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THE IDEAL BOUNDARIES AND GLOBAL GEOMETRIC

PROPERTIES OF COMPLETE OPEN SURFACES

TAKASHI SHIOYA

§ 0. Introduction

In this paper we study the ideal boundaries of surfaces admitting total

curvature as a continuation of [Sy2] and [Sy3], The ideal boundary of an

Hadamard manifold is defined to be the equivalence classes of rays. This

equivalence relation is the asymptotic relation of rays, defined by Busemann

[Bu]. The asymptotic relation is not symmetric in general. However in

Hadamard manifolds this becomes symmetric. Here it is essential that

the manifolds are focal point free.

In our previous paper [Sy2] we have constructed the ideal boundary,

equivalence classes of rays, of a surface admitting total curvature the

Gaussian curvature of which surface may change sign. Here, if a ray σ is

asymptotic to a ray T, then a and 7 are equivalent in our sense. The

existence of total curvature is essential to construct our ideal boundaries.

We have defined the metric on our ideal boundary, which coincides with

the Tits metric due to Gromov [BGS] if the surface is Hadamard. Each

connected component of the ideal boundary with the metric is either a

complete 1-manifold or a single point (see [Sy2], [Sy3] and also section 1).

Moreover we have proved in [Sy2] that the metric coincides with the

inner distances of the geodesic circles asymptotically, and that concerns

the asymptotic behavior of the Busemann functions (we review them in

section 1).

Let M be a finitely connected, oriented, complete and noncompact

Riemannian 2-manifold without boundary. The total curvature c(M) of M

is defined to be an improper integral I G dM of the Gaussian curvature
J M

G with respect to the area element dM of M. Throughout this paper we

assume that M admits total curvature. The ideal boundary M(oo) of M
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182 TAKASHI SHIOYA

consists of equivalence classes of rays and has the natural metric d^\ M(oo)

X M(oo) -» R U{oo} (we redefine them in section 1). We denote the class

of a ray 7 by 7(oo). One of our results is stated as follows.

THEOREM Al. For any rays σ and 7

lim WfhlWL = 2 sin ^in {cU^X r(oo)), π}
ί-oo t 2

where d is the distance function of M induced from the Riemannίan metric

of M.

Note that for any Hadamard manifold Theorem Al holds. On an

Hadamard manifold, the function f(t): = d(σ(t), ϊ(t))ι't is monotone nonde-

creasing since the sectional curvatures are nonpositive everywhere. The

monotonicity of / concludes that (see section 4.4, [BGS])

limflf) > 2 sin rmn{Td(σ(oo),ϊ(oo)),π} f

where Td is the Tits metric. However / is not necessarily monotone in

our case. Accordingly we need a delicate discussion as developed in the

proof of Lemma 2.2.

For a fixed simple closed smooth curve c in M we set the geodesic

circle by S(t) : = { p e M; d(p, c) = t} for t > 0. For a subset A of a metric

space (Xf p) we set Diam A : = sup {p(p, q); p, q e A}. Theorem Al leads to

the following theorem.

THEOREM A2. We have

lim D ί a m g(*) = 2 sin m i n {
t

Note that Diam M(oo) = (2πX(M) - c(M))/2 if M has only one end,

where X(M) denotes the Euler characteristic of M (see Theorem 1.5).

It is a well known fact (see section 4.7, [BGS]) that if X is an Hada-

mard manifold, then for any z, w e X(oo)

sup <£p (z, w) = min {Td(z, w), π},

where -^p(z, w) is the angle at p between two rays from p to z, w. In

our case we observe that this does not hold if M has a bumpy metric.

However we can see the asymptotic behavior of the angles as follows.

THEOREM Bl. Assume that 8t(M) > 2π for all i {we define the non-
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IDEAL BOUNDARIES 183

negative value st(M) for ί-th end in section 1). For any x, y e M(oo) and

for any sequence {pj} of points in M such that each subsequence of {pj}

diverges, let σj9 ϊ5 be rays emanating from pά such that σ/oo) = x and

r/oo) = y for all j . Then

lim sup Ĉ (σ/0), ϊ,(0)) < djx, y).

Note that the assumption that st{M) > 2π for all ί is indispensable

to Theorem Bl (see Remark 3.5).

THEOREM B2. For any rays σ and T let ϊt be a ray emanating from

σ(t) which is asymptotic to T. Then

lim <£ (σ(t), ϊt(0)) = min {dM™), r(oo)), π} .

Here Theorem B2 holds for any Hadamard manifold (see [BGS]).

For any x, y e M(oo) and for any subset B of M we set

<£ (x, y; B) : = sup{<5C (ό (0)? f(0)); σ and ϊ are rays emanating from

a common point in M — B such that σ(oo) = x and Γ(oo) = y}.

Then Theorems Bl and B2 imply the following

COROLLARY B3. Assume that st{M) > 2π for all ί. For any x, y e

M(oo) and for any p e M we have

lim Q(x,y; Bt(p)) = min {djjc, y), π},

where Bt(p) : = { g e M; d(p5 q) < t}.

In the final section we investigate the distribution of critical points

of Busemann functions. For a Lipschitz function f: M-+~R with Lipschitz

constant 1 and for p e M we set

Vp(f):= {ve TPM; there exists a sequence {pj converging to p

such that / is differentiable at each pt and v = lim Pf(Pi)},

where F/ is the gradient of /. A point peM is called a critical point of

a Lipschitz function /: M -> R with Lipschitz constant 1 if for any unit

vector u e TPM there exists a vector υ e Vp(f) such that (u, v} > 0. For

a ray r in M the Busemann function Fr: Λf->R is defined in [Bu] by
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Note that v e Vp(Fγ) if and only if the geodesic 11-> expp tυ is a ray asymp-

totic to 7. Here rays a and 7 are equivalent if σ(0) e Vp(Fr). We set

Crit(M) : = { p e M; p is a critical point of some Busemann function on M}.

Shiohama proved that if M has only one end and if 2πX(M) — c(M) < π,

then Crit(M) is bounded. We extend this to the following result.

THEOREM Cl. // st(M) Φ π for all i, then Crit (M) is bounded. In

particular, if M has only one end and if 2πX(M) — c(M) Φ π, then Crit(M)

is bounded.

Note that in the case where st{M) = π for some i, Crit (M) is not

necessarily bounded (see Remark 4.2). However we have the following

THEOREM C2. If the set {p e M; G(p) = 0} is compact, then Crit (M)

is bounded.

§ 1. Preliminaries

In this section we construct the ideal boundary of M and review the

results in [Sy2] and [Sy3]. Since M is finitely connected, there are a

closed 2-manifold N and different points eu , ek eN (we call them ends)

such that M is homeomorphic to N — {eu , ek}. Let ψ\ M-+N —

{ei> J ek} be a homeomorphism. For each end ei we define a set ^(et) of

closed half cyclinders in M by this condition: U e ^(e f) if and only if the

subset ψ{U)\J{ei} of Λ̂  is a closed disk and dU, the boundary of U, con-

sists of a simple closed smooth curve. According to Busemann [Bu] we

call an element of ^(e j a tube of M. For any domain D in M such that

3D consists of finitely many piecewise smooth curves which are parame-

trized positively relative to D, we denote by κ(D) the sum of integrals of

geodesic curvatures of 3D and of exterior angles of D at all vertices.

Then the Gauss-Bonnet theorem implies c(D) = 2πX(D) — fc(D), where

c(D): = ί GdM. If we set β«(M):= -c(U) - *c(U) for a tube £7e#(e4),
J D

then this is independent of the choice of U, and we have

2 S<(M) = 2τrZ(M) - c(M)

by the Gauss-Bonnet theorem. Here 0 < st(M) < + oo follows from Cohn-

Vossen's results (see [Col] and also 43, [Bu]). For any ray 7 in M a
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number n(ϊ) e{l, , k] is uniquely determined by lim^^ φoγ(t) = en(J). It

follows that for any Ue <%(en(J)) there is a subray of 7 contained in U. For

arbitrary given rays a} for j = 1, , m with (̂σ )̂ = i we choose a tube

U e ^(e j in such a way that

(a) each σ/O) is contained in M — Int(£7), where Int(A) denotes the

interior of a set A,

(b) each σ(tσj) is perpendicular to 9 U, where tσj : = sup{2 > 0; α<(0 6 9ί7}.

(c) for all different numbers j and / , σ3{[tσp oo)) does not intersect

0>(Kr, oo)) otherwise σl[tσp oo)) == σ̂ flA,.,, oo)).

We denote by (%βu...,β1Λ{
ei) the s e ^ °f a ^ tubes in ^(e j satisfying (a), (b)

and (c).

For arbitrary given rays σ and Γ we get a tube Z7e ^^^fe). By defini-

tion, 3 U consists of a simple closed smooth curve c. We assume that c is

parametrized positively relative to U and that tc is the geodesic curvature

of c. Let I(σ, ϊ) be the closed subarc of c from σ(ta) to Γ(ίr) and D(σ, ϊ)

the closed half plane in U bounded by σ([tσ, oo)) (j/(σ, r) Uf(lA, oo)). In the

special case where σ([tay oo)) = Γ([ίr, oo)), we set I(σ, ϊ) : = {σ(ίσ)} = {Γ(ίr)} and

D{σ, r) : = σ([^, oo)) = r([ίr, oo)). We often identify I(σ, ϊ) with the interval

cι(I{σf r)) and set

L(σ,ϊ):= -c(D(σ,r))~ f

which is independent of the choice of U by the Gauss-Bonnet theorem.

Here L(σ, ϊ) = 0 holds if o flΛ, oo)) = γ([tv oo)). We have the following

obvious proposition.

PROPOSITION 1.1. For any rays σ, τ and 7 such that n(σ) = n(τ) =

Λ(Γ) = : i and for any tube Ue%σ,XtΊ(ei), the following (1), (2) and (3) hold.

(1) L(σ,Γ)>0.

(2) If σ{[ta, oo)) ^ 7([tv oo)), ί/iβTi L(σ, r) + L(r, σ) - s,(M).

(3) If σ(tσ), τ(t) and 7(tr) lie on dU in this order, then L(σ, τ) + L(τ, 7)

= L(aj).

Here (1) follows from Cohn-Vossen's theorem (Satz 1, [Co2]).

Two rays a and 7 are called equivalent if n(σ) = n(7) and

min {L(σ, 7\ L(γ, σ)} = 0.

From Proposition 1.1 (3) this is an equivalence relation. We denote the

equivalence class of a ray 7 by 7(oo) and the set of all equivalence classes
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by M(oo).

From Proposition 1.1 (3) the value min {L(σ, ΐ), L(T, σ)} is independent

of two representative rays σ, ΐ chosen from the classes <τ(oo), Γ(oo) with

n(σ) = n(ϊ). We define the function cL: M(oo) x M(oo)-^R U{oo} by

min{L(σ, γ\ L(r, a)} if n(σ) = n(ϊ)

oo it 72((j) φ ϊύj) ,

then this becomes a distance function of Λf(oo) (see section 1, [Sy2]). We

call the metric space (M(co), cL) the idea/ boundary of M. If we set

Mi(oo) : = {Γ(oo) e M(CXD); γ is a ray in M with rc(r) = i} for i = 1, , A,

then dJJSi^oo), M/oo)) = oo for all different numbers ί, j and we have the

decomposition:

M(oo) = Af (oo) U l)Mk(oo).

For x e M(oo), the number n(x) is naturally defined and satisfies x e Mn{x)(oo).

This lemma follows from Cohn-Vossen's theorem (Satz 2, [Co2]).

LEMMA 1.2. Lei <x: R—•Λf 6β α piecewise smooth curve bounding a

closed half plane H such that σ(t): = a(a — t) and ϊ(t): = a(b + t) for t > 0

are rays for some constants a, b e R. We denote by dH the inner distance

of H and assume that dH(σ(t), ϊ(t)) > 2t — r for all t > 0 and for some

constant r > 0. Then

L(σfr)>π.

The following proposition is a direct consequence of Lemma 1.2.

PROPOSITION 1.3. For any straight line ϊ: R - + M we have d^iϊi— oo),

Γ(oo)) > π, where Γ(-oo)eM(oo) is the class containing a ray t*-*ϊ( — f).

In particular sn(r)(M) > 2π if M contains a straight line ϊ such that

The equivalence relation of rays and the ideal boundary have the

following properties.

THEOREM 1.4 (5.1, [Sy2]). If a ray a in M is asymptotic to a ray 7,

then σ and ϊ are equivalent.

THEOREM 1.5 (2.4 and 5.2 in [Sy2]). For each i, the following (1) and

(2) hold.

(1) // Si(M) = 0, then (Λff(oo), dj) consists of a single point.
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(2) // 0 <iSi(M) < +oo, then (M^oo), dj) is isometric to a circle with

the total length sf(M).

To describe (Mf(oo), αL) in the case where st(M) = + 00, we need some

notations. For a family {Iχ}xeA of closed intervals in R (possibly Iλ is a

single point or an unbounded interval) we set

S({Iλ}λeΛ):={(z,λ);zeIλ,λeA}

and define the distance function p of S({Iλ})λeΛ) by

]z — w\ iΐ λ = μ

oo

THEOREM 1.6 (A, [Sy3]). // st(M) = + 00, z/iera Z/iere ex/ste α family

{Iχ}xeΛ °f closed intervals in R such that (Λf4(oo), cL) is isometric to

It is an essential property that the value L(σ, 7) is equal to the length

of the arc {r(oo) e M(oo); r is a ray contained in D(σ, ΐ)}9 which joins σ(oo)

and 7(oo), for a fixed tube Ue ^^(e*), where i : = ^(σ) = n(ϊ).

For a fixed simple closed smooth curve c let S(t) be a geodesic circle

defined in section 0. Hartman [Ha] has proved that there exists a closed

and measure zero subset E of [0, 00) such that for any t e [0, 00) — E, S(i)

consists of simple closed piecewise smooth curves which breaks at finitely

many cut points from c. He has called a value in E an exceptional t-

value. Moreover Shiohama [Sh4] has proved that there exists an R > 0

such that for any t > R, S(i) is homeomorphic to the disjoint union of k

circles, where k is the number of ends of M. A ray 7 is called a ray

from c if d{ϊ(t), c) = t for all t > 0. We modify Lemma 3.1 in [Sy2] to the

following.

LEMMA 1.7 (3.1, [Sy2]). For any rays σ and 7 from c with n(σ) = n(7) = : i

and for any U e^a,r{eτ), we have

where L(ά) denotes the length of a curve a. In particular,

Um L ( S ( * ) Γ W ) - = Si(M) and lim - L ( S ( ^ - = 2πX(M) - c(M).
ί->oo t t-*oo t

Lemma 1.7 implies the following theorem.
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THEOREM 1.8 (5.3, [Sy2]). For any rays σ and ϊ from c, we have

), r(t)) = d M o o ) f r ( o o ) ) t

t

where dt is the inner distance of S(t).

Note that in Lemma 1.7 and Theorem 1.8 we assume that t is always

nonexceptional.

For arbitrary given rays σ and T with n(σ) = n(ϊ) — :ί we get a tube

Ue Wajiβi). We denote by d the inner distance of D(σ, ΐ) induced from

the Riemannian metric of M. A curve a: [0, I] -» D(σ, ϊ) is called a d-

segment if L(#) = d(a(0), a(l)). A curve τ\ [0, oo) -> M (resp. r: R -> M) is

called a d-rαy (resp. d-line) if any subarc of τ is a d-segment. Clearly

any ray contained in D(σ, ϊ) is a d-ray. Under these definitions we have

the following

LEMMA 1.9 (4.1, [Sy2]). If ϊt for t > tσ denotes a d-ray emanating from

σ(t) which is asymptotic to T, then

lim < (σ(t\ ft{t)) = min {L(σ, γ), π}.

We define the function F7: D(σ, r ) - > R by

Fr(x):=lim[t-d(x,r(t))].

Then this and the Busemann function have the following properties.

LEMMA 1.10 (4.3, [Sy2]). For any rays σ and ϊ with n(σ) — n(ϊ), we have

lim Fr°σ(tl

THEOREM 1.11 (5.5, [Sy2]). For any rays σ and 7 we have

lim F*oa® = cos min {djβ(<χ>)y r(oo)), π}.

2. The distance between two rays

Under the notations in section 1 we have the following lemma.

LEMMA 2.1. For any rays σ and T with n(σ) = n(r), we have

lim sup d(σ(t)j{t)) g g i n min {L(g, r), π}
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Proof. For each t > max {tσ, ΐ7} let at be a d-segment from σ(t) to ϊ(t)

and let Dt be a compact domain in D(σ> ϊ) bounded by I(σ, 7)Uσ([t<n t])U

T([t7, t])[Jat. Then {Dt} is a monotone increasing sequence. Here Dt is a

disk if at does not intersect /(σ, ϊ).

We consider the case where (JDt Φ D(σ, ϊ). Then at tends to a d-line

a. The triangle inequality implies that

Moreover the minimizing property of α shows that H: = D(σ, ϊ) satisfies

the assumption of Lemma 1.2. Hence we have L(σ, y) > π. The proof in

this case is completed.

Next we consider the case where U ΰ t = D(σ, ϊ). In this case, there

exists a number t0 such that at for each t > t0 does not intersect I(σ, 7).

The first variation formula implies that

•4- d(σ(t\ 7(t)) = cos θ{t) + cos ψ{t)
dt

for almost all t > t0, where θ(t), φ{t) denote the inner angles of Dt at σ(i),

7(t). Here we remark that d(σ(t)f ϊ(t)) is Lipschitz continuous by the triangle

inequality. Hence

lim sup jfc(*>> T(t)) ^ l i m s u p A-ά(σ(t)t r(t))

< lim sup [cos θ(t) + cos φ(t)]

< lim sup 2 cos .*<> + * 0 = l i m sup 2 sin *l i m sup 2 sin
2 ί-«» 2

On the other hand, the Gauss-Bonnet theorem implies that

c(Dt) = θ(t) + φ(t) — 7r — f teds

for all t ^ ίo Thereby

(*) Uσ, 7) - -c(D(σ, 7)) - f /eds = - l im c(A) - f teds

= l im [TΓ - tf(ί) -
£ — s o

Thus
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and L(σ, ϊ) < π. This completes the proof.

LEMMA 2.2. For any rays σ and T with n(σ) — n(Y), we have

ί-c t ~ 2

Proof. If L(σ, Γ) = 0, then Lemma 2.2 is obvious. Accordingly we

assume that L(σ, ϊ) > 0. Let at and Dt be as in the proof of Lemma 2.1.

Then by the above discussion, if U Dt Φ D(σ, ϊ), then the formula of Lemma

2.2 holds.

We consider the case where U Dt — D(σ, ϊ) holds. In this case, L(σ, ΐ)

< π follows from the formula (*). By Theorems 1.5 and 1.6 and by the

definition of d^, there is a ray τ such that L(σ, τ) = L(r, ϊ) = L(σ, ϊ)/2.

We will show that

lim inf Ά°®>m!> > Sin L(σ, r),

where at intersects r at a unique point m, for large t.

We define for every tube Uf e °UaJ(e^) contained in U, the correspond-

ing half plane Π(σ, ϊ) in D(σ, ϊ) and the inner distance d! of DV, T) by

the same manner. Since {at} diverges in D(σ, ϊ), we have

d(σ(t)} mt) = d'(σ(ί), mf)

for all sufficiently large t. Since there is a tube t/7 e ^.r^fe) contained

in C7, without loss of generality we may assume that Ue ^ίCttJ{e^.

Let {Kj} be a monotone increasing sequence of closed disk domains

with U Kj = D(σ, τ) such that each dK3 consists of a piecewise smooth

simple closed curve intersecting J(σ, ϊ). We denote by d3 the inner distance

of Cl(D(σ, τ) — K}), the closure of D(σ, τ) — Kj. Let s(t) be a number and

βjtt a d rsegment from σ(t) to τ(s(ί)) for large t such that L(j8ift) == dj(σ(t), r).

Let J5iιt be a disk domain bounded by I(σ, r) Uσ([ί,, Φ Ur([ίr, s(ί)]) UβJtt. We

denote by tf^(ί) the inner angle of Ejtt at σ(t) (see Figure 2.2.f).

If there exists a number jQ such that UtEjOit = D(σ, τ), then the first

variation formula and the Gauss-Bonnet theorem imply that

for almost all sufficiently large t and
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τ(s(t))

c(E3) = θjo(t) - £- - f
2 J/(«r,r)

for all sufficiently large £. Hence in this case, since at does not intersect

Kh for all sufficiently large t, we have d(σ(t), τnt) > L(βhΛ). Therefore

lim inf ^^li^hL > Π m inf -^SEh^L > l i m inf - ^ L(βjo>t) > lim inf cos θjo(t)

= cos I — + c(D((7, r)) + f teds] = sin L(σ, τ).
L 2 J/(α,r) J

Next consider the case where β3ιt for each j tends to some rfrray β3

at t-> oo. Since ^(0 tends to zero as Z—> oo, which follows from [Co2]

(see also Lemma 3.2), we observe by setting E3\— l)tE3tt that

c(D(σ, τ)) = lim c(^) = lim lim c(Ej;t) = lim lim [2τr - /c(^fί)]

= lim [TΓ - 4Ej)].

We denote by κ3 the sum of integrals of geodesic curvature of β3 and of

exterior angles at vertices of β3 relative to E3 and denote by ψj the inner

angle of E3 at lim^^ τ(s(t)). Then by the definition of κ(-),

t) = 2π — ψ, + Kj +
J Πσ,τ)

icds .

Hence

L(σ, r) = —c(D(σ, r)) — yeds = l im (TΓ — ψ , +

Since ^ > 0 and ψ3 < π/2 for each j , we have L(σ, r) > TΓ/2 and hence

L(σ, τ) = 7r/2. There exists a monotone and divergent sequence {t3} such

that

lim inf = 1 and
i-«

https://doi.org/10.1017/S0027763000003330 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003330


192 TAKASHI SHIOYA

because βj>t tends to βj as t-+ oo and l)Dt = D(σ, τ). Since diσitj), mt) ;>
L(βj,tj), we have

Thus in either case

jnf d(σ(t),mt)

In the same way we have

t-+~ t 2

These formulas complete the proof.

Remark 2.3. In the proof of Lemma 2.1 if θ(t), φ(t) are the inner

angles of Dt at σ{t), ϊ{t), then Lemma 2.2 and the formula (#) in the proof

of Lemma 2.1 imply

lim θ(t) = lim ψ{t) = ^ i { L ( ) }

Lemmas 2.1 and 2.2 imply the following

PROPOSITION 2.4. For any rays a and 7 with n(σ) = n(ΐ), we have

lim ^(h T(t)) _ 2 g i n min {L(σ, A π}
t 2

Proof of Theorem Al. For an arbitrary given monotone and divergent

sequence {tj} of positive numbers, let aj be a minimizing segment of M

from σ(^) to Γ(^). If there exists a subsequence {ak} of {^} such that ak

tends to a straight line a, then the triangle inequality implies that

lim d(σ(tk

and moreover d^^oo), Γ(oo)) > π by Proposition 1.3 and Theorem 1.4.

We consider the case where there exists a subsequence {ak} of {α̂ }

such that each subsequence of {arj diverges. Then it follows that n(σ)

~ n(ΐ). Take a tube Ue^a,r(en((r)). For each sufficiently large k, ak is

contained in one of the domains D(σy ϊ) and D(T, α). Without loss of
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generality we may assume that each ak is contained in D(σ, ΐ). Since

d{σ{tk\ r(tk)) = L(ak) = d(σ(tk), ϊ(tk)), we have

lim = 2 sin min {Lfc, r)
2

2 sin
tk 2

by Proposition 2.4. On the other hand if d! denotes the inner distance

of D(ΐ, σ\ then since d(σ(tk\ T(tk)) < d\σ(tk\ γ(tk))y we have

lim d^*>> rfa» ^ lim <^fa)> Γfa» = 2sin
*-~ tk ~~~ fc-« ίfc

Therefore min {L(σ, Γ), TΓ} < min {L(ϊ, a), π] and

lim dMtk)> r(tk)) - 2sin

By the arbitrariness of {tj} this completes the proof.

Proof of Theorem A2. There are sequences {σt} and {Γj of rays from

c such that GLOJ/OO), r{(oo)) tends to DiamM(oo). Moreover by Theorem

Al

lim inf D i a m S ^ ) > lim ^iffl> ^̂ (̂ » = 2 sin

Therefore

Ί . pDiamS(0 ^ o min {Diam Af(oo), π}
lim mi ^-~- > ^ sin ———— .

«*-« t 2
If Diam M(oo) = oo, then the triangle inequality implies

< 2 = 2 sin
t

Next we consider the case where Diam M(oo) < oo. Then M has

exactly one end. The triangle inequality implies that

Diam S(t) - Diam S(t') < 2(t - tf)

for all t > t' ;> 0. Moreover the set of nonexceptional ί-values is dense

in [0, oo). Hence there is a monotone and divergent sequence {tt} of non-

exceptional lvalues such that

lim sup J
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If Diam M(oo) = 0, then by Lemma 1.7

Km D i a m S ^ < lim L(S(ti)) = 2πX(M) - c(M) = 0.
i-* °° t$ i-+<χ> tι

Accordingly we assume that Diam M(oo) > 0. We get a pair of two points

Pi and Qi in S(^) such that d(pu qt) = Diam S(ti), and minimizing segments

ouϊi'. [0, ί j -> M from points in c to pu qt such that d(σi(t), c) = diϊjj), c)

= ί for all Z e [0, ί j . There is a subsequence {̂ } of {tt} such that σi? ΐά tend

to some rays σ, Γ. The triangle inequality implies that

Qj) < d(σ(tj), r(tj)) + d(Pj, σ(t3)) + d(qjf

and then we have

S U p

dtp,, σfe)) + l i m s u p

t

On the other hand, the assumption 0 < DiamM(oo) < oo implies that

M(oo) is isometric to a circle. Hence for any small ε > 0 there are four

different rays σ~, σ+, T' and r+ from c such that σ C D(σ~, σ+), ϊ C D(T~, r+),

L(σ", (τ+) < e/2 and L(Y", γ+) < ε/2. Then for all sufficiently large , ps e

D(σ', σ+) and q5 e D(r~, γ+) and hence

d(Pj, σ(tj)) < L(S(tj) Π D(σ-, σ+)) and d(qjt r(ts)) < L(S(t,) f) D(Γ, ϊ+)).

Therefore, by Theorem Al and Lemma 1.7

lim sup DiamS(0_ ^ 2 ^ min {d(σ(oo), r(co)), π} + ^ σ + ) + ^ r }

ί-oo t 2

< 2 sin

By the arbitrariness of ε > 0, this completes the proof.

§ 3. Asymptotic behavior of the angles

First we state a few lemmas used in the proof of Theorems Bl, Cl,

and C2. The following lemma is obvious by the Gauss-Bonnet theorem.

LEMMA 3.1. Let a and ϊ be rays with n(σ) = n{ϊ) = i and D a domain

in M bounded by pίecewίse smooth curves cu •• , c m (m > 1) such that
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ct(-a - t) = σ(t0 + t) and c,(a + t) = y(t, + t) hold for all t>0 and for

some constants a, t0, tt > 0 and c2, , cm are simple closed (see Figure 3.1.f).

= 2πX(D) - π - κ(D) - c(D),

,ϊ

ϊ(U) = c

Figure 3.1.f

We define the tangent cone by

Cp(υ, θ):={ue TPM - {0}; < (a, ι;) < θ)

for i; e TPM — {0}, 0 < θ < π/2. For a compact subset if of M and for a

point p in AT, we set

WP(K) := {σ(0) e SPM; a is a minimizing segment from p to a point in K],

where SPM denotes the set of all unit vectors in TPM.

The following lemma is a modification of Lemma 1.2 in [SST].

LEMMA 3.2 (1.2, [SST]). Let K be an arbitrary given compact subset of

M and ε> 0 be an arbitrary small number. There exists a radius R(K, ε)

> 0 such that for any peM with d(p, K) > R(K, e), we can choose vpe SPM

satisfying

Wp(K)aCp(vpyε).

The following lemma is due to Cohn-Vossen [Col].

LEMMA 3.3 ([Col]). Assume that s^M) > 0 for some i. For any com-

pact subset L of M there exists a tube U e ^(e^ such that M — U contains

K and is convex.

Note that if st(M) > 0, then any tube in ^(βέ) is expanding in the

sense of Busemann (section 43, [Bu]), which shows Lemma 3.3.

Let {pj} be an arbitrary given sequence of points in M such that
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φ(Pj) tends to a fixed end ejt where φ: M —> N — {eu , ek} is the homeo-

morphism as above. Let p and p' be constants such that 0 < p < + oo,

0 < p' < + oo, p < pf and p + p ~ s{(M). For each y we get arbitrary

different rays a$ and ^ emanating from p5 such that n(σ^) = n(Γj) == i,

p = L(< ,̂ r̂ ) and <o' = L(r,, σ,).

Note that all σ/oo) (resp. Γ/oo)) are not necessarily same.

We will investigate the asymptotic behavior of the angles <£ (σ/0), tj(O))

and prove Theorem Bl (resp. Cl and C2) under the condition p = djx, y)

< π (resp. p = 0). Choosing a subsequence of {py}, one of the following

cases occurs (we write the subsequence the same notation {Pj}).

Case 1: All subsequences of {OJ}, {ϊj} diverge. In this case, there

exists for a fixed tube U e °ll(e^ a number jQ such that σi U ϊ5 for each

>j\ is contained in U and bounds domains of U. By Lemma 3.1 we

can choose one of these domains, Djy such that

( * ) p = 2τrZ(Z),) - 7Γ - /r(^) - cίDj).

Case 2: £Jac/ι subsequence of {σj} diverges and {ϊj} converges to some

straight line ϊ. The existence of the straight line implies that s{(M) > 2π

by Proposition 1.3 and hence the assumption of Lemma 3.3 is satisfied.

We get a tube U e ^(e*) such that M — U is convex and each ϊ5 intersects

M — U. There exists a number j0 such that σ3 is contained in U for all

j > 7o We get an open half plane £)i for j > j0 in U which is a connected

component of U — (tf/tO, oo)) U ϊj([0, oo))) such that the equality (*) holds.

Case 3: {σ̂ } and {Γ̂ } converge to some straight lines σ and ΐ respectively.

In this case, <£ (^(0), 7/0)) tends to zero as j —> oo by Lemma 3.2.

The following lemma is the key to this and the next section.

LEMMA 3.4. In Cases 1 and 2 we denote by θj the inner angle of Ώ}

at pj. Then (1), (2) and (3) hold (see Figure 3.4.f).

(1) In Case 1 if dUΠCliDj) = 0 for all j , then

lim sup θj < p .
J-»OO

(2) Jrc Case 1 i/ 5?7c 01(2? )̂ /or all j , then

lim 0, = 2π — p'.

(3) 7M Case 2,
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Case 1: dUΠ Cl(D3) = Case 1:

ft

Case 2

Figure 3.4.f

lim sup Θj<Lp.

Proof of (1). By (*) we have

p = βj _ cφs)

for all sufficiently large j . For any positive ε there exists a compact subset

K oΐ U such that

f G+dM<ε,
J EΓ-ΛT

where G+(x) : = max{G(λ:), 0}. Since Dj does not intersect K for all suffi-

ciently large j , we have

c(Dj) < ε and hence θ3 < p + ε

for all sufficiently large j . This completes the proof of (1).

Proof of (2). For all sufficiently large j (*) implies that

Moreover c(D5) tends to c(U) by UZλ, = U. Hence
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lim θj = p + 2π + tc(U) + c(U) = 2π - p ,

because p + p = s^M). This completes the proof of (2).

Proof of (3). It suffices to show that there exists a subsequence {θk}

of {θj} such that

lim sup θk < p.

For a geodesic α: passing through M — U, we set

£(«):= α(inf{ί; α(*)eAf- t/}),

^(αf): - α(sup {ί α(*) e l - t/}).

By the convexity of M — U, ξ(7j) and ηiϊj) tend to f (γ) and ^(r) respec-

tively. The arc I} := Cl(Dj)Γ\dU is one of the two subarcs of dU joining

ξ(ϊj) and η(ϊj). There is a subsequence {Ik} of {7̂ } converging to a subarc

/ of dU, which joins ξ(ϊ) and 37(7*). We get an open half plane H in U

which is a connected component of Ό — ϊ((— 00, 00)) such that Cl(H)Γ\dU

= I. By (#), we have

c(Dk) = π- κ(Dk) - p.

For an arbitrary positive e, we get a compact subset K of U such that

ί G+dM<ε.
J JJ-K

Then

π - fc(Dk) - p = c(Dfc) < c(D fcΠiί) + ε < c(HΠK) + 2ε

for all sufficiently large £. This means that c(H) is a finite value. Thereby

we may assume that c(H Π K) < c(iJ) + ε (we replace K by a larger com-

pact set if necessary). Since 7 is a straight line, we have c(H) < —fc(H)

by Lemmas 1.2 and 3.1. Hence

7Γ- *r(D fc)- l o< -fc(H) + 3ε

for all sufficiently large k. On the other hand, it follows from the defini-

tion of ιc(') that fc(Dk) — (π — θk) tends to tc(H) and hence

κ{Dk) - π + θ k -

for all sufficiently large k. Therefore

θk < p + 4ε
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for all sufficiently large k. This completes the proof of (3).

Proof of Theorem Bl. Now, if dj^x, y) > π, then the inequality of

Theorem Bl is obvious. Accordingly, we assume that d^x, y) < π, and

set i: = n(x) = n(y). If there exists a subsequence {pk} of {pi} such that

φ(Pk) tends to an end different from et as k-+ oo, then σk and Γfc intersect

dU tor all sufficiently large £ and for a fixed tube Z7 6 ^(e {). Lemma 3.2

implies

lim <£ (drfc(O), f fc(0)) = 0 .

We consider the case where ψ(p3) tends to et. Set ^ : = d^x, y) and

p': = st{M) — p. Then the assumptions cL(x, y) < TΓ and ^(M) > 2π imply

0 < / o < τ r < / o / < + o o . If there exists a subsequence {pk} of {pj} such that

the assumption of Lemma 3.4 (1) or (3) is satisfied for {pk}, then since

), f fc(0)) < f̂c for all Λ, we have

(**) lim sup <£ (σfc(0), ffc(0)) < djx, y)

If there exists a subsequence {pfc} of {pj} such that the assumption of

Lemma 3.4 (2) is satisfied for {pfc}, then (#*) holds because 2π — p' = 2π —

Si(M) + p < p = cL(#, 3̂ ). If Case 3 occurs for some subsequence {pk} of

{Pj}, then <̂  (σfc(0), fk(0)) tends to zero. By the arbitrariness of {pj} this

completes the proof.

Proof of Theorem B2. If there is a monotone and divergent sequence

{tj} of positive numbers such that ϊtj tends to some straight line 7^, then

<£ (σ(tj), ϊtί(0)) tends to π as j —> oo by Lemma 3.2 and moreover d^iσioo), ϊ(oo))

> π by Proposition 1.3 and Theorem 1.4. The proof is completed in this

case.

Next we consider the case where {Ttj} diverges for any monotone and

divergent sequence {tj}. We get a tube Uetίa,r(et) and a monotone and

divergent sequence {t5} such that each ϊtj is contained in U. Without loss

of generality we may assume that each ϊtj is contained in D(σ, ϊ). It

follows from Lemma 1.9 that

lim Ĉ OK*), Ttj(ϋ)) = min {L(σ, ϊ), π} .

It suffices to show that min {L(σ, Γ), π} = min {^((7(00), 7(00)), π). Since

each Tt. is contained in D(σ, 7), there is a monotone and divergent sequence

{sk(j)}k depending on j such that for any k some minimizing segment from
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7tj(e) to 7(sk(j)) is contained in D(σ, 7) and hence d(7ίy(β), 7(sk(j))) = d(rt/e),

7(sk(j))), where ε is any fixed positive number. This implies that Froa(tj)

= Froσ(tj) for all y. Thus from Lemma 1.10 and Theorem 1.11

cos min {L(σ, 7), π} — lim -—r-^L^L =

= cos min {GL(<;(OO), Γ(OO)), π}.

This completes the proof.

REMARK 3.5. If s^M) < 2π for some i, then the inequality of Theorem

Bl does not necessarily hold.

Indeed we consider a surface M with 0 < s^M) < 2π which contains

a flat tube U e ^ ( e j . Since the tube U can be embedded in the Euclidean

3-space, we can choose a pair of rays a and β in U such that for any

s, t ;> 0 there are exactly two minimizing segment from a(s) to /3(£) contained

in U. For any 5 > 0 there are two different rays σs and 7S emanating

from a(s) which are asymptotic to β (see Figure 3.5.f).

We have σs(oo) = r,(<χ>) for each s > 0 by Theorem 1.4. Let Ds for s > 0

be a domain of U bounded by σsΌ78 such that Ds contains β, then {Ds}

is a monotone increasing sequence with UDS = [/. From Lemma 3.1, if

θs denotes the inner angle of D8 at α?(s), then for each s > 0

0 = 2πX(Ds) - π - κ(D) - c(D) = -2π - tc(U) + θg

and hence

θs = 2π - st(M)

because c(U) = 0. Since 0 < s«(M) < 2ΛΓ,
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< (σ,(0), ίf(0)) = min {8i(M), 2π - st(M)} > 0

for all s ;> 0, which contradicts the inequality of Theorem Bl.

§ 4. Critical points of Busemann functions

In Lemma 3.4 we assume that p = 0 and p' = s^M). Then we have

the following directly.

LEMMA 4.1. Lei {pj} be an arbitrary sequence of points in M such that

φ(Pj) tends to an end et as j —> oo and let σ3 and T3 be rays emanating

from Pj such that σj(oo) = Tj(oo) e Mt(oo) for each j . Then there exists a

subsequence {pk} of {pj} such that (1) or (2) holds.

(1) <ί( (σfc(0), ffc(0)) tends ίo zero as k —• oo.

(2) T7ιe sequence {pk} satisfies the assumption of Lemma 3.4 (2)

to 2π —

Note that st(M) < 2π holds whenever (2) occurs.

Proo/ o/ Theorem Cl. Suppose that Crit(M) is unbounded. Then

there is a sequence {pj} of points in Crit(Λf) such that φ(pj) tends to

some end et. Let aj be a ray such that p5 is a critical point of the

Busemann function Faj. For each j we get a ray <yj emanating from p j

asymptotic to as.

Now, suppose that s^M) = 0 or s^M) > 2ττ. We get an arbitrary

sequence {Tj} of rays such that each ϊj emanates from pj and is asymptotic

to (Xj. Then Lemma 4.1 implies that some subsequence of {<£ (<j/0), f̂ (0))}

converges to zero as j —> oo. This contradicts that every Pj is a critical

point.

Thus we consider the case where 0 < st(M) < 2π. Set

θ : = minfoίM), 2τr -

It follows that 0 < θ < π. We get three different vectors υ) e SPJM for

α = 0, 1, 2 such that υ) : = σ/0) and <̂  (uj, yj) == < (uj, υ)) = 6». Applying

Lemma 4.1 to σ̂  and every ray from ps asymptotic to ajf we obtain that

for any small ε > 0 there is a number j(ε) such that

VVj{Fa)d U Cp/ϋJ,e)

for each ./ ̂  jf(ε), where Vp(/) is as in section 0. Since p3 is a critical

point of Fap the sets Vp/Fβ,)Π C,/^, e) and VPJ(Faj)nCp/jή9 e) are nonempty
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for each j > j(ε) and we obtain θ > ττ/2 by the arbitrariness of ε > 0. Fix

a small ε > 0. We get two rays τi and ϊ'i for j > j(e) such that

f / 0 ) e W n C p > ; , e ) and ϊ/0) e VPj(Fa)Π CPj(v% ε).

Here {σy} and {Γj (resp. {σy} and {τ̂ }) are satisfy the assumption of Lemma

3.4 (2), hence all subsequences of these diverge. Therefore, for a fixed tube

Ue^iβi) there is a number jQ such that σ^ τ3 and T} for every; >./0 are

contained in U. For each j > jQ the set U — (σj U r̂  U Γy) consists of three

connected components. Choose one of these components containing dU

and denote it by D$. Let Es and F, be the closures of the other com-

ponents. Lemma 4.1 implies that the three inner angles of Dj9 DJDEJ

and DjUFj must tend to 2π — st(M) respectively, which is a contradiction.

This completes the proof of Theorem Cl.

Proof of Theorem C2. Suppose that s^M) = π for some ί and Crit(M)

is unbounded. Then there is a divergent sequence {pj} of points in Crit(M).

We may consider the case where Pj tends to the end et. Let {a^ be as

in the proof of Theorem Cl. Take an arbitrary small number ε > 0 and

vectors Vj e VPJ(Faj) for all j . Then by Lemma 4.1 there is a number j(e)

such that

VPJ(Fa) c CPJ(υj9 ε) U CPj{- υj9 ε)

for each j ^ j(ε). We get arbitrary rays σ3 and 7̂  for > j(ε) such that

dr/O) e VPj(Faj) Π Cp/i;,, ε) and ΐ/0) e yp/(Fβ/) D C P i (- u,, ε).

By Lemma 4.1, σ^UΓj for each sufficiently large j does not intersect dU

and bounds two domains of U for a fixed tube C76^(ef). Choose one of

these domains containing 5ί7 and denote it by Djt Denote the inner angle

of Dj sit Pj by θj. Since {Dj} satisfies the assumption of Lemma 3.4 (2),

the formula (*) in section 3 holds, that is,

0 = 0 , - 2π-

By the assumption of Theorem C2 and by U Dό = U, there is a number j0

such that the signs of the Gaussian curvatures at points in U — Dj are

same for every j >jQ. If the sign is positive, then c(Dj) < c(U) and hence

θj < 2π + κ(U) + c(U) = π for each j >j0. If the sign is negative, then

c(Dj) > c(U) and hence θj > π for each j > jf0. Thus, the arbitrariness of

{σj} and {Yj} yeilds that VPJ(Faj) is contained in an open half plane of
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TPM for all sufficiently large j, which contradicts that pj is a critical point.

This completes the proof of Theorem C2.

Remark 4.2. If s^M) = π for some i, then Crit(M) is not necessarily

bounded.

Indeed we consider the surface M as in Remark 3.5 with s,(Λf) = π.

Let a, β, σs and ϊs be rays in M as in Remark 3.5. Since <£ (σ/0), r5(0))

= 7τ, α(s) for all 5 > 0 are critical points of Fβ. This means that Crit(M)

is unbounded. Moreover we observe that Crit(M) contains a tube in Φ(e<).
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