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ON RAMIFICATION THEORY IN PROJECTIVE ORDERS, I1
SHIZUO ENDO

Let R be a commutative ring and K be the total quotient ring of R.
Let 3} be a separable K-algebra which is a finitely generated projective,
faithful K-module and 4 be an R-order in >!. We denote by Dy the
Dedekind different of 4 and by N, the Noetherian different of 4.

The purpose of this paper is to give the following results, as a con-
tinuation to [2].

(I) For any projective R-order A in a separable K-algebra X1, we have
trdz/ee(Dasr) = Nz

(II) (Dedekind different theorem) Let R be a Noetherian normal
domain with quotient field K. Let 3} be a separable K-algebra and 4 be a
projective R-order in 3YI. Then, for any prime ideal $ of 4, the following
conditions are equivalent:

(1) DA/R $ S'B'-
(2) [DyzF € (B N c(A))4.

(3) B is unramified over R.

Here we denote the center of 4 by ¢(4).

We remark that both (I) and (II) have been proved under some ad-
ditional assumptions ([1], [2], [4], [5], [8], etc.).

Our notation and terminology used in this paper are the same as in [2].

1. Let 4 be an R-algebra. Now we regard Hompg(4*, 4) as a left A*-
module by [(A1® #°)- k] (f) = ah(p- f) for h € Homg(4*, 4) and fe 4*. We
define the A°~homomorphism B,/ : 4° - Homg(4*, 4) by Buz(2 & ¢°) (f) = 2f(#)
for fe A*. Since [4°] = Ayz and Hompg(4*, 4)4 = Hom(,4*%, ,4), we have
Bur(Aur) S Hom (4%, 44).

Suppose that 4 is a finitely generated projective R-module. Then Bz
is evidently an isomorphism and therefore B4/z(A4z) = Hom(,4%, 44). Let
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{f:, 2:}1sism be a dual basis of 4 over R and define a,z: Homg(4*, 4)—> 4
by ayx(h) =3h(f:)2; for ke Homg4*, 4). Then we can easily see that
a4 r does nottdepend on the choice of the dual basis of 4, and we get the
following commutative diagram:

—
Aurr

j

Hom,(,4%, ;4)

BA/R ﬂ

A = > Hompg(A*, A)
k AR
4

Further suppose that 4 is a separable R-algebra which is a finitely
generated projective, faithful R-module. Then we have A* = A-trd, and
so the homomorphism 7 : Hom,(,4*, 4,4)— A defined by 7,x(k) = h(trdz)
is an isomorphism.

Lemma 1. Let A be a separable R-algebra which is a finitely generated pro-
Jective, faithful R-module. Then ayr-77ir = trdye, where c(A) denotes the center

of A.

Proof. For any commutative R-algebra S, we have XsQurs = Is%)a,,m,
7’59,“ = IS@TA/R and trd,gx®,1/c(3§,1) = Isgé)trd,,,cm. Therefore we see ayz*
72}z = trdyewn, if and only if, for any maximal ideal m of R, @sy/ry-7ik/em
= trd s/ct. Hence we may assume without loss of generality that R is a
local ring. Furthermore, if S is a commutative R-faithful R-algebra and if
a,g@,,/S-Tg%A/s = trds%,,/c(s%,,), then ayz-72le = trdyew. So we may further
assume that R is a separably closed, Henselian local ring ([6]). Then 4 is
of split type and we can write

=R OPR,D:+- DR, R;=R
and
A= M, (R)D M, (Re) D -+ « @ M,(R,)

where each M, (R;) denotes the total matric algebra of degree =, over R,.

Also we put lr=¢e;+ e+ ++ - +e, e, < R,.
For each k let {e{}} be the set of all matrix units of M,(R;). Then

we can easily see that {e¥ trdua,ryir, €%7}isisniisssn, forms a dual basis of
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M, (R;) over R, and, for any 2, € M,(Ry), trdy. ro/r(dx)= Z‘,e"‘)zke""

Furthermore we see that {e¥® trd,r, €} icizn,. 15jsn1565¢ fOrms a dual basis
of 4 over R. In fact, for any 2=2,+ + -+ + 2, 4 € M, (R;), we have

3 B trdusefaef = 31 2 rdys(efiadef:

k

= %} thrdnf,.k<1ek)/1e,,(e(k)3k)e(k)
,

= ; Rk = 1,
because trd r(efx)er = trduy. zy/r(e¥2;) and e e = €. Hence ayr:77}x(2)

= Z 2 e(k)'ze(k) ; Z e(k)lkem ; trdMnk(R,‘)/R,c(/zk) = trdyen(d). Thus asyr: 77
"‘trdA/c(A)

THEOREM 1. Let R be a commutative ring and K be the total quotient ring of
R. Let 3} be a separable K-algebra which is a finitely generated projective, faithful
K-module. Then, for any R-order A in 3, we have Nyr S trdyen(Dygr). Es-
pecially, if A is a projective R-order in 3}, Nyr = trdyen(Dazr) and Dyr S Cyrecn-

Proof. Hompg(4*, 4) can be regarded naturally as the submodule of
Homg (3%, X1). Then, by the definition of D, we have 73 x(Hom,(4*, 4))
vz Hence we get the following commutative diagram:

Dy O 3

QTZ/K
Ay r—=Hom(,4*, 14) &= Homg(s3*, £3)

3 8
2 L Homau(s*, )= Homy(SH*, 3) e 51

Dyr az/z\: qy
4 C Py

Since Bir(Ayr) S Homy(44*, 4) = 752(Dasr)y Naz = Cua(Aur) = azix * Bur(Aar)
C o T5ix(Dyr). By Lemma 1, ax/g-Tglx = trdsexy and so Nyz €
trdg/e)(Dyr).  Especially, if 4 is a projective R-order in Y, we have
BurlAur) =13 x(Dyr). Hence we obtain Ny = trdy/s)(Dar). Further, from
this it follows directly that Dz S Cyep. Thus our proof is completed.

2. In the rest of this paper we assume that R is a Noetherian normal
domain, in order to simplify our description. We should remark that the
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following results can be proved under weaker assumptions (cf. [2]).

Let K be the quotient field of R and 3} be a separable K-algebra.
Then, for any R-order A in ¥, we have trdy/ (4) € R and t.zpx(c(4)) € R
and so DS ASCyr If 4 is a projective R-order in 3], then the dis-
criminant d,z of 4 is a projective ideal of R.

LemmA 2. Let R be a Henselian normal local domain with maximal ideal p and
K be the quotient field of R. Let L be a commutative separable K-algebra and S
be a subring of L containing R which is integral over R and such that KS = L.
Let q be the Jacobson radical of S. Then we have ti x(q) S p, where ti/x denote
the trace of L over K.

Proof. Let S be the derived normal ring of S in L and q be the
Jacobson radical of S. Then §N S =4q, and therefore we may assume that
S is integrally closed. Since R is Henselian, we can write S=S5,® S, @ - - -
@S, where each S; is a Henselian normal local domain. Let q; be the
maximal ideal of S; and L; be the quotient field of S;. Then we have
=0+ q+ -+ +9 and tyk(q) = iﬁ_}lth,K(qi). Hence we may further sup-
pose that S is a Henselian normal local domain with maximal ideal q.

Let F be a Galois extension of K containing L and T be the derived
normal ring of S in F. Then T is also a Henselian normal local domain
and we see o(T)=T for any o€ Gal(F/K). Denoting by q’ the maximal

ideal of T, we have o(q’) = q’ for any ¢ < Gal(F/K). From this it follows
immediately that t;,.(@) S ¢’ N R =1p.

We give, as a generalization of [2], (2.8), ii),
PropoSITION 2. Let R be a Noetherian normal domain with quotient field K

and ) be a separable K-algebra. Then, for a projective R-order A in 33, the fol-
lowing conditions are equivalent:

(1) Cyr= 4.
(2) Dyr= 4.
(38) dyr=R.

(4) Nygr=c(d), i.e., A is separable over R.

Proof. The equivalences of (1), (2) and (3) are evident and the implica-
tion (4) =—> (1) has been shown (e.g. [2]). Hence we have only to prove (1)
=>(4). Clearly it suffices to prove this in case R is a local domain. The
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Henselization R of R is also normal and we can easily see R(;?C,,,R = Cs®4/8,
ﬁ(?DA,R = Diguz, f?@d,,/ﬂ = dseys and I?%)N,,/R = Nagwys. Therefore we
may assume that R is a Henselian normal local domain. However, in this
case, we can write ¢(4) =S;®S.® - - - @S, where each S; is a Henselian
local ring, and, putting 4; = Sic@)A for each i, we have A=4,® --- @ 4,,
Cur= Czllll?.® c o @Cuur Dyr = DAllR@ RN Dy, r, etc.. Hence we may
further suppose that ¢(4) is also a Henselian local ring.
Now suppose (1) (equivalently (2) and (3)). Then, by Theorem 1, we
- have trdy/e)(4) = trds/es)(Dar) = Nure However, since 4 is a projective
R-order in 3, trdy/x(4) = trds/x(Cyr) = R. Accordingly we get tesy k(Nasz)
=R. Let p be the maximal ideal of R and q bc the maximal ideal of
c(4). By Lemma 2, then, we have t.m/x(q) Sp. If Nyr=¥c(4), then
temyx(Nyr) € p, which is a contradiction. Thus we must have Ny = c(4).
This completes the proof of (1) = (4).

CorOLLARY 1. Let A be a projective R-order in a separable K-algebra Y.
Then any minimal prime divisor of Ny in c(A) is of height 1 in c(A4).

Proof. Let q be a minimal prime divisor of Nyr in ¢(4) and set
p=qnN R. By localizing and Henselizing R at p as in the proof of Pro-
position 2, we may suppose that R is a Henselian normal local domain with
maximal ideal p and that ¢(4) is a Henselian local ring with maximal ideal
q. Then N,z can be considered as a q-primary ideal of ¢(4). If we sup-
pose height.»q > 1, then, for any prime ideal p’ of height 1 in R, Nap/By
= (Nyg)pr = ¢(4y), and so day Ry = Rp, by Proposition 2. However, dg 5 is
an unmixed ideal of height 1 in R, because it is R-projective. Hence d /¢
=R. Again, by Proposition 2, we obtain N,z = ¢(4), which contradicts the
fact that Nz is g-primary. Thus q is of height 1 in ¢(4).

Let 4 be an R-algebra and P be a prime ideal of 4. Let us put p =%
N R and q=P N c(4). We say that P is unramified over R if Ap/PB4y is separ-
able over Ry/pRy and P4, = pA..

CoroLLARY 2 (Discriminant theorem). Let R be a Noetherian normal domain
with quotient field K and 3 be a separable K-algebra. Let A be a projective R-
order in ). Then, for any prime ideal p of R, the following conditions are
equivalent :

(1) durEyp.
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(2) Any prime ideal B of A such that p =P N R is unramified over R.

Proof. The condition (1) is equivalent to the condition that dayr, = Ry.
By Proposition 2 this is also equivalent to the condition that 4y is separable
over Ry, i.e., to the condition (2).

We now prove our main theorem in this paper. It should be remarked
that this is not included in [2], (3.6).

TrreoreM 3 (Dedekind different theorem). Let R be a Noetherian normal
domain and K be the quotient field of R. Let 3 be a separable K-algebra and A
be a projective R-order in 3. Then, for any prime ideal B of A, the jfollowing
conditions are equivalent:

(1) DyrE B
(2) [DurE &€ (B N c(M))4.
(3) B is unramified over R.

Proof. The implication (1) = (2) is obvious. Therefore it is sufficient
to prove (2)=>(38)=(1). We put p=B N R and q=P N ¢(4). Then we
may assume that R is a Henselian normal local domain with maximal ideal
p and that ¢(4) is a Henselian local ring with maximal ideal q.

(3)=>(1): Suppose that P is unramified over R. By virtue of [2],
(3.2), we have Nyr&q and so Nyz=c(4). According to Proposition 2,
then, Dy = 4, and therefore Dz € B.

(2)=>(3): Suppose that P is ramified over R. Again, by [2], (3.2),
we have Nyr<q. Now we shall prove [DyzE<q4. In order to prove
this we may further assume that q is a minimal prime divisor of Ny/z.
Therefore, by Corollary 1 to Proposition 2, we may assume that height.,q
= heightzp = 1. Now, by Theorem 1 and Lemma 2, we have trds/ (D)
cp. Since R is a discrete rank one valuation ring, we easily see p™'D,z
Cyr Consequently we get [Dy/zF S p4 < q4. This proves (2) = (3). q.e.d.
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