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Questions about polynomials can be turned into questions about matrices by associat-
ing with the polynomial

(1)

(over an arbitrary field) its companion matrix

0 1 0 ••• 0

T = 0 0 1 ••• 0 (2)

which has p/cin as its characteristic polynomial. This technique is often used in stability
theory, as indicated in [1]; companion matrices also occur in the theory of the rational
canonical form.

In the study of root location for polynomials a common device is the use of the linear
fractional transformation

(3)

If one passes from p to the polynomial

(4)

one obtains a new polynomial q whose roots are the images under <f> of the roots of p.
Thus the matrix

<t>(T) = (aT+PD(yT+8I)-\ (5)

provided it is defined, has the roots of q as its eigenvalues, and with the right multi-
plicities. However, <}>(T) is not in general the companion matrix of q, as virtually any
example will show. How, then, can one obtain the companion matrix of q from <f>(T)l It is
a remarkable fact, proved by Shane and Barnett [1], that there is an nxn matrix A^,
depending only on n and <f>, such that A^^d^M^1 is a companion matrix for every
companion matrix T. The proof in [1] proceeds by laborious computation of entries:
indeed, the complexity is such that at one point the authors carry out the calculation for
n = 3 and leave the reader to convince himself that the procedure works in higher
dimensions. The purpose of this note is to provide a proof which is simple and at the same
time shows how to obtain M^ more directly than by the method of [1].
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THEOREM. Let M^ be the nxn matrix [m,,], where, for i = 1,2,. . . , n,

<f> being given by (3). Then
yT+8I is non-singular,

(6)

is non-singular and, for any companion matrix T such that
is again a companion matrix.

In fact (6) and (3) determine A^ only up to a scalar multiple, but this is clearly
unimportant.

We shall use tensor product notation: if P, Q are n x n matrices then P®Q denotes
the n2xn2 matrix which, written in block form, has p^O a s thenXn block in the (i,j)
position, where P = [ft,]. It is also convenient to introduce the notation

I

p
P 2 (7)

so that H(P) is of type n2xn.
The proof of the theorem is based on the following characterization of companion

matrices.
LEMMA. Let B be an nxn matrix whose minimal polynomial p is of degree n. An nXn

matrix X is the companion matrix of p if and only if

H(B)B = (X®I)H(B). (8)

The proof is immediate on writing down both sides of (8) in block form.

Proof of Theorem. Let T be a companion matrix such that <£(T) is denned, and write
B = <t>(T). One can see by considering the first row that the matrices I, T,..., T""1 are
linearly independent, and since A and <j>(A) have minimal polynomials of the same
degree, for any A, it follows that B also has minimal polynomial of degree n.

Equation (8) implies in particular that

H(T)T = (T(8)I)H(T)
and hence

H(T)(aT+/3I) = ((aT+0I)<g>7)H(T). (9)

Replace a, 0 by y,8 respectively, premultiply by ( Y T + S J ) " 1 ® ! and postmultiply by
(•yT+8/T1 to obtain

1 = ((7T+5I)-1 O I)H(T).

Combining this with (9), we have

(10)
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(11)

Since B commutes with (yT+8I), we have

H(B)B = (A^ ® I)H(T)B(yT+8r)-n+\

and now (10) yields
H(B)B = (M,, (8) T)(B <8> I)H(T)(yT+8iyn+1

= (M+B <8> 1)H(T)(7T"+ M) - - 1 .

Suppose for the moment that A^ is non-singular: then (11) tells us that

H(T)(yT+8r)-"+1 = (AC <8> I)H(B),

and, combining this with (12), we find that

H(B)B = (A^BM;1 ® DH(B).

(12)

An application of the lemma now shows that A^BAf^1 is a companion matrix, as was
claimed.

It remains to show that M+ is non-singular. This is most neatly accomplished by
proving that 4> -*• M^ is a representation of GL(2). To see this write the definition (6) of

in the form
1' 1 1

z

LZ
n-l

= (yz+8)n-l

Then, if <f>\z) = \ we have

1

2

LZ

= {(-/a + 8'y)z + y'p + 8'8}n~'
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Thus M4M4 = JV^o*. a nd it is easy to see that if <f>(z) = z, then M^, -1. It follows that
M+ is non-singular, and Mli = M4>-* (to make this precise we should normalize by
requiring a8 — /3-y = 1). This completes the proof of the theorem, and also shows how to
obtain M^1 easily: the entries in the ith row of M^1 are the coefficients in the polynomial

(a8 - /37rn+1(-72 + ctT-'iSz - /3)'-1.

We can re-state our conclusions in the following way. Write 4>{X) = M4,4>{X)M^,
whenever <fr(X) is defined. The mapping 4> —* <j> is an isomorphism of GL(2) onto a group
of (non-linear) transformations of the space of n x n matrices which leaves invariant the
set of companion matrices. When the field in question is C the elements of the image
group are bianalytic transformations.

Notice a special case: if <f>(z) = 1/z, then it is easy to see that M^ is the matrix with
ones on the principal cross-diagonal and zeros everywhere else. It follows that if T is the
companion matrix of a polynomial p for which p(0) ̂  0 then T"1 is the matrix obtained by
reversing the order of both rows and columns in the companion matrix of the polynomial
z"p(l/z). This fact can easily be checked directly.
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