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On commutativity in certain rings

H. G. Moore

I.N. Herstein has shown that an associative ring in which the

nilpotent elements are "well-behaved", and such that every

element satisfies a certain polynomial identity, is commutative.

This result is generalized here. Specifically, it is shown that

an alternative ring R which satisfies the following three

properties is commutative:

(i) for x £ R , there exists an integer n(x) and a

polynomial p (i) with integer coefficients such that

xn+1p(x) = a? ;

(ii) for a fixed positive integer m , a a nilpotent and b

an arbitrary element of R , a - a commutes with

b - bm ;

(iii) for the same m , a and b , (ab+b)m = (ba+bf and

(abf = <Pbn .

Examples are given to show that all three properties are essential,

and it is shown that for associative rings certain modified

versions of these properties are individually enough to assure

that the commutator ideal of the ring is nil.

1. Introduction

The beautiful theorem of Jacobson, which generalized the classical

Wedderburn theorem on finite division rings, by proving that any
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associative ring in which x = x for all x , is a commutative ring

[3], has itself become the spring board for several generalizations; all

of these asserting that an appropriately conditioned ring is commutative

or nearly so. In particular, Herstein has shown that an associative ring

in which the nilpotent elements are "well-behaved" and such that every

element satisfies a certain polynomial identity, is commutative [2]. In

this paper Herstein1s result is generalized. Additional results are

obtained by modifying certain of the conditions of this generalization.

We show that in these cases the ideal C(R) generated by the commutators

xy - yx of elements of an associative ring R , is a nil ideal in R , so

that such a ring R is "almost commutative".

More specifically, we prove the following theorem, the case m = 1

of which recovers Herstein's theorem:

THEOREM 1. Let R be an alternative ring and let N be the set of

nilpotent elements of R . Let m be an arbitrary but fixed positive

integer. If, furthermore,

(i) for every x in R there exists an integer n = n{x) and a

polynomial p(t) = p {t) with integer coefficients such that

(ii) a £ N and b e R imply a - am commutes with b - bm ,

(iii) a e N and b € R imply (ab+bf = {ba+b)m and

(abf = a V ,

then R is commutative.

By means of counter examples we shall show that the deletion of any

one of hypotheses (i) , (ii), or (iii) in Theorem 1 is enough to destroy

commutativity in R (even if R is associative).

2. Comnutativity theorem

In preparing for the proof of Theorem 1, we establish the following

lemmas.

LEMMA 1. Let R be an alternative ring, and let m be a fixed
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positive integer. If, for any nilpotent element a of R and any

b e R , a - a commutes with b - bm , then the nilpotent elements of R

commute with each other.

Proof. Recall that by the Artin theorem any subring generated by any

two elements of an alternative ring R is associative. Denote the set of

nilpotent elements of R by N . Suppose a d N , b € R . Then b - bm

2 k-1 k
commutes with each of a-am>am-am,...,a -a , and hence

b - b commutes with the sum of these elements. Thus, b - b commutes

mk
with a - a for every positive integer k . Now, choose k so large

mk
that a = 0 . Then b - bm commutes with a . We have thus shown that

(1) a{b-bm) = [b-bm)a (a € N , b € R) .

2 r—1
Replacing b by b , bm , , b , and adding, we obtain

(2) a[b-bm J = [b-bm )a ( a € f f , Z > € i ? s r > l ) .

The lemma now readily follows from (2) upon choosing b £ N and r so

mT

large that b = 0 .

LEMMA 2. Let R be an alternative ring and let N be the set of

nilpotent elements of R . Let m be a fixed positive integer. If,

(i) a (. N and b (. R imply a - am commutes with b - bm ,

(ii) a € N and b d R imply (ab+b)m = (ba+bf and (abf = ambm ,

then every nilpotent element of R is in the center of R .

Proof. Let a £ N and let b be an arbitrary element of R . Then,

k k k
by (ii), (abf = ambm and hence (abf = a" bm for all positive

integers k . Therefore, a € N implies ab € N . Since

{ba)r = b(ab)r~Xa , it further follows that a € // implies ba i N . We

have thus shown that
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(3) a i N , b (. R imply that ab I N and ba (. N .

Now, by Lemma 1, it is easily seen that

(U) a f N , b € N imply that ab = ba ; and hence, a-b £ N .

Thus, by (3) and (it), we see that all products consisting of i a's

together with j b's in any order are equal provided that t ; 2 ,

a € N , b ( R .

Hence, for any a (• N , b € R , it follows that

m-1 . . m
(db+bf = bm + abm + I fc^-7- + I (".) Sb"1 ,

i=l i=2 V

m-1 . . m
{ba+bf = bm + bma+ I bzabm-* + j (!) alim .

Therefore,

(5) (afc+fc)m _ (fca+fo)m = abm - bma (a € N , b € i?) .

Thus, by (l) and (5) and hypothesis (ii),

ab - ba = 0 (a t It , b t R) ,

and the lemma is proved.

In the proof of Lemma 2 we have also proved the following:

COROLLARY. Let R , N , m be as in Lemma 2, and let (i) and (ii)

hold. Then N is an ideal in R . Furthermore, N (as a ring) is

commutative.

Next, we state Herstein's Theorem [2] which plays an essential role

in the proof of Theorem 1.

THEOREM 2. Let R be an associative ring such that for every

element x in R there exists a positive integer n = n(x) and a

polynomial p(t) = p (t) with integer coefficients such that

xn p{x) = xn . If, further, all the nilpotent elements of R are in the

center of R then R is commutative.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let a, b € R and let 5 be the subring of R
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generated by a and b . T3y Lemma 2, every nilpotent element of R is

in the center of R , hence, a fortiori this is true of S . Thus, by

Theorem 2, S is commutative so ab = ba , and Theorem 1 follows.

Theorem 2 is the case m = 1 of Theorem 1, when R is associative.

3. Remarks and examples

Consider the following examples which show that Theorem 1 need not

hold if any one of the hypotheses (i), (ii) , (Hi) is deleted, even if R

is associative.

EXAMPLE 1. Let R be the real quaternions, and let m be any

fixed positive integer. Here R satisfies (ii) and (Hi) but (i) fails

to hold. Moreover, R is not commutative. Thus, commutativity fails if

hypothesis (i) of Theorem 1 is deleted.

EXAMPLE 2. Let R and m be defined by

fF b cl 1
R = \ 0 a d ; a, b, a, d, ( GF(3H , m = 3 •

It is readily verified that R satisfies (i) and (iii) but not (ii).

Moreover, R is not commutative. Thus, commutativity does not

necessarily follow if hypothesis (ii) of Theorem 1 is deleted.

EXAMPLE 3. Let R and m be defined by

Here R satisfies (i) and (ii) but (iii) fails to hold. Since, moreover,

R is not commutative, hypothesis (iii) of Theorem 1 cannot be deleted.

It is worth observing that the ring R of Example 3 satisfies:

(x-x2)(y-y2) = 0 and (xy)2 = x2y2 for all x, y in R .

This, in turn, shows that the first condition in hypothesis (iii) of

Theorem 1 cannot be deleted even if both (ii) and the second condition in

(iii) were strengthened by assuming them to hold "globally" in R .

4. A modified condition (iii)

The importance of condition (iii) of Theorem 1 was demonstrated by
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Example 3. In this section we show that a condition like the first part

of ( H i ) will force the commutator ideal C(R) of an associative ring R

to be nil, and when R is semi-simple will force R to be commutative.

Let R be a ring which satisfies the following property:

Property P. R is associative, and for every pair a, b of

elements of R there exist positive integers m(a, b) and n(a, b) such

that

(ab+b)
m{a>b) = (ba+b)n{a>b) .

It is easy to see that no complete matrix ring M,(D) over a

division ring D (or over any associative ring, D , with unity)

satisfies Property P when k > 1 . As an example, let a be the matrix

unit Elk while b = (i. .) with b . = 1 , j < k , b±k = 0 and b.. = 0

i > 1 . Then (ab+b)n = b , and (ba+b) is idempotent.

If R has a unity, then R is a generalized commutative ring as

discussed by Bel luce, Herstein and Jain in [/], since in this case

Property P becomes

and if we set a = a + 1 , then as a and b run over R , so do e and

b . Therefore, from [/, Theorem 1] we have

LEMMA 3. If R is a division ring which satisfies Property V, then

R is cormtutative.

It is an easy matter to use the structure theory now, since

homomorphic images and subrings of rings which have Property P also have

this property, to obtain

THEOREM 3. If R is a semi-simple ring with Property V, then R

is cormtutative.

COROLLARY. Let R be a ring with Property V, J(R) its Jacobson

radical* and C(i?) its commutator ideal. Then C{R) £ J(R) .

The final result is then proved by adapting the proof of Theorem 3 of

[ J L We omit the details.
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THEOREM 4. Let R be an associative ring such that for each pair

a, b of elements of R there exist positive integers m = m(a, b) and

n = n{a, b) such that (ab+b)m = (ba+b)n . Then the commutator ideal of

R is nil.

5. Modification of condition (ii)

A modification of condition (ii) of Theorem 1 similar to that of the

previous section results in C(R) being nilpotent provided that the

associative ring R also satisfies the descending chain condition for

left ideals (d.c.c). The result is contained in the next theorem, where,

as before, J is the Jacobson radical, C the commutator ideal, and N

the set of all nilpotent elements of R .

THEOREM 5. Let R be an associative ring such that

(i) R satisfies the d.c.c.j

(ii) R/J is finite, and

(Hi) for each a £ N and fc f S there exist integers

n = n{a, b) > 1 and m = m(a, b) > 1 such that a - an

commutes with b - bm .

Then R/J is commutative; hence C(R) £ J and C(R) is nilpotent.

Proof. Since R satisfies the d.c.c, J is nilpotent. Therefore,

the ring R/J also satisfies part (iii) of the hypothesis of this

theorem. If R/J is a division ring, then, being: finite, it is

commutative by Wedderburn's theorem. Since in any case, R/J is

semi-simple and finite, it is the complete direct sum of complete matrix

rings M, (A.) over division rings A. . But for k. > 1 , such matrix
If

rings fail to satisfy (iii); yet they as direct summands must do so. To

see this, take a and b to be the elements of R/J whose i-th

components are the matrices E.,, and £,- , respectively, and for j' ̂  i

the components are 0 . Then a2 = i>2 = 0 , and ab % ba . Therefore,

R/J must be a direct sum of fields, and we have R/J commutative and

C{R) ̂ J . But J is nilpotent, so a fortiori C(R) is nilpotent as

desired.
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The well-known result that a finite ring with no non-zero nilpotent

elements is commutative is then, not only a corollary to Theorems 1 and 2,

but to Theorem 5 as well.

A slightly different modification of condition (ii) of Theorem 1

which does not need d.c.c. is

THEOREM 6. Let R be an associative ring with the property that

for each pair of elements a, b 6 R there exist integers m = m(a, b) > 1

and n = n(a, b) > 1 such that

(6) [<F-a){pn-b) = 0 .

Then the commutator ideal C{R) of R is nil and if R is semi-simple

[j(R) = 6) y it is commutative.

Proof. We note first that (6) implies [xm-x)2 = 0 for all x 6 R .

Again we use the structure theory for the proof. If R is a division

ring [x"-x]2 = 0 implies xm - x = 0 and commutativity follows from

Jacobson's Theorem.. If we take k > X the ring M,(D) fails to satisfy

(6) for if a = E±, and b = £,, then a2 = bz = 0 , so

(-a)(-b) = ab = Eu + 0 .

Since (6) is hereditary, any primitive ring which satisfies it is a

division ring; and, therefore, commutative. Thus, if R is semi-simple

(j(R) - OJ it is commutative.

Now R/J is commutative, for arbitrary R satisfying (6), so

C(R) 5. <7 . We show that for any a £ J , a2 = 0 , which will complete

the proof. Let a € J . Then (for a = b) a™'1 i J . Let c be the

right quasi-inverse for a"'1 . Since ((/-a)2 = 0

am-la2(am-l-l)2(c-l)2 = 0

2 =a2 = 0 .

This computation can be carried out formally if R fails to have a unity.

We conclude with the following corollary to Theorem 6.
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COROLLARY [added on 10 December 1969]. If R is any associative

ring satisfying (6)., then J{R) = N , the set of nilpotent elements of

R . Furthermore, J2 = N2 = 0 .

Proof. We have shown above that J(R) £ N . If a (. N , then from

(6) we have (a -a]2 = 0 . Let X "be the least integer such that

aX = 0 . Then X < 2 , since otherwise we multiply a - 2a"+ + a2 = 0

by a obtaining

(7) aM+X-3 - 2 a
m + 1 + X - 3

 + a
1'1 = 0 .

(if X = 3 we have (7) immediately from (6).) But (7) becomes a = 0

contradicting the minimality of X . Thus a2 = 0 for all a f N . Now

if a (. N and b is arbitrary, (ab-ba)2 = 0 ; whence,

(ab)2 + {ba)2 - ab2a = 0 .

Multiplying on the left by a gives

a(ba)2 = (ab)2a = 0 .

Whence, (a£>)3 = 0 ; so ab € N and ab is right quasi-regular for each

b £ R . Thus, a € J{R) and we have equality as desired. The last

statement of the corollary now follows immediately from (6).
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