LINEAR FRACTIONAL TRANSFORMS OF COMPANION MATRICES

by N. J. YOUNG

(Received 25 November, 1977)
Questions about polynomials can be turned into questions about matrices by associating with the polynomial

$$
\begin{equation*}
p(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n} \quad\left(a_{n} \neq 0\right) \tag{1}
\end{equation*}
$$

(over an arbitrary field) its companion matrix

$$
T=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{2}\\
0 & 0 & 1 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
-a_{0} / a_{n} & -a_{1} / a_{n} & -a_{2} / a_{n} & \cdots & -a_{n-1} / a_{n}
\end{array}\right]
$$

which has p / a_{n} as its characteristic polynomial. This technique is often used in stability theory, as indicated in [1]; companion matrices also occur in the theory of the rational canonical form.

In the study of root location for polynomials a common device is the use of the linear fractional transformation

$$
\begin{equation*}
\phi(z)=(\alpha z+\beta) /(\gamma z+\delta) \quad(\alpha \delta-\beta \gamma \neq 0) . \tag{3}
\end{equation*}
$$

If one passes from p to the polynomial

$$
\begin{equation*}
q(z)=(-\gamma z+\alpha)^{n} p^{\circ} \phi^{-1}(z) \tag{4}
\end{equation*}
$$

one obtains a new polynomial q whose roots are the images under ϕ of the roots of p. Thus the matrix

$$
\begin{equation*}
\phi(T)=(\alpha T+\beta I)(\gamma T+\delta I)^{-1} \tag{5}
\end{equation*}
$$

provided it is defined, has the roots of q as its eigenvalues, and with the right multiplicities. However, $\phi(T)$ is not in general the companion matrix of q, as virtually any example will show. How, then, can one obtain the companion matrix of q from $\phi(T)$? It is a remarkable fact, proved by Shane and Barnett [1], that there is an $n \times n$ matrix M_{ϕ}, depending only on n and ϕ, such that $M_{\phi} \phi(T) M_{\phi}^{-1}$ is a companion matrix for every companion matrix T. The proof in [1] proceeds by laborious computation of entries: indeed, the complexity is such that at one point the authors carry out the calculation for $n=3$ and leave the reader to convince himself that the procedure works in higher dimensions. The purpose of this note is to provide a proof which is simple and at the same time shows how to obtain M_{ϕ} more directly than by the method of [1].

Glasgow Math. J. 20 (1979) 129-132.

N. J. YOUNG

Theorem. Let M_{ϕ} be the $n \times n$ matrix $\left[m_{i j}\right.$], where, for $i=1,2, \ldots, n$,

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i j} z^{i-1}=(\gamma z+\delta)^{n-i}(\alpha z+\beta)^{i-1} \tag{6}
\end{equation*}
$$

ϕ being given by (3). Then M_{ϕ} is non-singular and, for any companion matrix T such that $\gamma T+\delta I$ is non-singular, $M_{\phi} \phi(T) M_{\phi}^{-1}$ is again a companion matrix.

In fact (6) and (3) determine M_{ϕ} only up to a scalar multiple, but this is clearly unimportant.

We shall use tensor product notation: if P, Q are $n \times n$ matrices then $P \otimes Q$ denotes the $n^{2} \times n^{2}$ matrix which, written in block form, has $p_{i j} Q$ as the $n \times n$ block in the (i, j) position, where $P=\left[p_{i j}\right]$. It is also convenient to introduce the notation

$$
H(P)=\left[\begin{array}{c}
I \tag{7}\\
P \\
P^{2} \\
\vdots \\
P^{n-1}
\end{array}\right]
$$

so that $H(P)$ is of type $n^{2} \times n$.
The proof of the theorem is based on the following characterization of companion matrices.

Lemma. Let B be an $n \times n$ matrix whose minimal polynomial p is of degree n. An $n \times n$ matrix X is the companion matrix of p if and only if

$$
\begin{equation*}
H(B) B=(X \otimes I) H(B) \tag{8}
\end{equation*}
$$

The proof is immediate on writing down both sides of (8) in block form.
Proof of Theorem. Let T be a companion matrix such that $\phi(T)$ is defined, and write $B=\phi(T)$. One can see by considering the first row that the matrices I, T, \ldots, T^{n-1} are linearly independent, and since A and $\phi(A)$ have minimal polynomials of the same degree, for any A, it follows that B also has minimal polynomial of degree n.

Equation (8) implies in particular that

$$
H(T) T=(T \otimes I) H(T)
$$

and hence

$$
\begin{equation*}
H(T)(\alpha T+\beta \Gamma)=((\alpha T+\beta I) \otimes I) H(T) \tag{9}
\end{equation*}
$$

Replace α, β by γ, δ respectively, premultiply by $(\gamma T+\delta I)^{-1} \otimes I$ and postmultiply by $(\gamma T+\delta I)^{-1}$ to obtain

$$
H(T)(\gamma T+\delta I)^{-1}=\left((\gamma T+\delta I)^{-1} \otimes I\right) H(T)
$$

Combining this with (9), we have

$$
\begin{equation*}
H(T) B=(B \otimes I) H(T) \tag{10}
\end{equation*}
$$

From the definition of M_{ϕ} one has

$$
\begin{align*}
& \text { f } M_{\phi} \text { one has } \begin{aligned}
H(B)(\gamma T+\delta I)^{n-1} & =\left[\begin{array}{l}
(\gamma T+\delta I)^{n-1} \\
(\gamma T+\delta I)^{n-2}(\alpha T+\beta I) \\
\cdots \\
(\alpha T+\beta I)^{n-1}
\end{array}\right] \\
& =\left(M_{\phi} \otimes I H(T) .\right.
\end{aligned}
\end{align*}
$$

Since B commutes with $(\gamma T+\delta I)$, we have

$$
H(B) B=\left(M_{\Phi} \otimes I\right) H(T) B(\gamma T+\delta I)^{-n+1},
$$

and now (10) yields

$$
\begin{align*}
H(B) B & =\left(M_{\Phi} \otimes I\right)(B \otimes I) H(T)(\gamma T+\delta I)^{-n+1} \\
& =\left(M_{\phi} B \otimes I\right) H(T)(\gamma T+\delta I)^{-n+1} . \tag{12}
\end{align*}
$$

Suppose for the moment that M_{ϕ} is non-singular: then (11) tells us that

$$
H(T)(\gamma T+\delta I)^{-n+1}=\left(M_{\phi}^{-1} \otimes I\right) H(B),
$$

and, combining this with (12), we find that

$$
H(B) B=\left(M_{\Phi} B M_{\phi}^{-1} \otimes I\right) H(B)
$$

An application of the lemma now shows that $M_{\phi} B M_{\phi}^{-1}$ is a companion matrix, as was claimed.

It remains to show that M_{ϕ} is non-singular. This is most neatly accomplished by proving that $\phi \rightarrow M_{\phi}$ is a representation of GL(2). To see this write the definition (6) of M_{Φ} in the form

$$
M_{\phi}\left[\begin{array}{c}
1 \\
z \\
\vdots \\
z^{n-1}
\end{array}\right]=(\gamma z+\delta)^{n-1}\left[\begin{array}{c}
1 \\
\phi(z) \\
\vdots \\
\phi(z)^{n-1}
\end{array}\right] .
$$

Then, if $\phi^{\prime}(z)=\left(\alpha^{\prime} z+\beta^{\prime}\right)\left(\gamma^{\prime} z+\delta^{\prime}\right)^{-1}$, we have

$$
\begin{aligned}
& M_{\phi^{\prime}} M_{\phi}\left[\begin{array}{c}
1 \\
z \\
\vdots \\
z^{n-1}
\end{array}\right]=(\gamma z+\delta)^{n-1}\left(\gamma^{\prime} \phi(z)+\delta^{\prime}\right)^{n-1}\left[\begin{array}{c}
1 \\
\phi^{\prime} \circ \phi(z) \\
\vdots \\
\phi^{\prime} \circ \phi(z)^{n-1}
\end{array}\right] \\
= & \left\{\left(\gamma^{\prime} \alpha+\delta^{\prime} \gamma\right) z+\gamma^{\prime} \beta+\delta^{\prime} \delta\right\}^{n-1}\left[\begin{array}{c}
1 \\
\phi^{\prime} \circ \phi(z) \\
\vdots \\
\phi^{\prime} \circ \phi(z)^{n-1}
\end{array}\right]=M_{\phi^{\prime} \circ \phi}\left[\begin{array}{c}
1 \\
z \\
\vdots \\
z^{n-1}
\end{array}\right] .
\end{aligned}
$$

Thus $M_{\phi}, M_{\phi}=M_{\Phi^{\prime} \phi,}$, and it is easy to see that if $\phi(z)=z$, then $M_{\phi}=I$. It follows that M_{ϕ} is non-singular, and $\boldsymbol{M}_{\phi}^{-1}=\boldsymbol{M}_{\phi^{-1}}$ (to make this precise we should normalize by requiring $\alpha \delta-\beta \gamma=1$). This completes the proof of the theorem, and also shows how to obtain M_{ϕ}^{-1} easily: the entries in the i th row of M_{ϕ}^{-1} are the coefficients in the polynomial

$$
(\alpha \delta-\beta \gamma)^{-n+1}(-\gamma z+\alpha)^{n-i}(\delta z-\beta)^{i-1}
$$

We can re-state our conclusions in the following way. Write $\tilde{\phi}(X)=M_{\phi} \phi(X) M_{\phi}^{-1}$, whenever $\phi(X)$ is defined. The mapping $\phi \rightarrow \tilde{\phi}$ is an isomorphism of GL(2) onto a group of (non-linear) transformations of the space of $n \times n$ matrices which leaves invariant the set of companion matrices. When the field in question is \mathbf{C} the elements of the image group are bianalytic transformations.

Notice a special case: if $\phi(z)=1 / z$, then it is easy to see that M_{ϕ} is the matrix with ones on the principal cross-diagonal and zeros everywhere else. It follows that if T is the companion matrix of a polynomial p for which $p(0) \neq 0$ then T^{-1} is the matrix obtained by reversing the order of both rows and columns in the companion matrix of the polynomial $z^{n} p(1 / z)$. This fact can easily be checked directly.

REFERENCE

1. B. A. Shane and S. Barnett, On the bilinear transformation of companion matrices, Linear Algebra and Appl. 9 (1974), 175-184.

University of Glasgow
University Gardens
Glasgow
Scotland
G12 8QW

