for a two-body problem. It was solved in a 
series of papers, not by assuming the principle of a geodetic line but by deducing 
the equations of motion from the field equations. One of the essential ideas used 
then is the "new approximation method." By its use we find the field in the 
second and third approximations. Then from this knowledge of the field we 
deduce the equations of motion in the fourth approximation. These are the 
Newtonian equations of motion. The next step is to find the field in the fourth 
and fifth approximations. Finally, we deduce the equations of motion up to the 
sixth approximation. These equations give us the perihelion motion of the two 
(or many) body problem. It would be extremely difficult, technically, to go 
beyond the sixth approximation. But it is not necessary to do so. All contributions 
to the motion in higher than the sixth approximation can be wiped out by a 
proper choice of a coordinate system [5]. 

Thus having described the procedure in general terms we shall write down the 
field equations in the second and third approximations [3, p. 219]. These are: 

7oo, ss = 0 
2 

yOm.ss + y0s,ms = 700,0mî m, 5 = 1, 2, 3, 
3 3 2 

7M* = K> — h^hcp M, V, V, P = 0, 1, 2 , 3 

Vms == ~~ àms', *700 = l j VOm = 0. 

(3.1) 

where 
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Here, and later, Greek indices take the values 0, 1, 2, 3 and Latin indices the 
values 1, 2, 3. One more remark: the stroke means differentiation: 

7nv/s — * s — guv, s 

= -^jr = ^T"X = X&".o (Xx = r ) . T " / 0 dx" dr 

Thus the differentiation with respect to r raises the order, since X is the para­
meter of the development and its order is indicated by a number below the 7*s. 

The essential point in the use of the "new approximation method' ' consisted 
in the fact that we began the development of 700, To™, and ymn with 700, 7om> 
and ymn respectively: 2 

4 

Too = X 700 + X 700 + . . . 
2 4 

(3.2) 70m = X37om + X57o« + . . . 
3 5 

T m n = = A. ymn + X 7mn + 
4 6 

If we look at (3.1) we see that 700 must be a harmonic function. Let us choose 
an harmonic function that represents two moving singularities. But then 70m 

is not uniquely determined. Indeed let us replace 

70m b y 70m + #0,m 
3 3 3 

do being an arbitrary function. Then 70m + a0,m is a solution. Thus we could ask 
3 3 

whether the arbitrary function do m can have any influence upon the equations 
3 

of motion. It certainly does not have any influence on the equations of motion 
of the fourth order (which are the Newtonian equations of motion). This follows 
from a theorem proved before [3, p. 233]. But a straightforward, though trouble­
some, calculation [9] shows that it has no influence, either, upon the equations 
of motion up to the sixth order. Thus it is not true [8] as Papapetrou claims 
that we could have changed the equations of motion by changing the coordinate 
condition involving 700 and 7om- Thus nothing can change the equations of 

2 3 

motion up to the sixth order, as long as we stick to the following procedures: 

1. To introduce solutions of Laplace's equations for 700 that represent the 
Newtonian fields. 

2. To use the "new approximation method", starting with 700, 70m» 7»»n 
respectively. 

Once these procedures are assumed and no singularities later arbitrarily 
introduced, the equations of motion up to the sixth order are uniquely deter­
mined, giving us, in consequence, the perihelion motion of a double star. 
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But we have seen in the first part, that we can wipe out the perihelion motion 
by a proper choice of the coordinate system. There seems to be a contradiction 
between our statement here and the result of the first part of this paper. The 
solution is simple enough : to introduce a coordinate system that would wipe out 
the perihelion motion we would have to violate the second of our assumptions 
just quoted. 

Although the corresponding calculation is elementary, we shall show it in 
detail in order to clarify the problem. 

Let us rewrite (2.1) in the form: 

(3.3) ds2 = ( l - —)^2 - ( l - — ) ~ V - P\dd2 + sin20 d<t>2). 

We introduce the transformation 

(3.4) p = r + m = r + mt 
2 

since m is of the second order. Again we rewrite (3.3) keeping only expressions 
up to the second order: 

(3.5) ds2 = (1 - 2mr-Y)dt2 - dr2(l + Imr1)((dx1)2 + (dx2)2 + (dx")2). 
2 2 

(Here the connection between r, 6, <j> and x1, x2, xz is obvious.) 
Thus we have in (3.5) 

/*oo = — 2mr 1; hmn = — Kn^mr \ "run umn^d 

2 2 

Therefore : 

Too = Ĵ oo + %hss = — 4mr \ 
2 2 

70m = 0, 
3 

Ifmn ~ "ran 2^mn^ss "T 2°mnhoQ = = 0. 
2 

Thus this solution satisfies our conditions, because ymn = 0 and because 700 
represents a Newtonian field belonging to a particle. 2 

To wipe out the perihelion motion we would have to introduce a rotation in 
the "plane" of the motion with an angular velocity œ chosen so as to wipe out 
such a motion. Thus we introduce the transformation: 

x = £xcos a) — £2sin œ 

x2 = ^sin co + £2cos w 

x = Ç . 

In this coordinate system we have the following quadratic form : 
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(3.6) ds2 = [1 - lmr'x + «2 ((^)2 + (ff)]dt2 + l£ùdt df - ifùdt d£ 

- dr\\ + 2wr"1)((df1)2 + (df)2 + (<^3)2). 
2 

If OJ = cô is of order one, we see that our quadratic form violates both the 
i 

conditions on which our approximation procedure is built. First, 700 does not 

vanish for r —» 00, and does not represent a Newtonian field of a particle. 
Secondly, 7om does not start with yQm but with yQm. Thirdly, 

3 1 

Imn = \u({tf + (£2)2) Ôro„, 
2 

that is, ymn does not start with ymn. 
4 

Thus, returning to the two-body problem, we see that the conditions of our 
method are sufficiently stringent to insure uniquely the equations of motion up 
to the sixth order without any additional conditions concerning the coordinate 
system. 

Therefore the choice of a coordinate system has no influence upon the equa­
tions of motion up to the sixth order. A straightforward calculation shows that 
this is true for y0m; that the addition of an arbitrary function ao,m does not 

3 

change the surface integrals that determine the equations of motion. But as 
has been shown before [3, p. 13] the choice of the coordinate system in ymni 

4 

Too, Ymo, has no influence upon the equations of motion of the sixth order. 
4 5 

But it will have influence upon the equations of motion of the eighth order. 
Therefore it is possible to use such a coordinate system for 70m, ymni 700, 70m» 

3 4 4 5 

so that the contributions to the surface integrals coming from A are zero. We 
8 

know [S], that such a coordinate system exists, though it would not be an 
easy task to find it explicitly. Similarly we can introduce such coordinate 
conditions in ymn, 700, 7mo that the contributions to the surface integral A 

6 6 7 10 

will be zero. Thus it is possible to regard the equations of motion that we ob­
tained before [2] as the exact equations of motion in a properly chosen coordinate 
system. We can get rid of all contributions to the surface integral beginning 
with A, but we can not get rid of A and A; these expressions, and also the 

8 4 6 

equations of motion up to the sixth order, are determined not by the choice of 
our coordinate system, but essentially by the procedure concerning the use of 
our new approximation method. 
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