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Abstract. First, we classify a real hypersurface of a non-flat complex space form
with (i) semi-parallel T(= £ξ g), and (ii) recurrent T . Next, we characterise a real
hypersurface admitting the generalised η-Ricci soliton in a non-flat complex space
form.
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1. Introduction. A complex n-dimensional Kaehler manifold of constant
holomorphic sectional curvature c is called a complex space form and is denoted
by M

n
(c). A complete and simply connected complex space form is a complex

Euclidean space Cn, if c = 0, a complex projective space Pn(C), if c > 0 or a complex
hyperbolic space Hn(C), if c < 0. Takagi [17, 18] first characterised all homogeneous
real hypersurfaces in Pn(C) into six model spaces A1, A2, B, C, D and E. Thereafter,
Cecil and Ryan [2] (see also [9]) studied extensively that when the structure vector field ξ

is principal and showed that they are realised as the tubes over certain submanifolds in
Pn(C) by using its focal map. On the other hand, Berndt [1] classified all homogeneous
real hypersurfaces in Hn(C) with ξ as principal vector and divided into four model
space A0, A1, A2 and B. Let M be a real hypersurface of a non-flat complex space form.
Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex
structure J. Many differential geometers studied real hypersurfaces of a complex space
form under various conditions on the Ricci tensor, the shape operator A (in the
direction of the unit normal of M), curvature tensor etc. For a real hypersurface of a
complex space form, we now define the tensor T by

g(TX, Y ) = (£ξ g)(X, Y ) = g((ϕA − Aϕ)X, Y ), (1)

for all vector fields X , Y tangent to M. A typical characterisation for a real hypersurface
M of type A in a complex space form M

n
(c) was given under the condition g(TX, Y ) =

0, for any tangent vector fields X and Y on M. Under this condition Okumura [15],
for c > 0, and Montiel-Romero [13], for c < 0 proved the following:

THEOREM A. Let M2n−1 be a real hypersurface in a non-flat complex space form. If
M satisfies Aϕ = ϕA, then M is locally congruent to real hypersurface of type A.

Let M be a real hypersurface of type A in M
n
(c). Then it follows from Theorem A

that M naturally satisfies ∇X T = 0. Thus, as a generalisation of Okumura’s condition
g(TX, Y ) = 0, for any tangent vector fields X and Y on M, here we consider the real
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hypersurfaces M of a non-flat complex space form M
n
(c) with semi-parallel tensor T

(i.e. R.T = 0, where R is the curvature tensor of M) and prove that such hypersurface is
the Hopf hypersurface and also locally congruent to one of type A in Pn(C) or Hn(C).
We also consider a real hypersurface of a non-flat complex space form with recurrent
T and prove that such hypersurface is locally congruent to one of type A in Pn(C) or
Hn(C). We discuss these issues in Section 3.

It is well known [5] that there are no real hypersurfaces with parallel Ricci tensor
in a non-flat complex space form M

n
(c) when n ≥ 3. This is also true for n = 2 as

was pointed out by Kim [7]. Since the Einstein manifold has parallel Ricci tensor, it
is easy to observe that there do not exist the Einstein real hypersurfaces in a non-flat
complex space form. For this Kon [10], studied and classified the pseudo-Einstein (that
is there exist constants λ, μ such that the Ricci tensor S satisfies S = λI + μη ⊗ η)
real hypersurfaces of a complex space form M

n
(c) when n ≥ 3. Recently, Kim–Ryan

[8] proved that every pseudo-Einstein hypersurface in P2(C) or H2(C) is the Hopf
hypersurface. Now we recall some classification theorems of the pseudo-Einstein type
real hypersurfaces in Pn(C) (see [2, 10]) or Hn(C) (see [12]).

THEOREM B. Let M2n−1 (n ≥ 3) be a real hypersurface of Pn(C) with Fubini-study
metric of constant holomorphic sectional curvature 4. Then M is pseudo-Einstein if and
only if M is locally congruent to one of the following:
(A1) A geodesic hypersphere of radius r, where 0 < r < π

2 .
(A2) A tube of radius r over a totally geodesic Pk(C) (1 ≤ k ≤ n − 2), where 0 < r < π

2

and cot2r = k
n−k−1 .

(B) A tube of radius r over a complex quadric Qn−1 and PnR, where 0 < r < π
4 and

cot22r = n − 2.

THEOREM C. Let M2n−1 (n ≥ 3) be a real hypersurface of Hn(C) with Bergman
metric of constant holomorphic sectional curvature −4. Then M is pseudo-Einstein if and
only if M is locally congruent to one of the following:
(A0) A horosphere.
(A1) A geodesic hypersphere or a tube over a complex hyperbolic hyperplane Hn−1(C).

Moreover, we remark that a tube over a totally geodesic Hl(C) (1 ≤ l ≤ n − 2) is
known as a A2-type hypersurface of Hn(C), n ≥ 3. Note that real hypersurfaces of
types A1 and A2 (without extra restriction cot2r = k

n−k−1 ) in Pn(C) and of types A0, A1

and A2 in Hn(C) are simply known as a real hypersurfaces of type A.
A Ricci soliton is a generalisation of Einstein metric and is defined on a

Riemannian manifold (M, g) by a vector field V and a constant λ

(£V g)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0, (2)

where £V denotes the Lie-derivative operator along V , S is the Ricci tensor of g
and X, Y are arbitrary vector fields on M. It can be viewed as a fixed point of
the Hamilton’s Ricci flow: ∂

∂t gij = −2Rij, as a dynamical system, on the space of
Riemannian metrics modulo diffeomorphisms and scalings. For details we refer to
Chow–Knopf [4]. Recently, Cho–Kimura [3] considered real hypersurfaces of a non-
flat complex space form that admits the Ricci soliton with V = ξ and proved that such
hypersurface does not exist. For this reason, Cho–Kimura [3] defined the so-called
η-Ricci soliton by taking V = ξ and adding an extra term μη ⊗ η in the left-hand side
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of (2), i.e.

1
2
£ξ g + S + λg + μη ⊗ η = 0,

for constants λ and μ. Under this assumption they proved that M is pseudo-Einstein
(or η-umbilical). Moreover, as a generalisation of η-Ricci soliton, one may consider
real hypersurfaces M of a complex space form M

n
(c) satisfying

1
2

(£ξ g)(X, Y ) + S(X, Y ) + λg(X, Y ) = 0, (3)

for all tangent vectors X , Y orthogonal to ξ and λ is constant. We call this a generalised
η-Ricci soliton. Note that there exist real hypersurfaces that admit a η-Ricci soliton and
hence generalised η-Ricci soliton. In fact, it is straight forward to see that any η-
umbilical real hypersurface of a complex space form admits such a structure. Thus, as
a generalisation of Cho–Kimura’s result we classify real hypersurfaces M of complex
space form M

n
(c) satisfying equation (3). We discuss this matter in Section 4.

2. Real hypersurfaces in a complex space form. In this section we recall some
basic equations and formulas that we shall use later on. For details about the real
hypersurfaces of a complex space form we refer to Niebergall–Ryan [14]. Let M be a
real hypersurface of a Kaehler manifold (M, J, g). For any vector field X tangent to
M, we put

JX = ϕX + η(X)ξ, (4)

JN = −ξ, (5)

where ϕ is a tensor field of type (1, 1), η is a 1-form and ξ is a unit vector field on
M. We denote the induced metric of M by g. From equation (4) it is easy to see that
(ϕ, ξ, η, g) gives an almost contact metric structure on M, that is

ϕ2X = −X + η(X)ξ, η(ξ ) = 1, (6)

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), (7)

for all vector fields X , Y on M. From these equations it is easy to see that ϕξ = 0 and
η ◦ ϕ = 0. The Gauss and Weingarten formulas for M are given by

∇X Y = ∇X Y + g(AX, Y ),∇X N = −AX,

where ∇ and ∇ are the Levi-Civita connection of M and M, respectively. Making use
of these formulas, equations (4) and (5) and ∇J = 0 (as M is Kaehler) it follows that

(∇Xϕ)Y = η(Y )AX − g(AX, Y ), (8)

∇Xξ = ϕAX, (9)

where A is the second fundamental tensor of M. Now we suppose that the Kaehler
manifold M = M(c) is a complex space form. Then we have the following Gauss and
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Codazzi equations:

R(X, Y )Z = c
4
{g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX − g(ϕX, Z)ϕY

−2g(ϕX, Y )ϕZ} + g(AY, Z)AX − g(AX, Z)AY, (10)

for any tangent vector fields X , Y , Z on M. From equation (10), we get

SX = c
4
{(2n + 1)X − 3η(X)ξ} + hAX − A2X, (11)

where h is the trace of A. If the vector field ξ is a principal curvature vector in a
non-flat complex space form, i.e. Aξ = αξ , then M is called the Hopf hypersurface of
M(c). Such hypersurfaces have some remarkable properties. Note that for c �= 0, α is
constant (see [6, 10, 11, 14]).

3. Real hypersurfaces with semi parallel T .

THEOREM 1. Let M be real hypersurface of a non-flat complex space form. If the
tensor T is semi-parallel, then M is locally congruent to a type A hypersurface.

Proof. By hypothesis, we have

R(X, Y )T − TR(X, Y ) = 0,

from which we get

g(R(X, Y )TZ, W ) − g(R(X, Y )Z, TW ) = 0. (12)

Setting Z = W = ξ the foregoing equation yields

g(R(X, Y )Tξ, ξ ) = 0. (13)

Now, from equation (1), Tξ = ϕAξ and hence equation (13) reduces to
g(R(X, Y )ϕAξ, ξ ) = 0. Thus, in view of this we obtain from equation (10)

c
4
{g(Y, ϕAξ )η(X) − g(X, ϕAξ )η(Y )} + g(AY, ϕAξ )g(AX, ξ )

− g(AX, ϕAξ )g(AY, ξ ) = 0.

Next, putting Y = ϕAξ and since g(AϕAξ, ξ ) = 0, the foregoing equation implies that

c
4

g(ϕAξ, ϕAξ )η(X) + g(AϕAξ, ϕAξ )g(AX, ξ ) = 0. (14)

Finally, taking X = ϕAϕAξ in equation (14) provides g(AϕAξ, ϕAξ ) = 0. Making use
of this in equation (14) and since M is non-flat, we see that ξ is principal, i.e. Aξ = αξ.

Utilising this and taking Y = Z = ξ in equation (12), we get TR(X, ξ )ξ = 0. Let X be
any principal vector orthogonal to ξ corresponding to the principal curvature λ, i.e.
AX = λX . Then R(X, ξ )Tξ = 0 since Tξ = 0. Also from the Gauss equation (10) it
follows that R(X, ξ )ξ = (αλ + c

4 )X . Thus,

0 = TR(X, ξ )ξ =
(
αλ + c

4

)
(Aϕ − ϕA)X,
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so that unless there is a principal curvature satisfying αλ + c
4 = 0, we are finished by

Theorem A. Suppose λ is such a principal curvature so that AX = λX and (Aϕ −
ϕA)X �= 0. The well-known properties of principal curvatures of Hopf hypersurfaces
(see [14, pp 245–246]) give a principal curvature μ such that AϕX = μϕX . Since
(Aϕ − ϕA)X = (μ − λ)X we have μ �= λ. This is a contradiction as the same argument
applied to μ and ϕX gives αμ + c

4 = 0. This completes the proof. �
REMARK 1. In [16], Pyo–Suh proved that a real hypersurface M of a non-flat

complex space form M
n
(c), n ≥ 2, satisfying £ξ R = 0 is of type A. We can prove this

result by applying Theorem 1. In fact, Lie differentiating the identity

g(R(X, Y )Z, W ) + g(R(X, Y )W, Z) = 0,

using £ξ R = 0 and (1), it follows that (R(X, Y )T)Z = 0.

Next we prove the following.

THEOREM 2. Let M be real hypersurface of a non-flat complex space form with
recurrent T. Then M is locally congruent to one of type A in Pn(C) or Hn(C).

Proof. By hypothesis T is recurrent, i.e. there exists a 1-form π such that

(∇X T)Y = π (X)TY, (15)

for all vector fields Y , Z on M. Clearly T is symmetric. Suppose T has a non-zero
eigenvalue σ , for otherwise T = 0 and by Theorem A, M will be congruent to one of
type A in Pn(C) or Hn(C). Let Y be a unit vector and TY = σY . Then by (15), we
have

π (X)g(TY, Y ) = g((∇X T)Y, Y ) = g(∇X (TY ), Y ) − g(∇X Y, TY ).

Using TY = σY the foregoing equation shows that

(Xσ )g(Y, Y ) + σg(∇X Y, Y ) − σg(∇X Y, Y ) = σπ (X)g(Y, Y ),

which, in turn, gives Xσ = σπ (X). Writing this consequence as dσ = σπ and operating
this by d (operator of exterior differentiation) and using the Poincaré lemma, d2 = 0,
we obtain

0 = d2σ = dσ ∧ π + σdπ = σ (π ∧ π ) + σdπ,

i.e. σdπ = 0. At this point we take an open set N of all points p of M such that
σ (p) �= 0. Then on N, dπ = 0, i.e.

(∇Xπ )Z = (∇Zπ )X. (16)

Now, for any X , Y and Z ∈ TpM and p ∈ N, by differentiating (15) covariantly with
respect to Z, we obtain

(∇Z∇X T)Y = {(∇Zπ )X}TY + π (Z)π (X)TY.

Interchanging Z and X we have

(∇X∇ZT)Y = {(∇Xπ )Z}TY + π (X)π (Z)TY.
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Making use of these equations, together with the Ricci identity and (16) we find that

R(X, Z)TY − TR(X, Z)Y = 0.

Therefore, following the proof of Theorem 1 it is easy to see that T = 0 and so σ = 0
on N. Thus, we arrive at a contradiction and hence ϕA = Aϕ. Using Theorem A, we
complete the proof. �

4. Generalised η-Ricci soliton.

THEOREM 3. Let M be real hypersurface of a non-flat complex space form admitting a
generalised η-Ricci soliton. If the tensor g(TX, Y ) of M vanishes for all X, Y orthogonal
to ξ , then M is pseudo-Einstein.

Proof. In view of equation (1), the hypothesis g(TX, Y ) = 0, for all X , Y
orthogonal to ξ implies g((Aϕ − ϕA)X, Y ) = 0, for all X , Y orthogonal to ξ , which is
equivalent to

ϕAϕ2X − ϕ2AϕX = 0,

for all X tangent to M. Operating this by ϕ and replacing X by ϕX , the foregoing
equation provides

(Aϕ − ϕA)X − g(AϕX, ξ )ξ + η(X)ϕAξ = 0. (17)

Since M admits a generalised η-Ricci soliton, equation (3) is equivalent to

g(∇ϕXξ, ϕY ) + g(∇ϕYξ, ϕX) + 2S(ϕX, ϕY ) + 2λg(ϕX, ϕY ) = 0 (18)

for all vectors X , Y tangent to M. Making use of equations (9) and (11), the foregoing
equation yields

ϕAϕ2X − ϕ2AϕX + ϕA2ϕX − hϕAϕX −
{

2λ + (2n + 1)c
2

}
ϕ2X = 0

for all vectors X tangent to M. Therefore, use of (6) the last equation entails that

(Aϕ − ϕA)X − g(AϕX, ξ )ξ + η(X)ϕAξ + ϕA2ϕX

− hϕAϕX − {2λ + (2n + 1)c
2

}ϕ2X = 0. (19)

Feeding equation (17) into (19) provides

ϕA2ϕX − hϕAϕX − {2λ + (2n + 1)c
2

}ϕ2X = 0. (20)

Operating equation (20) by ϕ we get an equation and replacing X by ϕX in equation
(20) gives another equation. Differentiating them yields

(ϕA2 − A2ϕ)X + g(A2ϕX, ξ )ξ − η(X)ϕA2ξ

+ h{(Aϕ − ϕA)X − g(AϕX, ξ )ξ + η(X)ϕAξ} = 0.
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Thus, in view of equation (17), the preceding equation shows that

(ϕA2 − A2ϕ)X + g(A2ϕX, ξ )ξ − η(X)ϕA2ξ = 0. (21)

In other words

g((ϕA2 − A2ϕ)X, Y ) = 0, (22)

for all tangent vectors X , Y orthogonal to ξ . Now, operating equation (17) by A gives

(A2ϕ − AϕA)X − g(AϕX, ξ )Aξ + η(X)AϕAξ = 0. (23)

Further, replacing X by AX , equation (17) transforms into

(AϕA − ϕA2)X − g(AϕAX, ξ )ξ + g(AX, ξ )ϕAξ = 0. (24)

Adding equation (23) with (24) and taking into account equation (22) it follows that

g(AX, ξ )g(ϕAξ, Y ) + g(ϕAξ, X)g(AY, ξ ) = 0, (25)

for all tangent vectors X , Y orthogonal to ξ . Since ϕξ = 0, the vector fields ϕ2Aξ

and ϕAξ are orthogonal to ξ . Therefore, if we replace X by ϕ2Aξ and Y by ϕAξ ,
then equation (25) shows |ϕAξ |4 = 0, which implies ϕAξ = 0, that is Aξ = αξ . This,
together with the hypothesis (g(Aϕ − ϕA)X, Y ) = 0, for all X , Y orthogonal to ξ

implies that Aϕ = ϕA. Moreover, using Aξ = αξ in equation (11), we see that Sξ = βξ ,
where β = c(n−1)

2 + hα − α2. Making use of equation (9), g(Aϕ − ϕA)X, Y ) = 0 in
equation (18), we find that

S(ϕX, ϕY ) + λg(ϕX, ϕY ) = 0.

Finally, replacing X by ϕX and Y by ϕY in the foregoing equation and since Sξ = βξ

we see that M is pseudo-Einstein. �
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