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Abstract

Let G be the connected reductive group of type E7,3 over Q and T be the corresponding
symmetric domain in C27. Let Γ = G(Z) be the arithmetic subgroup defined by
Baily. In this paper, for any positive integer k > 10, we will construct a (non-zero)
holomorphic cusp form on T of weight 2k with respect to Γ from a Hecke cusp
form in S2k−8(SL2(Z)). We follow Ikeda’s idea of using Siegel’s Eisenstein series, their
Fourier–Jacobi expansions, and the compatible family of Eisenstein series.
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1. Introduction

Let G be the exceptional Lie group of type E7,3 over Q and T ⊂ C27 the corresponding
bounded symmetric domain. The purpose of this paper is to construct holomorphic cusp
forms on T from cusp forms for SL2 over Q. In [Ike01], Ikeda originally gave a (functorial)
construction of a Siegel cusp form for Sp2n (rank 2n) from a normalized Hecke eigenform
on the upper half-plane H with respect to SL2(Z) which has been conjectured by Duke and
Imamoglu. (Independently Ibukiyama formulated a conjecture in terms of Koecher–Maass series.)
He made use of the uniform property of the Fourier coefficients of Siegel Eisenstein series for
Sp2n over Q and together with various deep facts established in [Ike01] to prove the Duke–
Imamoglu conjecture. After this work, his construction was generalized to unitary groups U(n, n)
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[Ike08], quaternion unitary groups Sp(n, n) [Yam10], and symplectic groups Sp2n over totally
real fields [Ike, IH13]. Historically, in the case of Sp2, the resulting cusp form is called Saito–
Kurokawa lift, which has been studied thoroughly [Kur78, Pia83, CP88]. Our method follows
his construction. The main obstruction is the hugeness of E7,3. In the aforementioned works, the
theory of Jacobi forms has been understood well, since the Heisenberg group inside the group
in consideration is easy to handle. On the other hand, much less is known in the case of E7,3.
Therefore we have to consider a suitable Heisenberg subgroup in E7,3 which has not been studied.
To do this we analyze it in terms of roots.

We now explain our main theorem. We refer to the next section for the several notations
which appear below. Let Γ = G(Z) be the arithmetic subgroup defined by Baily in [Bai70] which
is constructed by using the integral Cayley numbers o. For a positive integer k > 10, let E2k

be the Siegel Eisenstein series on T of weight 2k with respect to Γ. Then it has the Fourier
expansion of form

E2k(Z) =
∑

T∈J(Z)+

a2k(T ) exp(2π
√
−1(T,Z)), Z ∈ T,

a2k(T ) = C2k det(T )(2k−9)/2
∏

p|det(T )

f̃pT (p(2k−9)/2),

where C2k = 215
∏2
n=0 (2k − 4n)/(B2k−4n), and f̃pT (X) is a Laurent polynomial over Q in X

which is depending only on T and p.
Let S2k−8(SL2(Z)) be the space of elliptic cusp forms of weight 2k − 8 > 12 with respect

to SL2(Z). For each normalized Hecke eigenform f =
∑∞

n=1 c(n)qn, q = exp(2π
√
−1τ), τ ∈ H

in S2k−8(SL2(Z)) and each rational prime p, we define the Satake p-parameter αp by c(p) =

p(2k−9)/2(αp + α−1
p ). For such f , consider the following formal series on T:

F (Z) =
∑

T∈J(Z)+

A(T ) exp(2π
√
−1(T,Z)), Z ∈ T, A(T ) = det(T )(2k−9)/2

∏
p|det(T )

f̃pT (αp).

Then we will show the following theorem.

Theorem 1.1. The function F (Z) is a non-zero Hecke eigen cusp form on T of weight 2k with
respect to Γ.

If f has integer Fourier coefficients, then F also has integer Fourier coefficients (Remark 9.2).
By virtue of Theorem 1.1, F = F (Z) gives rise to a cuspidal automorphic representation πF =
π∞⊗

⊗′
p πp of G(A). Then π∞ is a holomorphic discrete series of the lowest weight 2k associated

to −2k$7 in the notation of [Bou02] (cf. [Kna86, p. 158]). For each prime p, πp is unramified.

In fact, πp turns out to be a degenerate principal series Ind
G(Qp)
P(Qp) |ν(g)|2sp , where psp = αp. Then

for each local component πp, one can associate the local L-factor L(s, πp, St) of the standard
L-function of πF by using the Langlands–Shahidi method. Put L(s, πF , St) =

∏
p L(s, πp, St)

and let L(s, πf ) =
∏
p(1 − αpp−s)(1 − α−1

p p−s) be the automorphic L-function of the cuspidal
representation πf attached to f . Then we have the following theorem.

Theorem 1.2. The degree-56 standard L-function L(s, πF , St) of πF is given by

L(s, πF , St) = L(s, Sym3 πf )L(s, πf )2
4∏
i=1

L(s± i, πf )2
8∏
i=5

L(s± i, πf ),

where L(s, Sym3 πf ) is the symmetric cube L-function.
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This paper is organized as follows. In § 2, we fix notations on Cayley numbers and exceptional
Jordan algebras and review their properties. In § 3, we review the exceptional group of type E7,3

and prove many facts which are not available in the literature. In § 4, we define the Jacobi group
inside the exceptional group using the root subgroups, and recall Weil representations and theta
functions. In § 5, we review modular forms on the exceptional domain and define Jacobi forms
of matrix indices and study the Fourier–Jacobi coefficients of a modular form both in classical
setting and in adelic setting. In § 6, we review the result of Karel on Fourier coefficients of
Eisenstein series and interpret Eisenstein series in terms of degenerate principal series, following
[Kud08]. Section 7 is the main technical part, where we prove the analogue of Ikeda’s result
[Ike94], namely, the Fourier–Jacobi coefficients of Eisenstein series are a sum of products of
theta functions and Eisenstein series. In § 9, by following Ikeda [Ike01, Ike08], we construct a
holomorphic cusp form on the exceptional group of type E7,3. Our situation is similar to unitary
group case, in that we do not need to consider half-integral modular forms. In § 10, we review
the Hecke operators from Karel’s thesis [Kar72] and modify it to fit into representation theory.
Then we prove that our cusp form is a Hecke eigenform with respect to this modified action. The
degree-56 standard L-function helps us to speculate on the Arthur parameter of πF . We make
a brief remark on it at the end of § 11. In the Appendix, we compute the discriminant of some
quadratic forms and prove the orthogonal relation of theta functions we need.

2. Cayley numbers and exceptional Jordan algebras

In this section we will recall the Cayley numbers and the exceptional Jordan algebras. We refer
to [Bai70, Cox46, Kim93]. For any field K whose characteristic is different from 2 and 3, the
Cayley numbers CK over K is an eight-dimensional vector space over K with basis {e0 = 1, e1,
e2, e3, e4, e5, e6, e7} satisfying the following rules for multiplication:

(1) xe0 = e0x = x for all x ∈ CK ;

(2) e2
i = −e0 for i = 1, . . . , 7;

(3) ei(ei+1ei+3) = (eiei+1)ei+2 = −e0 for any i (modulo 7).

For each x =
∑7

i=0 xiei ∈ CK , the map x 7→ x̄ = x0e0 −
∑7

i=1 xiei defines an anti-involution of
CK . The trace and the norm on CK are defined by

Tr(x) := x+ x̄ = 2x0, N(x) := xx̄ =

7∑
i=0

x2
i .

The space of Cayley numbers CK is neither commutative nor associative. In spite of this, we
have

Tr(xy) = Tr(yx), Tr(xȳ) = Tr(x̄y), Tr((xy)z) = Tr(x(yz)).

We denote by o the space of integral Cayley numbers which is a Z-submodule of CK given by
the following basis:

α0 = e0, α1 = e1, α2 = e2, α3 = −e4,

α4 = 1
2(e1 + e2 + e3 − e4), α5 = 1

2(−e0 − e1 − e4 + e5),

α6 = 1
2(−e0 + e1 − e2 + e6), α7 = 1

2(−e0 + e2 + e4 + e7).

As shown in [Cox46], o is stable under the operations of the anti-involution, multiplication, and
addition. Further we have Tr(x), N(x) ∈ Z if x ∈ o. By using this integral structure, for any
Z-algebra R, one can consider CR = o⊗Z R.
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Let JK be the exceptional Jordan algebra consisting of the element

X = (xij)16i,j63 =

a x y

x̄ b z

ȳ z̄ c

 , (2.1)

where a, b, c ∈ Ke0 = K and x, y, z ∈ CK . In general, the matrix multiplication X · Y for two
elements X,Y ∈ JK does not belong to JK , but the square X2 = X · X always does. The
composition of JK is given by

X ◦ Y = 1
2(X · Y + Y ·X).

For the above X, we define the trace by Tr(X) := a + b + c, and define an inner product on
JK × JK by (X,Y ) := Tr(X ◦ Y ). Moreover we define

det(X) := abc− aN(z)− bN(y)− cN(x) + Tr((xz)ȳ)

and a symmetric tri-linear form (∗, ∗, ∗) on JK × JK × JK by

(X,Y, Z) := 1
6{det(X + Y + Z)− det(X + Y )− det(Y + Z)− det(Z +X)

+ det(X) + det(Y ) + det(Z)}.
Then we define a bilinear pairing JK × JK −→ JK , (X,Y ) 7→ X × Y by requiring the identity

3(X,Y, Z) = (X × Y,Z) = Tr((X × Y ) ◦ Z) for any Z ∈ JK .

In particular, for Xi, i = 1, 2 with entries as in (2.1), we have

X1 ×X2 =


b1c2+c1b2

2 − z1z2+z2z1
2 A B

A a1c2+c1a2
2 − y1y2+y2y1

2 C

B C a1b2+b1a2
2 − x1x2+x2x1

2

 , (2.2)

where A = (−c1x2 − c2x1)/2 + (y1z2 + y2z1)/2, B = (−b1y2 − b2y1)/2 + (x1z2 + x2z1)/2, and
C = (−a1z2 − a2z1)/2 + (x1y2 + x2y1)/2.

By using integral Cayley numbers, we define a lattice

J(Z) := {X = (xij) ∈ JQ | xii ∈ Z, and xij ∈ o for i 6= j},
and put J(R) = J(Z)⊗Z R for any Z-algebra R. Although the composition ‘◦’ does not preserve
the integral structure, the inner product (∗, ∗) does. Hence (J(R), J(R)) ∈ R. Then one can show
that the lattice J(Z) in JQ is the self-dual with respect to (∗, ∗), namely

J̃(Z) := {X ∈ JQ | (X,Y ) ∈ Z ∀Y ∈ J(Z)} = J(Z).

We also define J2(R) as the set of all matrices of forms

X =

(
a x

x̄ b

)
, a, b ∈ R, x ∈ CR.

Similarly we define the inner product on J2(R)× J2(R) by (X,Y ) := 1
2 Tr(XY + Y X). For any

such X, we define det(X) := ab−N(x). For X as above, r ∈ R, and ξ =
(ξ1
ξ2

)
, ξi ∈ CR (i = 1, 2),

it is easy to see that

det

(
X Xξ
tξ̄X r

)
= det(X)(r − tξ̄Xξ) = det(X)(r − (X, tξ̄ξ)) (2.3)
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which will be used later (§ 9). Henceforth we identify J2(R) with a subspace of J(R) by
(
a x
x̄ b

)
7→(

a x 0
x̄ b 0
0 0 0

)
.

We define
R3(K) = {X ∈ JK | det(X) 6= 0}

and define the set R+
3 (K) consisting of squares of elements in R3(K). It is known that R+

3 (R) is

an open, convex cone in JR. We denote by R+
3 (R) the closure of R+

3 (R) in JR ' R27 with respect
to Euclidean topology. For any subring A of R, set

J(A)+ := J(A) ∩R+
3 (R), J(A)>0 := J(A) ∩R+

3 (R).

We also define

J2(A)+ =

{(
a x

x̄ b

)
∈ J2(A)

∣∣∣∣ a, b ∈ A ∩ R>0, ab−N(x) > 0

}
,

and

J2(A)>0 =

{(
a x

x̄ b

)
∈ J2(A)

∣∣∣∣ a, b ∈ A ∩ R>0, ab−N(x) > 0

}
.

We define the exceptional domain as follows:

T := {Z = X + Y
√
−1 ∈ JC | X,Y ∈ JR, Y ∈ R+

3 (R)}

which is a complex analytic subspace of C27 . We also define

T2 := {X + Y
√
−1 ∈ J2(C) | X,Y ∈ J2(R), Y ∈ J2(R)+}.

3. Exceptional group of type E7,3

In this section we recall the exceptional group of type E7,3. Put J = JK where K is a field whose
characteristic is different from 2 and 3. Define two subgroups of GL(J) by

M = {g ∈ GL(J) | det(gX) = ν(g) det(X), for ν(g) 6= 0}
M′ = {g ∈M | ν(g) = 1}.

Then M is an algebraic group over Q of type GE6, and M′ is the derived group of M, which
is a simple group of type E6,2. The center of M′ is the group of cube roots of unity.

There is an automorphism g 7−→ g∗ of M of order 2 by the identity

(gX, g∗Y ) = (g∗X, gY ) = (X,Y ). (3.1)

Then g∗ is the inverse adjoint of g. It satisfies g(X × Y ) = (g∗X)× (g∗Y ).
Let G be the algebraic group over Q as in [Bai70]. Let X,X′ be two K-vector spaces, each

isomorphic to J, and Ξ,Ξ′ be copies of K. Let W = X ⊕ Ξ ⊕ X′ ⊕ Ξ′, and for w = (X, ξ,
X ′, ξ′) ∈W, define a quartic form Q on W by

Q(w) = (X ×X,X ′ ×X ′)− ξ det(X)− ξ′ det(X ′)− 1
4((X,X ′)− ξξ′)2,

and a skew-symmetric bilinear form { , } by

{w1, w2} = (X1, X
′
2)− (X2, X

′
1) + ξ1ξ

′
2 − ξ2ξ

′
1.
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Then

G(K) = {g ∈ GL(WK) | Qg = Q, g{ , } = { , }}.
This defines a connected algebraic Q-group of type E7,3. The center of G(R) is {±id} and the
quotient of G(R) by its center is the group of holomorphic automorphisms of T. The real rank
of G is 3, and it is split over Qp for any prime p.

The group M can be considered as a subgroup of G by defining the action

g(X, ξ,X ′, ξ′) = (gX, ν(g)ξ, g∗X ′, ν(g)−1ξ′).

Let N be the subgroup of all transformations pB for B ∈ J as in [Bai70]. Recall the definition.

pB

XξX ′
ξ′

 =

 X + ξ′B
ξ + (B,X ′) + (B ×B,X) + ξ′ det(B)

X ′ + 2B ×X + ξ′B ×B
ξ′

 .

The relative root system of G over Q is of type C3, and we denote the positive roots by {e1± e2,
e1 ± e3, e2 ± e3, 2e1, 2e2, 2e3}, and let ∆ = {e1 − e2, e2 − e3, 2e3} be the set of simple roots. We
describe their root spaces: for a positive root α, let Uα be the root subspace. For 1 6 i 6 j 6 3,
let eij is the 3 × 3 matrix with a 1 in the intersection of the ith row and jth column and zeros
elsewhere, and let ei = eii. Then for a, b, c ∈ K, x, y, z ∈ CK ,

U2e1 = {pae1}, U2e2 = {pae2}, U2e3 = {pae3}
Ue1+e2 = {pxe12}, Ue1+e3 = {pye13}, Ue2+e3 = {pze23}

Ue1−e2 = {mx̄e21 ∈ GL(J) : mx̄e21X = (I + xe12)X(I + x̄e21), X ∈ J}
Ue1−e3 = {mȳe31 ∈ GL(J) : mȳe31X = (I + ye13)X(I + ȳe31), X ∈ J}
Ue2−e3 = {mz̄e32 ∈ GL(J) : mz̄e32X = (I + ze23)X(I + z̄e32), X ∈ J}.

Remark 3.1. Note that we are using different ordering of roots from [Bai70]. In [Bai70], N
consists of root spaces of negative non-compact roots. However, it is more convenient to make it
correspond to positive roots so that it may correspond to the upper triangular matrices of the
form

(
In B
On In

)
in the Sp2n case.

Note the following:

m∗xeij = m−x̄eji .

Let H be the group generated by U2e3 and ιe3 , where ιei is the Weyl group element of 2ei, which
is given by ιei = peip

′
−eipei , where p′ei generates the root subspace of −2ei. Then H ' SL2. Let

ι = ιe1ιe2ιe3 . Then ι−1 = −ι, and p′B = ιp−Bι
−1 will generate the opposite unipotent subgroup

N of N. This ι plays the role of
(

0 In
−In 0

)
is Sp2n. Its action is given by

ι(X, ξ,X ′, ξ′) = (−X ′,−ξ′, X, ξ).

We define two maximal parabolic Q-subgroups:

P = MN, Q = LV,

where V is generated by Uα for α = e1±e3, e2±e3, e1+e2, 2e1, 2e2. Then P is the Siegel parabolic
subgroup associated to ∆−{2e3}, and Q is the parabolic subgroup associated to ∆−{e2− e3}.
Then V is the Heisenberg group, and the derived group of L is L′ = H× Spin(9, 1).
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Lemma 3.2. For g ∈M and pB ∈ N,

gpB = pB1g, B1 = ν(g)gB.

Proof. By explicit computation, we see that

gpB

XξX ′
ξ′

 =

 gX + ξ′gB
ν(g)(ξ + (B,X ′) + (B ×B,X) + ξ′ det(B))

g∗X ′ + 2g∗(B ×X) + ξ′g∗(B ×B)
ν(g)−1ξ′

 ,

pB1g

XξX ′
ξ′

 =


gX + ν(g)−1ξ′B1

ν(g)ξ + (B1, g
∗X ′) + (B1 ×B1, gX) + ν(g)−1ξ′ det(B1)

g∗X ′ + 2B1 × gX + ν(g)−1ξ′B1 ×B1

ν(g)−1ξ′

 .

By comparing coefficients, we see that B1 = ν(g)gB. 2

Denote the element of V = V(K) by

v(x, y, z) = mx̄1e31mx̄2e32 · py1e13py2e23 · pz,
where

x =

(
x1

x2

)
, y =

(
y1

y2

)
, z =

(
a w
w̄ b

)
,

where x1, x2, y1, y2, w ∈ CK and a, b ∈ K. We identified z with
(
z 0
0 0

)
in the definition of pz. Then

by using the above lemma, we can show that

v(x, y, z)v(x′, y′, z′) = v(x+ x′, y + y′, z + z′ − y(tx̄′)− x′(tȳ)). (3.2)

Now let
X = X(K) = {mx̄1e31mx̄2e32 ∈ V | x1, x2 ∈ CK},
Y = Y (K) = {py1e13py2e23 ∈ V | y1, y2 ∈ CK},
Z = Z(K) = {pz ∈ V | z ∈ J2(K)} ' J2(K).

(3.3)

We identify X (respectively Y ) with C2
K by mx̄1e31mx̄2e32 7→ x =

(
x1
x2

) (
respectively by

py1e13py2e23 7→ y =
(y1
y2

))
. Then we have the decomposition

V = V(K) = X · Y · Z. (3.4)

We hope that it is clear from the context when X,Y, Z denote the sets and when they denote
the elements of J = JK .

For any S ∈ J2(K), define trS : Z = {v(0, 0, z)} −→ K, trS(v(0, 0, z)) = 1
2(S, z). Since Z

is the center of V , Ker(trS) is a normal subgroup of V , and we may consider the quotient
V0 = V/Ker(trS).

Define the alternating form on X ⊕ Y by

〈(x, y), (x′, y′)〉S = Tr(S(x(tȳ′) + y′(tx̄)− x′(tȳ)− y(tx̄′))).

Consider the map gS : V −→ X ⊕ Y ⊕K defined by

v(x, y, z) = v(x)v(y)v(z) 7−→
(
x, y,Tr

(
1

2
Sz

)
+ Tr

(
S

2
(ytx̄+ xtȳ)

))
. (3.5)
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From (3.2), we see that gS(v(x, y, z)v(x′, y′, z′)) = (x+ x′, y + y′, z′′) where

z′′ = Tr

(
1

2
Sz

)
+ Tr

(
S

2
(ytx̄+ xtȳ)

)
+ Tr

(
1

2
Sz′
)

+ Tr

(
S

2
(y′tx̄′ + x′tȳ′)

)
+

1

2
〈(x, y), (x′, y′)〉S .

Since Ker(gS) = Ker(trS), if det(S) 6= 0 then we obtain the isomorphism

gS : V0 = V/Ker(trS)
∼−→ X ⊕ Y ⊕K. (3.6)

Next we compute the action of H(K) on V = V(K): recall that H(K) = 〈pbe3 , ιe3〉 ' SL2(K)
for b ∈ K. We identify γ =

(
a b
c d

)
∈ SL2(K) with the corresponding element in H(K) under the

isomorphism. Observe [Fre53] that

e3 ×X =
1

2

 b −x 0
−x̄ a 0
0 0 0

 , e3 × (e3 ×X) =
1

4

a x 0
x̄ b 0
0 0 0

 .

Then, for i = 1, 2,

ι−1
e3 pxei3ιe3 = m−x̄e3i , ι−1

e3 mx̄e3iιe3 = pxei3 . (3.7)

For 1 6 i 6 j 6 2, we have ι−1
e3 pxeij ιe3 = pxeij . Hence

p−1
be3
v(x, y, z)pbe3 = v(x, bx+ y, z − bxtx̄), ι−1

e3 v(x, y, z)ιe3 = v(−y, x, z + xtȳ + ytx̄).

Since p′ce3 = ιe3p−ce3ι
−1
e3 , and h(a) =

(
a 0
0 a−1

)
is identified with pae3p

′
−a−1e3

pae3ι
−1
e3 , we see that

p′ce3
−1
v(x, y, z)p′ce3 = v(x+ cy, y, z − cytȳ), h(a)−1v(x, y, z)h(a) = v(ax, a−1y, z).

Here h(a) ∈M, and ν(h(a)) = a; more explicitly,

h(a)(X, ξ,X ′, ξ′) = (X + (a− 1)(e3, X)e3, aξ,X
′ − (1− a−1)(e3, X

′)e3, a
−1ξ′).

Hence we have the following lemma.

Lemma 3.3. Let γ =
(
a b
c d

)
∈ H(K). Then γ−1v(x, y, z)γ = v(ax+ cy, bx+ dy, z′) where

z′ = z − 1
2((ax+ cy)t(bx+ dy) + (bx+ dy)t(ax+ cy)− xtȳ − ytx̄).

4. Jacobi group in E7,3, Weil representation, and theta functions

4.1 Jacobi group in E7,3

Let A be the ring of adeles of Q and Af its finite part. Let Ẑ be the profinite completion of Z.

For R = A,Af , Ẑ,Q,Qp,Zp, p 6∞, or any field R, one can consider X(R), Y (R), Z(R), V(R)
(analogues of (3.3) and (3.4)) by using CR and the action of H(R) ' SL2(R) on V(R) by using
the calculation done in § 3. Note that we may not get the identification H(R) ' SL2(R) for an
arbitrary ring R since this map is described in terms of the root system. (The interested readers
should consult the notion of Chevalley basis, cf. [Ste68].)

Now we introduce a new coordinate on V by modifying the group actions, and define the
Jacobi group in E7,3. For any x, y ∈ X(R) and S ∈ J2(R) so that det(S) 6= 0, we define

σ(x, y) := xtȳ + ytx̄, σS(x, y) := (S, σ(x, y)) and λS(x, y) := 1
2σS(x, y). (4.1)
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Clearly σ(x, y) ∈ J2(R) ' Z(R). A new coordinate v1(x, y, z) on V is defined by

v1(x, y, z) := v(x, y, z − σ(x, y)), x ∈ X(R), y ∈ Y (R) and z ∈ Z(R).

Then by (3.2), one has

v1(x, y, z)v1(x′, y′, z′) = v1(x+ x′, y + y′, z + z′ + σ(x, y′)− σ(x′, y)). (4.2)

The alternating pairing on X(R)⊕ Y (R) is modified as

〈(x, y), (x′, y′)〉S := 2(λS(x, y′)− λS(x′, y)) = σS(x, y′)− σS(x′, y), (4.3)

and X(R)⊕ Y (R)⊕R has the Heisenberg structure defined by

(x, y, a) ∗ (x′, y′, b) = (x+ x′, y + y′, a+ b+ 1
2〈(x, y), (x′, y′)〉S).

For any S ∈ J2(Z)+, the Heisenberg structure on V is modified by passing to gS (see (3.6) for
this map) as

g1,S : V(R) −→ X(R)⊕ Y (R)⊕R, v1(x, y, z) 7→ (x, y, 1
2(S, z)). (4.4)

Noting 1
2(σS(x, y′)− σS(x′, y)) = λS(x, y′)− λS(x′, y), it is easy to see that

g1,S(v1(x, y, z)v1(x′, y′, z′)) = g1,S(v1(x, y, z)) ∗ g1,S(v1(x′, y′, z′)),

or, equivalently, g1,S preserves the Heisenberg structures in both sides.
The action of H(R) on V(R) with the new coordinates now turn to be much simpler by

Lemma 3.3:

γ−1v1(x, y, z)γ = v1(ax+ cy, bx+ dy, z) for γ =

(
a b
c d

)
∈ H(R). (4.5)

By using this action, we define the Jacobi group in G(R) by

J(R) := V(R) o H(R) (4.6)

with the coordinates (v1(x, y, z), h(γ)), γ =
(
a b
c d

)
under the identification H(R) ' SL2(R).

4.2 Weil representation and theta functions
In this section we shall recall Weil representation and theta series (cf. [Ike94, § 1–3]).

For each place p 6=∞, put

ep(x) = exp(−2π
√
−1 · Frac(x))

for x ∈ Qp where Frac(x) stands for the fractional part of x. For p = ∞, put e(x) = e∞(x) :=
exp(2π

√
−1x) for x ∈ R. Fix a non-trivial additive character ψ : Q\A −→ C× and decompose

it as the restricted tensor product ψ =
⊗′

p6∞ ψp. As a standard example, one can take ψst :=⊗′
p6∞ ep(∗) which will be used later when we translate the adelic setting into the classical setting

and vice versa.
Fix S ∈ J2(Z)+. We denote by h(a) (respectively n(b)) the element of H(Qp) corresponding to(

a 0
0 a−1

)
, a ∈ Q×p (respectively

(
1 b
0 1

)
, b ∈ Qp) under H(Qp) ' SL2(Qp). Note that

(
0 1
−1 0

)
corresponds

to ιe3 ∈ H(Qp).
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For each place p 6 ∞, the Schrödinger model ωS,p on V(Qp) with the central character
ψp,S : z 7→ ψp(

1
2(S, z)), z ∈ Z(Qp) realized on the Schwartz space S(X(Qp)) is given by

ωS,p(v1(x, y, z))ϕ(t) = ϕ(t+ x)ψp(
1
2(S, z) + 2λS(t, y) + λS(x, y))

for ϕ ∈ S(X(Qp)) and v1(x, y, z) ∈V(Qp). Noting the multiplication law (4.2), it is easy to check

ωS,p(v1(x, y, z)v1(x′, y′, z′))ϕ(t) = ωS,p(v1(x, y, z))(ωS,p(v1(x′, y′, z′)ϕ(t))).

By the Stone–von Neumann theorem, ωS,p is a unique irreducible unitary representation on which
Z(Qp) acts by ψp,S .

Recall the conjugate action H(Qp) on V(Qp) (see (4.5)) and the alternating pairing (4.3).
This induces a homomorphism

H(Qp) ↪→ SpV/Z(Qp) := Sp(V(Qp)/Z(Qp), 〈∗, ∗〉S). (4.7)

Let S̃pV/Z(Qp) be the metaplectic covering of SpV/Z(Qp). This covering does not split, but

by [Kud94], one has a splitting H(Qp) ↪→ S̃pV/Z(Qp) so that the map (4.7) factors through
it via the covering map. The Schrödinger model ωS,p extends to the Weil representation of

V(Qp) o S̃pV/Z(Qp) acting on S(X(Qp)). Then the pullback to H(Qp) of this representation is
given by

ωS,p(h(a))ϕ(t) = χS(a)|a|8pϕ(ta), χS(a) := 〈disc(λS), a〉Qp
ωS,p(n(b))ϕ(t) = ψp(λS(t, t)b)ϕ(t)

ωS,p(ιe3)ϕ(t) = (FSϕ)(−t),

where 〈∗, ∗〉Qp stands for the Hilbert symbol on Q×p ×Q×p and

(FSϕ)(t) =

∫
X(Qp)

ϕ(x)ψp(λS(t, x)) dx,

where dx means the Haar measure on X(Qp) which is self-dual with respect to the Fourier
transform FS . Note that the index 8 of |a|8p in the first formula comes from the fact that
1
2 dimQp X(Qp) = 8 and we also use ν(h(a)) = a. Furthermore, we always have χS(a) = 1 since
disc(λS) is a square by Lemma A.1 in the Appendix.

The global Weil representation of ωS of J(A) acting on the Schwartz space S(X(A)) is given
by the restricted tensor product of ωS,p. In our setting, ωS is much simpler than that of the case
Sp2n (compare with [Ike01, § 1]): for ϕ ∈ S(X(A)),

ωS(h(a))ϕ(t) = |a|8Aϕ(ta), ωS(n(b))ϕ(t) = ψ(λS(t, t)b)ϕ(t), ωS(ιe3)ϕ(t) = (FSϕ)(−t),

where (FSϕ)(t) =
∫
X(A) ϕ(x)ψ(λS(t, x)) dx.

For each ϕ ∈ S(X(A)), the theta function ΘψS (v1(x, y, z)h;ϕ) on V(A) is given by

ΘψS (v1(x, y, z)h;ϕ):=
∑

ξ∈X(Q)

ωS(v1(x, y, z)h)ϕ(ξ)

=
∑

ξ∈X(Q)

ωS(h)ϕ(ξ + x)ψ

(
1

2
(S, z) + 2λS(ξ, y) + λS(x, y)

)
.
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It is easy to see that this function is invariant under the action of J(Q). By the equivalence of
the Schrödinger model and the lattice model (cf. [Tak96]), for any ϕ ∈ S(X(A)) one has the
Poisson summation formula which will be used later:

ΘψS (v1(x, y, z)(ιe3h);ϕ) = ΘψS (v1(x, y, z)h;ϕ). (4.8)

To end this section, we discuss the relation between the adelic theta function and the classical
theta function. For any ϕ′ ∈ S(X(Af )), we extend this function to an element ϕ of S(X(A)) by

ϕ((xp)p6∞) := ϕ∞(x∞)ϕ′((xp)p<∞), ϕ∞(x∞) = e−2π·σS(x∞,x∞).

Put X := X(R)⊗R C ' C⊕16 and let us extend the quadratic form σS linearly to that on X. For
each ϕ ∈ S(X(Af )), the classical theta function on D := H× X is given by

θSϕ(τ, u) :=
∑

ξ∈X(Q)

ϕ(ξ)e(σS(ξ, ξ)τ + 2σS(ξ, u)).

The group J(R) acts on D by

β(τ, u) :=

(
γτ,

u

cτ + d
+ x(γτ) + y

)
,

where β = v1(x, y, z)h with v1(x, y, z) ∈ V(R) and h = h(γ) ∈ H(R) corresponds to
(
a b
c d

)
∈

SL2(R). Here γτ = (aτ + b)/(cτ + d) and put j(γ, τ) := cτ + d for simplicity. For each positive
even integer k, the automorphy factor on J(R)×D is defined by

jk,S(β, (τ, u)) := j(γ, τ)ke

(
−(S, z) +

c

j(γ, τ)
σS(u, u)− 2σS(x, u)

j(γ, u)
− σS(x, x)(γτ)− σS(x, y)

)
,

for β = v1(x, y, z)h, h = h(γ) as above. After lengthy and painful calculation, one can check the
cocycle relation:

jk,S(ββ′, (τ, u)) = jk,S(β, β′(τ, u))jk,S(β′, (τ, u)).

For each function f : D −→ C and β ∈ V(R), we define the ‘slash’ operator f |k,S [β] : D −→ C
by

f |k,S [β](τ, u) := jk,S(β, (τ, u))−1f(β(τ, u)).

Then the following lemma is easy to deduce from the definition.

Lemma 4.1. Keep the notation above. For each ϕ ∈ S(X(Af )) and h(γ) ∈ H(R), γ ∈ SL2(R) :

(1) Θ(ψst
S )2(β;ϕ′) = θSϕ|8,S [β](

√
−1, 0) for any β ∈ J(R);

(2) θSωS(γ−1)ϕ(τ, u) = j(γ, τ)−8θSϕ(γ(τ, u)).

Lemma 4.2. Keep the notation above. Let ξ be an element of X(Q) so that σS(ξ, x) ∈ Z for all
x ∈ X(o) and ϕξ be the characteristic function of ξ +X(o). Then

Θ(ψst
S )2(v1(x, y, z)h;ϕξ) = Θ(ψst

S )2(v1(x∞, y∞, z∞)h;ϕξ).

Proof. One can decompose any element v1,f ∈ J(Af ) as v1,f = j1 · v′1 so that j1 ∈ J(Q) and

v′1 = v1(x′, y′, z′) ∈V(Ẑ). Since the sum defining this theta function runs over X(Q)∩(ξ+X(o)),
we see that ψst

S ((S, z′) + 2σS(a, y′) + σS(x′, y′)) = 1 for any a ∈ X(Q) ∩ (ξ + X(o)). Then the
claim follows from the left invariance of the theta function under J(Q). 2

For any (τ, u) ∈ D, there exist elements v1 ∈ V(R) and g∞ ∈ H(R) such that v1g∞(
√
−1, 0)

= (τ, u) since 1 and τ are independent over R. From this with Lemma 4.1(1), we make a bridge
between the adelic theta functions and the classical theta functions which will be focused in the
next section.
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5. Modular forms on the exceptional domain and Jacobi forms

We review the definition of modular forms on the exceptional domain T in [Bai70], and define
Jacobi forms for our Jacobi group and study their basic properties.

5.1 Modular forms on the exceptional domain
Let Γ = G(Z) be the arithmetic subgroup of G(Q) as in [Bai70], defined by G(Z) = {g ∈G(R) :
gWo = Wo}, where Wo = J(Z)⊕ Ze⊕ J(Z)⊕ Ze′, and e = (0, 1, 0, 0) and e′ = (0, 0, 0, 1).

Lemma 5.1. The arithmetic group Γ is generated by N(Z) and ι.

Proof. By [Bai70, Theorem 5.2], Γ is generated by N(Z) and N(Z), where N is the opposite
unipotent subgroup of N. Since N = ι−1Nι, the result follows. 2

Lemma 5.2. The arithmetic group Γ is generated by N(Z), M′(Z) and H(Z), hence by N(Z),
M′(Z) and ιe3 .

Proof. This follows from the above lemma and from the identities, ι = ιe1ιe2ιe3 , and ιe2 =
ϕ23ιe3ϕ

−1
23 , and ιe1 = ϕ13ιe3ϕ

−1
13 , where ϕij = meijm−ejimeij for i 6= j. 2

In [Bai70, Kar74, Kim93], for Z ∈ T and g ∈G(R), the action is defined by the right action:

Z · g = Z1, p′Zg = pAkp
′
Z1

for k ∈M(C) and Z1 ∈ H.
However, following the usual convention, it is more convenient to define the left action by

gZ = Z1, gpZ = pZ1kp
′
A for k ∈M(C) and Z1 ∈ T.

Let j(g, Z) = ν(k)−1 be the canonical factor of automorphy. Then j(g, Z) has the following
properties:

j(pB, Z) = 1 for all B ∈ JR, j(ι, Z) = det(−Z), j(g1g2, Z) = j(g1, g2Z)j(g2, Z).

If J(Z, g) is the functional determinant of g at Z, then J(Z, g) = j(g, Z)−18. By Lemma 3.2, if
k ∈M(R), kZ is just the transformation ν(k)(kX + kY

√
−1), where Z = X + Y

√
−1, and for

kX and kY , k is considered as an element of GL(J), and j(k, Z) = ν(k)−1.

Definition 5.3. Let F be a holomorphic function on T which for some integer k > 0 satisfies

F (γZ) = F (Z)j(γ, Z)k, Z ∈ T, γ ∈ Γ.

Then F is called a modular form on T of weight k. We denote byMk(Γ) the space of such forms.
For a holomorphic function F : T −→ C, the boundary map Φ is defined by

ΦF (Z ′) = lim
τ→
√
−1∞

F

(
Z ′ ∗
t∗̄ τ

)
,

where Z ′ ∈ T2. We call Sk(Γ) := Ker(Φ)∩Mk(Γ) the space of cusp forms of weight k with respect
to Γ. We should remark that there is only one equivalent class of cusps since G(Q) = P (Q)G(Z)
[Bai70, Theorem 5.2].

Since F (Z+B) = F (Z) for B ∈ J(Z) and J(Z) is self-dual, F has a Fourier expansion of the
form

F (Z) =
∑

T∈J(Z)>0

a(T )e((T,Z)). (5.1)

By the Koecher principle, we do not need the holomorphy at the cusps.
If F is a cusp form, then a(T ) = 0 for T /∈ J(Z)+.
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5.2 Jacobi forms of matrix index

We define and study Jacobi forms of matrix index on D = H× X in the classical setting. Set

ΓJ := J(Q) ∩G(Z).

Definition 5.4. Let k be a positive (even) integer and S be an element of J2(Z)+. We say a

holomorphic function φ : D −→ C is a Jacobi form (respectively Jacobi cusp form) of weight k

and index S if φ satisfies the following conditions:

(1) φ|k,S [β] = φ for any β ∈ ΓJ ;

(2) φ has a Fourier expansion of the form

φ(τ, u) =
∑

ξ∈X(Q),N∈Z

c(N, ξ)e(Nτ + σS(ξ, u)),

where c(N, ξ) = 0 unless Sξ,N :=
( S Sξ
tξ̄S N

)
belongs to J(Z)>0 (respectively J(Z)+).

We denote by Jk,S(ΓJ) (respectively Jcusp
k,S (ΓJ)) the space of Jacobi forms (respectively Jacobi

cusp forms) of weight k and index S.

Define the dual of the lattice Λ := X(Z) = o2 with respect to the quadratic form σS by

Λ̃(S) = {x ∈ X(Q) | σS(x, y) ∈ Z ∀y ∈ Λ}.

If S ∈ J2(Z)+, then the quotient Λ̃(S)/Λ is a finite group. Fix a complete representative Ξ(S) of

Λ̃(S)/Λ and denote by ϕξ the characteristic function ξ +
∏
p<∞X(op) ∈ S(X(Af )). Any Jacobi

form turns to be the sum of products of elliptic modular forms and theta functions by following

lemma.

Lemma 5.5. Assume S ∈ J2(Z)+. Let Ξ(S) be a complete representative of Λ̃(S)/Λ. Then any

φ ∈ Jk,S(ΓJ) has an expression of the form

φ(τ, u) =
∑

ξ∈Ξ(S)

φS,ξ(τ)θSϕξ(τ, u), φS,ξ(τ) =
∑
N∈Z

N−σS(ξ,ξ)>0

c(N, ξ)e((N − σS(ξ, ξ))τ).

Furthermore, for each ξ ∈ Ξ(S), φS,ξ(τ) is an elliptic modular form of weight k − 8.

Proof. See [Kri96, § 2, example (iv)] and also the argument in [Ike01, p. 656]. 2

Let k be a positive even integer and F be a modular form of weight k on T. Then we have

the Fourier–Jacobi expansion

F

(
W u
tū τ

)
=

∑
S∈J2(Z)>0

FS(τ, u)e((S,W )), W ∈ T2, τ ∈ H and u ∈ X(R)⊗R C. (5.2)

Lemma 5.6. Keep the notation above. Assume S ∈ J(Z)+. Then FS(τ, u) ∈ Jk,S(ΓJ).

Proof. It is easy to see that FS(τ, u) =
∑

T∈J+S
a(T )e(cτ)e((T, tv̄u)), where J(Z)+ is the set of

T =
(
S v
tv̄ c

)
∈ J+. Then the claim follows from the argument at [Ike01, p. 656]. 2
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Remark 5.7. Consider any holomorphic function F (Z), Z =
(
W u
tū τ

)
,W ∈ T2, τ ∈ H, and u ∈

X(R)⊗RC on T which is invariant under Γ∩P (Q). Then one has the Fourier and Fourier–Jacobi
expansion

F (Z) =
∑

T∈J(Z)>0

AF (T )e((T,Z)) =
∑

S∈J2(Z)>0

FS(τ, u)e((S,W )),

as in (5.2). By the proof of Lemma 5.5,

FS(τ, u) =
∑

ξ∈Ξ(S)

FS,ξ(τ)θSϕξ(τ, u), FS,ξ(τ) =
∑
N∈Z

N−σS(ξ,ξ)>0

AF (Sξ,N )e((N − σS(ξ, ξ))τ),

where Sξ,N =
( S Sξ
tξ̄S N

)
. In this paper, the function FS,ξ will be called by (S, ξ)-component of F .

We now discuss the relationship between the adelic setting and classical setting. (See [BJ77]
for automorphic forms in the adelic setting.) Let ψ be a non-trivial additive character of Q\A
and, for S ∈ J2(Z)+, put ψS = ψ ◦ trS : Z −→ C, z 7→ ψ(1

2(S, z)).

Definition 5.8. Let F̃ be an automorphic function on G(A). For each S ∈ J2(Z)+, the Sth
Fourier–Jacobi coefficient FψS of F̃ with respect to ψ is a function on J(Q)\J(A) given by

FψS (v1h) =

∫
Z(Q)\Z(A)

F̃ (zv1h)ψ−1
S (z) dz, v ∈ V(A), h ∈ H(A).

Let F be a modular form in Mk(Γ), and consider its Fourier–Jacobi expansion

F =
∑

S∈J2(Z)>0

FS(τ, u)e((S,W ))

as above (see (5.2)). We are using FψS for the Fourier–Jacobi coefficient of F̃ . We hope that this
does not cause confusion with FS , which is the Fourier–Jacobi coefficient of F . Let F̃ denote the
automorphic form on G(A) corresponding to F by the strong approximation theorem, namely,

F̃ (g) = j(g∞, E
√
−1)−kF (g∞E

√
−1) for g = γ · g∞ · k′ ∈ G(Q)G(R)K. (5.3)

Similarly if we write any element of J(A) as v1h = a · v1,∞h∞ · k′J ∈ J(Q)J(R)KJ where KJ =
K ∩ J(A), one has

F(ψst
S )2(v1h) = FS |k,S [v1,∞h∞](

√
−1, 0),

by Lemma 5.6. It follows from this that F(ψst
S )2(v1h) is left invariant under the action of the

lattice Λ = X(o). We also identify Λ with a lattice of Y (R) in an obvious way.
Fix S ∈ J2(Z)+. For each ξ ∈ Ξ(S), we put

JSϕξ(h;F(ψst
S )2) :=

∫
V(Q)\V(A)

F(ψst
S )2(v1h)Θ(ψst

S )2(v1h;ϕξ) dv1.

Since F(ψst
S )2(zv1h) = (ψst

S )2(z)F(ψst
S )2(v1h), one has

JSϕξ(h;F(ψst
S )2) =

∫
(X⊕Y )(Q)\(X⊕Y )(A)

F(ψst
S )2(v1(x, y, 0)h)Θ(ψst

S )2(v1(x, y, 0)h;ϕξ) dv1(x, y, 0).

By Lemma 4.2, Θ(ψst
S )2(v1(x, y, 0)h;ϕξ) = Θ(ψst

S )2(v1(x∞, y∞, 0)h;ϕξ). Then one has

JSϕξ(h;F(ψst
S )2) =

∫
Λ\X(R)⊕Λ\Y (R)

FS |k,S [v1,∞h∞](
√
−1, 0)Θ(ψst

S )2(v1,∞h;ϕξ) dv1,∞(x∞, y∞),
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where v1,∞(x∞, y∞) = v1(x∞, y∞, 0). Take h∞ =
(
y
1/2
∞ x∞y

−1/2
∞

0 y
−1/2
∞

)
∈ H(R) so that h∞

√
−1 =

x∞+
√
−1y∞. Set τ = h∞

√
−1 and v1,∞h∞(

√
−1, 0) = (τ, u). Put Lτ := {λ1τ+λ2 ∈X(R)⊗RC |

λi ∈ Λ, i = 1, 2}. Then by Lemma 4.1, one has

JSϕξ(h;F(ψst
S )2) =

∫
Λ\X(R)⊕Λ\Y (R)

FS |k,S [v1,∞h∞](
√
−1, 0)θSϕξ |8,S [v1,∞h∞](

√
−1, 0) dv1,∞

(put u = x∞ + τy∞)

=
1

j(g∞, i)k−8

∫
Lτ\X(R)⊗RC

FS(τ, u)θSϕξ(τ, u)e−4π(Im(τ))−1σS(Im(u),Im(u))

∣∣∣∣∂(x∞, y∞)

∂u

∣∣∣∣ du
=

2−8y−8
∞

j(g∞, i)k−8

∫
Lτ\X(R)⊗RC

FS(τ, u)θSϕξ(τ, u)e−4π(Im(τ))−1σS(Im(u),Im(u)) du

(by Lemma 5.5)

=
2−8y−8

∞
j(g∞, i)k−8

∫
Lτ\X(R)⊗RC

∑
ξ′∈Ξ(S)

FS,ξ′(τ)θSϕξ′ (τ, u)θSϕξ(τ, u)e−4π(Im(τ))−1σS(Im(u),Im(u)) du

=
2−8y−8

∞
j(g∞, i)k−8

FS,ξ(τ)2−24 det(S)−4y8
∞

= 2−32 det(S)−4j(h∞, i)
−(k−8)FS,ξ(τ).

Here we used the following formula to get the last equality: for each ξ,∫
Lτ\X(R)⊗RC

θSϕξ′ (τ, u)θSϕξ(τ, u)e−4π(Im(τ))−1σS(Im(u),Im(u)) du =

{
2−24 det(S)−4y8

∞ if ξ′ = ξ,

0 otherwise.

(Apply Lemma A.2 for n = 16 and combine this with disc(σS) = 216 disc(λS) = 216 det(S)8 by
Lemma A.1.)

Summing up, we have proved the following.

Lemma 5.9. For τ = h∞i, j(h∞, i)
(k−8)JSϕξ(h∞;F(ψst

S )2) = CSFS,ξ(τ), where CS = 2−32 det(S)−4.

In the next section, we will prove JSϕξ(h;F(ψst
S )2) is a section of a degenerate principal series

representation of SL2(A) if F̃ is an (adelic) Eisenstein series on G(A). By Lemma 5.9 above, we
will conclude that FS,ξ(τ) is an Eisenstein series in the classical sense.

6. Eisenstein series and their Fourier coefficients

Recall from [Kim93] an Eisenstein series. Let Γ∞ = Γ∩N(Q). For l a positive integer and s ∈ C,

E2l,s(Z) =
∑

γ∈Γ∞\Γ

j(γ, Z)−2l|j(γ, Z)|−s.

When s = 0 and 2l > 18, Karel [Kar74] computed the Fourier coefficients and showed that
they have bounded denominators. Let

E2l(Z) = E2l,0(Z) =
∑

T∈J(Z)+

a2l(T )e((T,Z)).

Theorem 6.1 [Kar74]. For T ∈ J(Z)+, we have

a2l(T ) = C2l det(T )2l−9
∏

p|det(T )

fpT (p9−2l),
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where C2l = 215
∏2
n=0 (2l − 4n)/(B2l−4n), and fpT is a monic polynomial with rational integer

coefficients of degree d = ordp(det(T )). It satisfies the functional equation

XdfpT (X−1) = fpT (X).

Here B2k is the Bernoulli number; ζ(2k) = (22k−1π2kB2k)/(2k)!. If n2l is the numerator of∏2
n=0B2l−4n, then n2lE2l(Z) has rational integer Fourier coefficients. The functional equation of

fpT is implicit in [Kar74], and it is stated explicitly in [Kim93, p. 185].

Corollary 6.2. Keep the notation in the theorem above. Set f̃pT (X) := XdfpT (X−2), where
d = ordp(det(T )). Then

a2l(T ) = C2l det(T )(2l−9)/2
∏

p|det(T )

f̃pT (p(2l−9)/2),

and f̃pT (X) = f̃pT (X−1).

We can interpret this from the degenerate principal series as in the Siegel case [Kud08].
Let K∞ be the stabilizer of E

√
−1 in G(R), where E = diag(1, 1, 1) ∈ J(Q). It is a maximal

compact subgroup of G(R), and its complexification K∞,C is conjugate in G(C) to M(C) by
the Cayley transform. Let K = K∞

∏
pKp, where Kp = G(Zp). By the strong approximation

theorem, G(A) = G(Q)G(R)K.
For s ∈ C, let I(s) be the degenerate principal series representation of G(A) consisting of

any smooth, K-finite function f : G(A) −→ C such that

f(pg) = δ
1/2
P (p)|ν(p)|sA(g)

for any p ∈ P(A) and any g ∈ G(A) where P = MN is the Siegel parabolic subgroup. Note
that the modulus character δP is given by δP(mn) = |ν(m)|18

A . We denote it also by I(s) =

Ind
G(Qp)
P(Qp) |ν(g)|s.
Let Φ(g, s) = Φ∞(g, s)⊗⊗p Φp(g, s) be a standard section in I(s). Then one can define the

Siegel Eisenstein series

E(g, s,Φ) =
∑

γ∈P(Q)\G(Q)

Φ(γg, s).

It satisfies the functional equation

E(g, s,Φ) = E(g,−s,M(s)Φ), M(s) : I(s) −→ I(−s), M(s)Φ(g) =

∫
N(A)

Φ(ng, s) dn.

Now G(R) = P(R)K∞, and hence Φ∞ is determined by its restriction to K∞. We choose

Φ∞(k, s) = ν(k)2l,

where k ∈ M(C) corresponds to k ∈ K∞ by the Cayley transform. Hence Φ(mnk, s) =
|ν(m)|s+9

A ν(k)2l.
By [Bai70, p. 527], given Y

√
−1 ∈ T, there exists m ∈M(R) such that m(E

√
−1) = Y

√
−1.

Hence pXm(E
√
−1) = X + Y

√
−1. Let g = pXm.

Now for γ ∈ Γ, by Iwasawa decomposition, γg = nm′k with n ∈ N(R), m′ ∈ M(R), and
k ∈ K∞. Then

γg(E
√
−1) = γZ = nm′(E

√
−1) = X1 + Y1

√
−1.
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Hence m′(E
√
−1) = Y1

√
−1 and n = pX1 . On the other hand,

j(γg,E
√
−1) = j(γ, Z)j(g,E

√
−1) = j(m′, E

√
−1)j(k,E

√
−1).

Here j(g,E
√
−1) = j(m,E

√
−1) = det(Y )−1, j(m′, E

√
−1) = det(Y1)−1. By [BB66, p. 500],

Lemma 6.3. For k ∈ K∞, j(k,E
√
−1) = ν(k)−1, and hence |j(k,E

√
−1)| = 1.

So

det(Y1) =
det(Y )

|j(γ, Z)| , j(k,E
√
−1) =

j(γ, Z)

|j(γ, Z)| .

Therefore,

Φ∞(γg, s) = ν(m′)−s−9ν(k)2l = det(Y )s+9j(γ, Z)−2l|j(γ, Z)|−s−9+2l.

Hence as in [Kud08], for Φ(g, s) = Φ∞(g, s) ⊗⊗p Φp(g, s), Φ∞(g, s) = ν(k)2l, and Φp(g, s)

= Φ0
p(g, s), the normalized spherical section for all p,

E(g, s,Φ) = det(Y )s+9
∑

γ∈Γ∞\Γ

j(γ, Z)−2l|j(γ, Z)|−s−9+2l.

Hence
E(g, s,Φ) = det(Y )s+9E2l,s+9−2l(Z) = j(g,E

√
−1)−(s+9)E2l,s+9−2l(Z).

Summing up, we have proved the following.

Proposition 6.4. The adelic Eisenstein series E(g, 2l− 9,Φ) on G(A) which is associated to a
standard section of I(2l − 9) corresponds to E2l,0(Z) via (5.3).

Let I(s) =
⊗
Ip(s) and Ip(s) be the p-adic degenerate principal series. Then we have the

following proposition.

Proposition 6.5 [Wei03]. Ip(s) is irreducible except at s = ±1,±5,±9.

Remark 6.6. In terms of representation theory, the singular modular forms of weight 4 and 8
constructed in [Kim93] are subrepresentations of I(s) when s = −5,−1, respectively.

7. Fourier–Jacobi expansion of Eisenstein series on E7,3

As seen in § 4.2 (see Lemma 5.5 and Lemma 5.6), for each S ∈ J(Z)+, the Sth Fourier–Jacobi
coefficient of a modular form F on T is represented by the sum of the products of theta series
and elliptic modular forms. In this section we shall prove these elliptic modular forms turn to
be Eisenstein series on H if F is an Eisenstein series. To do this we generalize the argument in
[Ike94, § 3] in our setting and by virtue of Lemma 5.9 this enable us to work on the adelic setting
which is much simpler than the classical setting.

Let ω be a unitary character of Q×\A× and s ∈ C. Let K = SL2(Ẑ)×SO(2) be the standard
maximal compact subgroup of SL2(A). We denote by I(ω, s), the degenerate principal series
representation of G(A) consisting of any function f : G(A) −→ C such that

f(pg) = δ
1/2
P (p)|ν(p)|sAω(ν(p))f(g)

for any p ∈ P(A) and any g ∈ G(A). Recall that δ
1/2
P (mn) = |ν(m)|9A. Similarly we also define

the space I1(ω, s) consisting of any smooth, K-finite function f : SL2(A) −→ C such that

f(pg) = δ
1/2
B (p)|a|sAω(ν(p))f(g)
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for any p =
(
a b
0 a−1

)
∈ B(A) and any g ∈ SL2(A). Here B is the Borel subgroup of SL2 which

consists of upper-triangular matrices and δ
1/2
B (p) = |a|A for p =

(
a b
0 a−1

)
∈ B(A). For any section

f ∈ I(ω, s), we define the Eisenstein series on G(A) of type (ω, s) by

E(g; f) :=
∑

P(Q)\G(Q)

f(γg), g ∈ G(A).

Let ψ be a non-trivial additive character of Q\A and, for S ∈ J2(Z)+, put ψS = ψ◦trS : Z(A) −→
C. Consider the Sth Fourier–Jacobi coefficient ES(v1h; f) of ES(g; f) with respect to ψS (see
Definition 5.8). For each ϕ ∈ S(X(A)), put

EψS ,ϕ(h) :=

∫
V(Q)\V(A)

ES(v1h, f)ΘψS (v1h;ϕ) dv1, h ∈ SL2(A). (7.1)

The main purpose in this section is to prove the following key theorem.

Theorem 7.1. Keep the notation above. Assume that ϕ is K-finite, and hence the C-span
〈ωS(k)ϕ | k ∈ K〉C is finite-dimensional. For Re(s)� 0 we have the following:

(1) R(h; f, ϕ) :=
∫
V(A) f(ι · v1 · ιe3 · h)ωS(v1(ιe3 · h))ϕ(0) dv1 is a section of I(ω, s);

(2) EψS ,ϕ is an Eisenstein series on SL2(A) associated to R(h; f, ϕ).

To prove this, we need some lemmas. Let P = P(Q), G = G(Q), Q = Q(Q). Note that Q is
the normalizer of V(Q) in G. The double coset P\G/Q is bijective to the double coset of the Weyl
group WP \WG/WQ. By [Car72, p. 64], each double coset of WP \WG/WQ has unique element of
minimal length, and they are {1, c3(23), c2c3(13)}, where ci is the Weyl group element attached
to 2ei, and (ij) is the Weyl group element attached to ei − ej . Then G = Pξ2Q∪ Pξ1Q∪ Pξ0Q,
and Pξ0Q is the unique open cell, where ξ2 = 1, ξ1 = c3(23), and ξ0 = c2c3(13). In terms of the
notation in [Bai70, p. 517], ξ2 = 1, ξ1 = ιe3ϕ23, and ξ0 = ιe2ιe3ϕ13, where ϕij = meijm−ejimeij

for i 6= j.

Lemma 7.2. For any q ∈ Q, q normalizes Z(A), and if γ ∈ G is not contained in the open cell
Pξ0Q, then ψS is non-trivial on γ−1P(A)γ ∩ Z(A).

Proof. Let q = lv for l ∈ L(Q) and v ∈ V(Q), and pz ∈ Z(A). Then, since Z is the center of
V , qpzq

−1 = (lv)pz(lv)−1 = lpzl
−1. If l is in the central torus of L, then lpzl

−1 = pz. Otherwise,
l ∈ L′(Q). Here L′ = H × Spin(9, 1), where Spin(9, 1) is spanned by the unipotent subgroups
mxe12 and mxe21 . If l ∈ H(Q), then by Lemma 3.3, lpzl

−1 = pz. Suppose l = mxe12 . Then by
Lemma 3.2, mxe12pz = pBmxe12 for B = mxe12z = pz′ ∈ Z(A). Similarly, mxe21pz = pz′′ ∈ Z(A).
Hence we have proved qZ(A)q−1 = Z(A).

We may assume that γ = ξ1, ξ2. If γ = ξ2 = 1, P (A) ∩ Z(A) = Z(A). So ψS is not trivial
on P(A) ∩ Z(A). Let γ = ξ1. Using (3.7), we can compute easily that γ−1mx̄e31γ = pxe12 ∈
Z(A). Hence γ−1P(A)γ ∩ Z(A) contains the subgroup {pxe12 | x ∈ CA}. So ψS is not trivial on
γ−1P(A)γ ∩ Z(A). 2

Let PH be the Borel subgroup of H consisting of upper triangular matrices.

Lemma 7.3. The right coset can be written as P\Pξ0Q = ξ0 · (Y (Q)\V(Q)) · (PH(Q)\H(Q)).

Proof. We can write q ∈ Q as q = slvh with s in the central torus, l ∈ Spin(9, 1)(Q), v ∈
V(Q), and h ∈ H(Q). It is easy to show that ξ0lξ

−1
0 ∈ M′(Q), and ξ0v(y)ξ−1

0 ∈ M′(Q), and
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ξ0pae3ξ
−1
0 = pae1 . By direct computation, ξ0mxe21ξ

−1
0 = mxe32 , and ξ0mxe12ξ

−1
0 = mxe23 . Also,

ξ0pye13ξ
−1
0 = mȳe31 , and ξ0pye23ξ

−1
0 = mȳe21 . Note that h(a) is identified with pae3p

′
−a−1e3

pae3ι
−1
e3 .

Hence ξ0h(a)ξ−1
0 = pae1p

′
−a−1e1

pae1ι
−1
e1 ∈M′(Q), giving the claim. 2

We have in analogy to [Ike94, p. 630] the following lemma.

Lemma 7.4. It is true that:

(1) ι · v1(0, y, z)ιe3pbe3 = pbe3k · ι · v1(0, y, z + bytȳ)ιe3 where k = mby1e13mby2e23 with ν(k) = 1;

(2) ι · v1(0, y, z)ιe3h(a) = h(a) · ι · v1(0, ay, z)ιe3 with ν(h(a)) = a;

(3) ϕ13ξ0ιe3 = ι with ν(ϕ13) = 1 and ι2e3 = −1.

Proof. Note that v(0, y, z) = v1(0, y, z). The proof of result (2) is straightforward by using result

(1), and ιeih(a)ι−1
ei = h(a) for i = 1, 2, and ιe3h(a)ι−1

e3 = h(a−1). For result (1), use ιeipbe3ι
−1
ei =

pbe3 for i = 1, 2, and ι ·mx̄e3i · ι−1 = m−xei3 for i = 1, 2. Result (3) follows from the fact that

ϕ13 ∈M′, and ιe1 = ϕ13ιe3ϕ13. 2

Proof of Theorem 7.1. We first prove Theorem 7.1(2), namely,

EψS ,ϕ(h) =
∑

γ∈PH(Q)\H(Q)

R(γh; f, ϕ).

This series will be convergent for Re(s) � 0 provided that the first assertion holds [Lan76]. In
fact, one has

EψS ,ϕ(h) =

∫
V(Q)\V(A)

ES(v1h, f)ΘψS (v1h;ϕ) dv1 =

∫
V(Q)\V(A)

E(v1h, f)ΘψS (v1h;ϕ) dv1

=
∑
i=1,2

∑
γ∈P\PξiQ

∫
V(Q)\V(A)

f(γv1h)ΘψS (v1h;ϕ) dv1

+
∑

γ∈P\Pξ0Q

∫
V(Q)\V(A)

f(γv1h)ΘψS (v1h;ϕ) dv1.

In the first integral above, by Lemma 7.2, there exists an element z0 = γ−1pγ ∈ Z(A)∩ γ−1P (A)γ
such that ψS(z0) 6= 1. Clearly ν(p) = 1. Then one has

∫
V(Q)\V(A)

f(γv1h)ΘψS (v1h;ϕ) dv1 =

∫
V(Q)\V(A)

f(γz0v1h)ΘψS (z0v1h;ϕ) d(z0v1)

= ψS(z0)

∫
V(Q)\V(A)

f(pγv1h)ΘψS (v1h;ϕ) dv1

= ψS(z0)

∫
V(Q)\V(A)

f(γv1h)ΘψS (v1h;ϕ) dv1,
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which claims the vanishing of
∫
V(Q)\V(A) f(γv1h)ΘψS (v1h;ϕ) dv1. By Lemma 7.3,

EψS ,ϕ(h) =
∑

γ1∈Y (Q)\V(Q)

∑
γ∈PH(Q)\H(Q)

∫
V(Q)\V(A)

f(ξ0γ1γv1h)ΘψS (v1h;ϕ) dv1

=
∑

γ1∈Y (Q)\V(Q)

∑
γ∈PH(Q)\H(Q)

∫
V(Q)\V(A)

f(ξ0γ1γv1h)ΘψS (v1h;ϕ) dv1

(transform v1 into γ−1v1γ)

=
∑

γ1∈Y (Q)\V(Q)

∑
γ∈PH(Q)\H(Q)

∫
V(Q)\V(A)

f(ξ0γ1v1γh)ΘψS ((γ−1v1γ)h;ϕ) dv1

(use J(Q)-invariance of ΘψS )

=
∑

γ1∈Y (Q)\V(Q)

∑
γ∈PH(Q)\H(Q)

∫
V(Q)\V(A)

f(ξ0γ1v1γh)ΘψS (γ1v1(γh);ϕ) dv1

=
∑

γ∈PH(Q)\H(Q)

∫
Y (Q)\V(A)

f(ξ0v1γh)ΘψS (v1(γh);ϕ) dv1

(Poisson summation formula (4.8))

=
∑

γ∈PH(Q)\H(Q)

∫
Y (Q)\V(A)

f(ξ0v1γh)
∑

`∈Y (Q)

FS(ωS((−`)v1γh)ϕ(0)) dv1.

Transforming v1 into (−`)−1v1, one has f(ξ0(−`)−1v1γh) = f(ξ0γh), since ξ0 and ` (hence
(−`)−1) are commutative up to the multiplication by an element of P (Q), and |ν(P (Q))|A = 1.
Hence

EψS ,ϕ(h) =
∑

γ∈PH(Q)\H(Q)

∫
Y (Q)\V(A)

f(ξ0v1γh)
∑

`∈Y (Q)

FS(ωS(v1γh)ϕ(0)) dv1

=
∑

γ∈PH(Q)\H(Q)

∫
V(A)

f(ξ0v1γh)FS(ωS(v1γh)ϕ(0)) dv1

=
∑

γ∈PH(Q)\H(Q)

∫
V(A)

f(ξ0v1(x, y, z)γh)ωS(ιe3v1(−x, y, z)γh)ϕ(0) dv1(x, y, z).

It is easy to see that ξ0 commutes with X(A) (see the proof of Lemma 7.3), v1(2x, 0, 0)v1(−x, y, z)
= v1(x, y, z), and ν(X(A)) = 1. Hence

EψS ,ϕ(h) =
∑

γ∈PH(Q)\H(Q)

∫
V(A)

f(ξ0v1γh)ωS(ιe3v1γh)ϕ(0) dv1

(transform v1 into ιe3
−1v1ιe3)

=
∑

γ∈PH(Q)\H(Q)

∫
V(A)

f(ξ0ι
−1
e3 v1ιe3γh)ωS(v1ιe3γh)ϕ(0) dv1.

By Lemma 7.4(3),

EψS ,ϕ(h) =
∑

γ∈PH(Q)\H(Q)

∫
V(A)

f(ιv1ιe3γh)ωS(v1ιe3γh)ϕ(0) dv1 =
∑

γ∈PH(Q)\H(Q)

R(γh; f, ϕ).

We now prove Theorem 7.1(1). Noting that

ι · v1(x, y, z) = ι · v1(x, 0, 0)ι−1 · ι · v1(0, y, z) = v1(0,−x̄, 0) · ι · v1(0, y, z),
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and ν(v1(0,−x̄, 0)) = 1, one has

R(h; f, ϕ)

=

∫
V(A)

f(ι · v1(x, y, z)ιe3h)ωS(ιe3h)ϕ(x)ψS

(
1

2
(S, z) + λS(x, y)

)
dv1

=

∫
X(A)

∫
Y (A)

∫
Z(A)

f(ι · v1(0, y, z)ιe3h)ωS(ιe3h)ϕ(x)ψS

(
1

2
(S, z) + λS(x, y)

)
dv1

=

∫
Y (A)

∫
Z(A)

f(ι · v1(0, y, z)ιe3h)

(∫
X(A)

ωS(ιe3h)ϕ(x)ψS(λS(x, y)) dx

)
ψS

(
1

2
(S, z)

)
dy dz

=

∫
Y (A)

∫
Z(A)

f(ι · v1(0, y, z)ιe3h)(FS(ωS(ιe3h)ϕ)(−y))ψS

(
1

2
(S, z)

)
dy dz

=

∫
Y (A)

∫
Z(A)

f(ι · v1(0, y, z)ιe3h)(ωS(h)ϕ)(y)ψS

(
1

2
(S, z)

)
dy dz.

We now compute the actions of pbe3 , b ∈ A and h(a), a ∈ A× respectively. By Lemma 7.4, one
has

R(pbe3h; f, ϕ) =

∫
Y (A)

∫
Z(A)

f(ι · v1(0, y, z + bytȳ)ιe3h)(ωS(pbe3h)ϕ)(y)ψS

(
1

2
(S, z + bytȳ)

)
dy dz

(transform z into z + bytȳ and ωS(pbe3h) = ωS(h))

= R(h; f, ϕ).

By Lemma 7.4 again, one has

R(h(a)h; f, ϕ)

=

∫
Y (A)

∫
Z(A)

f(h(a) · ι · v1(0, ay, z)ιe3h)(ωS(h(a)h)ϕ)(y)ψS

(
1

2
(S, z)

)
dy dz

= δ
1/2
P (h(a))|a|sAω(a)|a|8A

∫
Y (A)

∫
Z(A)

f(ι · v1(0, ay, z)ιe3h)(ωS(h)ϕ)(ay)ψS

(
1

2
(S, z)

)
dy dz.

Transform y into y/a and note that d(y/a) = |a|−16
A dy and δ

1/2
P (h(a)) = |a|9A. Then

R(h(a)h; f, ϕ) = |a|1+s
A ω(a)R(h; f, ϕ) = δ

1/2
PH

(a)|a|sAω(a)R(h; f, ϕ).

The smoothness and K-finiteness follow from those of f and ϕ. Hence R(h; f, ϕ) ∈ I1(ω, s). 2

8. Compatible family of Eisenstein series

Definition 8.1. Let k be a positive integer. Let h(τ) be an elliptic modular form of weight k
with respect to SL2(Z). We denote by V(h), the C-vector space spanned by {h|k[γ], γ ∈GL2(Q)+}
where h|k[γ](τ) := j(γ, τ)−kh(γτ).

Let Φ(X) = Φ({Xp}p) =
⊗′

p Φp(Xp) ∈
⊗′

pC[Xp, X
−1
p ] where p runs over all prime numbers.

Denote by R the set of all Φ(X) = Φ({Xp}p) such that Φp(Xp) = Φp(X
−1
p ) for any prime p. For

each non-zero sequence of complex numbers {ap}p indexed by all primes, the value of Φ(X) at
{Xp}p = {ap}p is denoted by Φ({ap}). For each positive even integer k > 4, let

E1
k(τ) =

∑
(c,d)∈Z2\{(0,0)}

(c,d)=1

(cτ + d)−k,

which is the Eisenstein series of weight k with respect to SL2(Z).
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Definition 8.2. For a sufficiently large k0, a compatible family of Eisenstein series is a family
of elliptic modular forms, for even integer k′ > k0

gk′(τ) = bk′(0) +
∑

N∈Q>0

N (k′−1)/2bk′(N)qN , q = e(τ),

satisfying the following three conditions.

(1) For all k′ > k0, gk′ ∈ V(E1
k′).

(2) For each N ∈ Q×+, there exists ΦN ∈ R such that bk′(N) = ΦN ({p(k′−1)/2}p).
(3) There exists a congruence subgroup Γ ⊂ SL2(Z) such that gk′ ∈Mk′(Γ) for all k′ > k0. Here

Mk′(Γ) stands for the space of elliptic modular forms of weight k with respect to Γ.

Then by [Ike08, Lemma 10.2], we have the following lemma.

Lemma 8.3. Let f(τ) =
∑∞

n=1 c(n)qn be a Hecke eigenform of weight k with respect to SL2(Z)
with c(p) = p(k−1)/2(αp + α−1

p ). Assume that there is a finite-dimensional representation (u,Cd)
of SL2(Z) and

~ΦN := t(Φ1,N , . . . ,Φd,N ) ∈ Rd, N ∈ Q>0

satisfying the following two conditions.

(1) There exists a vector valued modular form ~gk′ = t(g1,k′ , . . . , gd,k′) which has

~gk′(τ) = ~bk′(0) +
∑

N∈Q>0

N (k′−1)/2~bk′(N)qn, (~bk′(N) = t(b1,k′(N), . . . , bd,k′(N)), N ∈ Q>0)

of weight k′ with type u for each sufficiently large even integers k′, and hence this means that

~gk′(τ)|k′ [γ] := t(g1,k′ |k′ [γ], . . . , gd,k′ |k′ [γ]) = u(γ)~gk(τ) for any γ ∈ SL2(Z).

(2) Each component gi,k′ , (1 6 i 6 d) of ~gk′(τ) is a compatible family of Eisenstein series
such that

bi,k′(N) = Φi,N ({p(k′−1)/2}p).
Then ~h(τ) :=

∑
N∈Q>0

N (k−1)/2~ΦN ({αp}p)qN is a vector valued modular form of weight k with
type u, and hence it satisfies

~h(τ)|k[γ] = u(γ)~h for any γ ∈ SL2(Z).

9. Construction of cusp forms on the exceptional domain

In this section we shall prove our main theorem. The strategy is the same as in [Ike01, Ike08,
Yam10].

For any positive integer k > 10, let f(τ) =
∑∞

n=1 c(n)qn be a Hecke eigenform of weight
2k− 8 with respect to SL2(Z) with c(p) = p(2k−9)/2(αp +α−1

p ). Let us formally define a function
on T by

F (Z) =
∑

T∈J(Z)+

AF (T )e((T,Z)), AF (T ) = det(T )(2k−9)/2
∏
p

f̃pT (αp), Z ∈ T.

Then we prove the following theorem.

Theorem 9.1. F (Z) is a non-zero cusp form of weight 2k with respect to Γ.
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Remark 9.2. If f has integer Fourier coefficients, then F also has integer Fourier coefficients.
Just observe from Corollary 6.2 that f̃pT (X) = Xd +X−d + a1(Xd−2 +X−(d−2)) + · · ·+ a(d−1)/2

(X +X−1) if d is odd, and f̃pT (X) = Xd +X−d + a1(Xd−2 +X−(d−2)) + · · ·+ ad/2 if d is even,
where d = ordp(det(T )) and ai’s are integers.

First of all we shall prove the convergence of F (Z).

Lemma 9.3. The series F (Z) is absolutely and uniformly convergent on any compact domain
of T.

Proof. It is well known that |αp| = 1. By definition, f̃pT (X) = XdfpT (X−2), and fpT is a monic
polynomial with integer coefficients of degree d = ordp(det(T )), i.e., fpT (X) = Xd + a1X

d−1 +
· · ·+ ad−1X + ad. Let M = max{|a1|, . . . , |ad|}. We use the identity from [Kar74, p. 187],

(1− p−s)−1Sp(T ) =

∞∑
m=0

αm(T )p−ms, αm(T ) =
∑
X

ω(T,X)
m ,

where X ∈ Λ(3)p/p
mΛ(3)p and τi(X) ≡ 0 (mod pm(i−1)) for 2 6 i 6 3, and 2m 6 d. Hence

|αm(T )| 6 p27m. We also have [Kar74, p. 197]

Sp(T ) = (1− p−s)(1− p4−s)(1− p8−s)fpT (p9−s).

Hence

fpT (X) = (1− p−5X)−1(1− p−1X)−1
∞∑
m=0

αm(T )p−9mXm.

So M 6 (d + 1)2p18m. By the trivial estimate, d + 1 6 pd, hence we have M 6 p2dp9d = p11d.

Therefore, |f̃pT (αp)| 6 (d+ 1)M 6 p12d. Hence

|AF (T )| 6 det(T )k+12−1/2.

Now we use the fact from [Bai70, p. 538], for l > 8,∫
R+

3 (R)
det(X)l−9e2π(X,Y ) dX = π12(2πi)−3l

2∏
n=0

Γ(l − 4n) det(Y )−l,

where dX is the ordinary Euclidean measure. Hence∣∣∣∣ ∑
T∈J(Z)+

AF (T )e2πi(T,Z)

∣∣∣∣ 6 ∑
T∈J(Z)+

det(T )k+12−1/2e2π(T,Y ) 6
∫
R+

3 (R)
det(X)k+12−1/2e2π(X,Y ) dX

converges. 2

Clearly F (Z + N) = F (Z) for N ∈ N(Z). Also F (γZ) = F (Z) for γ ∈ M′(Z). Thanks to
Lemma 5.2, it is enough to prove

F (ιe3Z) = j(ιe3 , Z)2kF (Z). (9.1)

We prove (9.1) by using results of previous sections. Fix S ∈ J2(Z)+. Since F (Z) is invariant
under Γ∩P(Q) as mentioned above and is holomorphic by Lemma 9.3, then by Remark 5.7, one
has the Fourier–Jacobi expansion:

F

(
W u
tū τ

)
=

∑
S∈J2(Z)+

FS(τ, u)e((S,W )), (9.2)

FS(τ, u) =
∑

ξ∈Ξ(S)

FS,ξ(τ)θSϕξ(τ, u), (9.3)
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and

FS,ξ(τ) =
∑
N∈Z

N−σS(ξ,ξ)>0

AF (Sξ,N )e((N − σS(ξ, ξ))τ), Sξ,N :=

(
S Sξ
tξ̄S N

)

=
∑
N∈Z

N−σS(ξ,ξ)>0

det(Sξ,N )(2k−9)/2
∏
p

f̃pSξ,N (αp)e((N − σS(ξ, ξ))τ)

= det(S)(2k−9)/2
∑
N∈Z

N−σS(ξ,ξ)>0

(N − σS(ξ, ξ))(2k−9)/2
∏
p

f̃pSξ,N (αp)e((N − σS(ξ, ξ))τ). (9.4)

For the last equality above, we used the formula det(Sξ,N ) = det(S)(N − σS(ξ, ξ)) by using
(2.3). The condition (9.1) is equivalent to claiming that FS(τ, u) ∈ Jk,S(ΓJ) for any S ∈ J2(Z)+.
Therefore for each fixed S ∈ J2(Z)+, we have only to check the condition

FS |k,S [w1](τ, u) = FS(τ, u) for w1 =

(
0 1

−1 0

)
. (9.5)

By [Tak96, p. 124, (2.1)], for each γ ∈ SL2(Z), there exists a unitary matrix uS(γ) =
(uS(γ)ξη)ξ,η∈Ξ(S) such that

θSϕξ |k,S [γ](τ, u) =
∑

η∈Ξ(S)

uS(γ)ξηθ
S
ϕη(τ, u). (9.6)

Further there exists a positive integer ∆S depending on S such that uS is trivial on Γ(∆S) ⊂
SL2(Z). Since the elements of {θSϕξ | ξ ∈ Ξ(S)} are linearly independent over C, to check (9.5)
with (9.6) it suffices to prove that {FS,ξ}ξ∈Ξ(S) is a vector valued modular form of weight 2k
with type uS .

For a sufficiently large positive integer k′, we now turn to consider (S, ξ)-component (E2k′,0)S,ξ
of the classical Eisenstein series

E2k′,0(Z) :=
1

C2k′
E2k′,0(Z) =

∑
T∈J(Z)+

ã2k′(T )e((T,Z)),

ã2k′(T ) = det(T )(2k′−9)/2
∏

p|det(T )

f̃pT (p(2k′−9)/2),

on T, where C2k′ is the constant in Theorem 6.1. Then one has

det(S)−(2k′−9)/2(E2k′,0)S,ξ(τ)

= det(S)−(2k′−9)/2
∑
N∈Z

N−σS(ξ,ξ)>0

ã2k′

(
S Sξ
tξ̄S N

)
e((N − σS(ξ, ξ))τ)

=
∑
N∈Z

N−σS(ξ,ξ)>0

(N − σS(ξ, ξ))(2k′−9)/2
∏

p|det(Sξ,N )

f̃pSξ,N (p(2k′−9)/2)e((N − σS(ξ, ξ))τ).

Then by Lemma 5.9, Corollary 6.2, and Theorem 7.1, {det(S)−(2k′−9)/2(E2k′,0)S,ξ}k′�0 makes
up a family of Eisenstein series. Here we use uS |Γ(∆S) = 1 to check the third condition of
Definition 8.2. Applying Lemma 8.3 with (9.4), one can conclude that

FS,ξ = det(S)(2k−9)/2
∑
n∈Z>0

n=N−σS(ξ,ξ),N∈Z

n(2k−9)/2
∏

p|det(Sξ,N )

f̃pSξ,N (αp)q
n,

is a vector-valued modular form of weight 2k with type uS . Since AF (1) = 1, F (Z) is not
identically zero. This completes the proof of Theorem 9.1.
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10. Hecke operators

Karel [Kar72] defined Hecke operators and showed that the Eisenstein series are eigenfunctions.
We review his results, and show that the cusp form on T constructed in the previous section is
a Hecke eigenform.

Let IW be the identity operator on W. Let Z be the central torus of GL(W), i.e., for any
field K,

ZK = {λIW | λ ∈ K, λ 6= 0}.

Let G̃ = Z ·G. Then G̃ is a Q-group. Define a rational character µ on G̃ by

{gw1, gw2} = µ(g){w1, ww} for all w1, w2 ∈W.

Then µ is defined over Q, and Q(gw) = µ(g)2Q(w). Let S be the connected component of the
Lie group G̃(R) containing the identity element of G(R). Define

Ψ = {g ∈ S | gWo ⊂Wo}.

Since S is a connected component containing the identity element, µ(g) > 0 for all g ∈ Ψ. Recall
that e = (0, 1, 0, 0) and e′ = (0, 0, 0, 1) are elements of Wo, and {w1, w2} ∈ Z for all w1, w2 ∈Wo.
Hence µ(g) = {ge, ge′} ∈ Z. Hence we can define, for each m ∈ Z, m > 0,

Ψm = {g ∈ Ψ | µ(g) = m},

and Ψ =
⋃∞
m=1 Ψm.

Fix k. If ρ = zρ′ ∈ G̃(R) = Z(R)+ ·G(R) and F is a function on T, let F (Z)|[ρ]k = F (ρ′Z)j
(ρ′, Z)−k. If F is holomorphic, then F |[ρ]k = F for all ρ ∈ Γ precisely when F is a modular form
of weight k. Let F be a modular form on T of weight k, and define

T (m) · F =
∑

ρ∈Γ\ΓΨmΓ

ρ · F.

Actually, in [Kar72] Karel used J(g, Z) = j(g, Z)−18 as an automorphy factor. However, his
result works for j(g, Z) in the exactly same way.

For later purpose in connection with representation theory, we shall modify Hecke operators
for G(Q). For any element H ∈ G(Q), we define a modified action of H on F by

H ? F = vH(Γ)−k/36
∑

ρ∈Γ\ΓHΓ

ρ · F, vH(Γ) := [HΓH−1 : Γ],

where [HΓH−1 : Γ] = [HΓH−1 : Γ ∩HΓH−1]/[Γ : Γ ∩HΓH−1].
Then we have the following proposition.

Proposition 10.1. The Eisenstein series El,0(Z) is a Hecke eigenform for each Hecke operator
T (m). In particular, it is also an eigenform for any H ∈ G(Q) with respect to the modified
action ?.

For any positive integer k > 10, let f(τ) =
∑∞

n=1 c(n)qn be a Hecke eigenform of weight 2k−8
with respect to SL2(Z) with c(p) = p(2k−9)/2(αp + α−1

p ). Let F (Z) =
∑

T∈J(Z)+
AF (T )e((T,Z)),

Z ∈ T be the modular form on T which is constructed from f in previous section. Then by
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imitating Ikeda’s idea in [Ike94, § 11] we will prove that F (Z) is a Hecke eigenform for any
H ∈ G(Q). Recall the normalized Eisenstein series

E2k′,0(Z) =
∑

T∈J(Z)+

ã2k′(T )e((T,Z)), ã2k′(T ) = det(T )(2k′−9)/2
∏

p|det(T )

f̃pT (p(2k′−9)/2)

of weight 2k′ which is also an eigenform for any H ∈ G(Q) by Proposition 10.1. For each
H ∈G(Q), by using G(Q) = P (Q)G(Z) (see [Bai70, p. 532, line−4]), one can choose {pni ·mi}ri=1,
ni ∈ J(Q),mi ∈ M(Q)+ as the complete representatives of Γ\ΓHΓ. Here M(Q)+ is the subset
of M(Q) consisting of g with ν(g) > 0. Then it is easy to see that vH(Γ)−1/36 = ν(mi)

1/2 for
each i. Henceforth we settle the convention that for each T ∈ J(Z)+ and each m ∈ M(Q), put
f̃mT ({Xp}p) = 0 if mT 6∈ J(Z)+. Then one has

H ? E2k′,0(Z)

= vH(Γ)−2k′/36
r∑
i=1

(pni ·mi) · E2k′,0(Z)

=
∑

T∈J(Z)+

r∑
i=1

ν(mi)
k′ det(T )(2k′−9)/2

∏
p|det(T )

f̃pT (p(2k′−9)/2)e((T,miZ + ni))

(use (T,miZ) = ((m∗i )
−1T,Z) by (3.1) and det(m∗iT ) = ν(mi)

−1 det(T ).)

=
∑

T∈J(Z)+

r∑
i=1

ν(mi)
9/2e((m∗iT, ni)) det(T )(2k′−9)/2

∏
p|det(m∗i T )

f̃pm∗i T
(p(2k′−9)/2)e((T,Z)).

From this, the T th Fourier coefficient of H ? E2k′,0 is
r∑
i=1

ν(mi)
9/2e((m∗iT, ni)) det(T )(2k′−9)/2

∏
p|det(m∗i T )

f̃pm∗i T
(p(2k′−9)/2).

Put

αH(X) :=
r∑
i=1

ν(mi)
9/2e((m∗iE,ni))

∏
p|det(m∗iE)

f̃pm∗iE
(Xp), X = {Xp}p

which defines an element of
⊗′

pC[Xp, X
−1
p ]. Here E = diag(1, 1, 1) ∈ J(Q). Noting ã2k′(E) =

1 6= 0, by Proposition 10.1 one has

αH({p(2k′−9)/2}p)
∏

p|det(T )

f̃pT (p(2k′−9)/2) =

r∑
i=1

ν(mi)
9/2e((m∗iT, ni))

∏
p|det(m∗i T )

f̃pm∗i T
(p(2k′−9)/2).

By [Ike01, Lemma 10.1], one has the equality in
⊗′

pC[Xp, X
−1
p ]

αH(X)
∏

p|det(T )

f̃pT (Xp) =
r∑
i=1

ν(mi)
9/2e((m∗iT, ni))

∏
p|det(m∗i T )

f̃pm∗i T
(Xp), X = {Xp}p.

Then one has

H ? F (Z) =
∑

T∈J(Z)+

r∑
i=1

ν(mi)
9/2e((m∗iT, ni)) det(T )(2k′−9)/2

∏
p|det(m∗i T )

f̃pm∗i T
(αp)e((T,Z))

=
∑

T∈J(Z)+

αH({αp}p) det(T )(2k′−9)/2
∏

p|det(T )

f̃pT (αp)e((T,Z)) = αH({αp}p)F (Z).

Hence we have proved the following theorem.

Theorem 10.2. F (Z) is a Hecke eigenform for G(Q) with respect to the action ?.
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11. The degree-56 standard L-function

In this section we will compute the standard L-function of Hecke eigenforms constructed in
the previous section and the Eisenstein series respectively. Let F = F (Z) be the cusp form
in Theorem 10.2 and F̃ be the automorphic form on G(A) attached to F (see (5.3)). Let πF
be the cuspidal representation of G(A) attached to F̃ . Since F is a Hecke eigenform, one has
the decomposition πF = π∞ ⊗

⊗′
p πp. Then π∞ is a holomorphic discrete series of the lowest

weight 2k associated to −2k$7 in the notation of [Bou02]. We note that −2k$7 parametrizes a
holomorphic discrete series when 2k > 17 (cf. [Kna86, p. 158]). Since πp is unramified for each
prime p, it has a spherical vector whose Hecke eigenvalue for each element of G(Qp) coincides

with that of a spherical vector in Ind
G(Qp)
P(Qp) |ν(g)|2sp where psp = αp. (This is clear from the proof

of Theorem 10.2. Notice 2sp, not sp. We can see it from Corollary 6.2 and Proposition 6.4. We are
replacing (2k − 9)/2 by sp in Corollary 6.2.) Then by [Cas, Proposition 2.2.2] and Proposition 6.5,

πp ' Ind
G(Qp)
P(Qp) |ν(g)|2sp ,

for any finite place p.
In order to compute the standard L-function of πF , we use the Langlands–Shahidi method.

Since G(Qp) is the split group of type E7, we can compute its local L-factor. We follow the
notation of [Kim05, § 2.7.8]. We consider the split exceptional group of type E8, and its parabolic
subgroup R whose Levi subgroup is GE7, and its Borel subgroup B. By inducing in stages

Ind
E8(Qp)
R(Qp) πp ⊗ exp(sα̃,HR( )) = Ind

E8(Qp)
B(Qp) exp(χ,HB( )),

where α̃ = e1− e9, and χ = s(e1− e9) + sp(−e1 + 2e2− e9) + (8e3 + 7e4 + 6e5 + 5e6 + 4e7 + 3e8).
Here ρE6 = 8e3 + 7e4 + 6e5 + 5e6 + 4e7 + 3e8 is the half-sum of positive roots of E6. Then one
can see that the unipotent radical of R is generated by 57 roots

ei − e9 for i = 1, . . . , 8 and e1 − ej for j = 2, . . . , 8,

e1 + ej + ek for 2 6 j < k 6 8 and −(ei + ej + e9) for 2 6 i < j 6 8.

Then e1 − e9 gives rise to 1 − p−2s, and the remaining 56 roots give rise to the following local
factors:

e1 − e3, 1− αpp8−s; e1 + e2 + e8, 1− α−1
p p8−s;

e3 − e9, 1− α−1
p p−8−s; −(e2 + e8 + e9), 1− αpp−8−s

e1 − e4, 1− αpp7−s; e1 + e2 + e7, 1− α−1
p p7−s;

e4 − e9, 1− α−1
p p−7−s; −(e2 + e7 + e9), 1− αpp−7−s

e1 − e5, 1− αpp6−s; e1 + e2 + e6, 1− α−1
p p6−s;

e5 − e9, 1− α−1
p p−6−s; −(e2 + e6 + e9), 1− αpp−6−s

e1 − e6, 1− αpp5−s; e1 + e2 + e5, 1− α−1
p p5−s;

e6 − e9, 1− α−1
p p−5−s; −(e2 + e5 + e9), 1− αpp−5−s

e1 − e7, e1 + e7 + e8, 1− αpp4−s; e1 + e2 + e4,−(e3 + e4 + e9), 1− α−1
p p4−s

e1 − e8, e1 + e6 + e8, 1− αpp3−s; e1 + e2 + e3,−(e3 + e5 + e9), 1− α−1
p p3−s

e1 + e6 + e7, e1 + e5 + e8, 1− αpp2−s; −(e3 + e6 + e9),−(e4 + e5 + e9), 1− α−1
p p2−s

e1 + e5 + e7, e1 + e4 + e8, 1− αpp1−s; −(e3 + e7 + e9),−(e4 + e6 + e9), 1− α−1
p p1−s
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e1 + e3 + e8, e1 + e4 + e7, 1− αpp−s; −(e3 + e8 + e9),−(e4 + e7 + e9), 1− α−1
p p−s

e1 + e3 + e7, e1 + e4 + e6, 1− αpp−1−s; −(e4 + e8 + e9),−(e5 + e7 + e9), 1− α−1
p p−1−s

e1 + e3 + e6, e1 + e4 + e5, 1− αpp−2−s; −(e5 + e8 + e9),−(e6 + e7 + e9), 1− α−1
p p−2−s

e1 + e3 + e5,−(e2 + e3 + e9), 1− αpp−3−s; e8 − e9,−(e6 + e8 + e9), 1− α−1
p p−3−s

e1 + e3 + e4,−(e2 + e4 + e9), 1− αpp−4−s; e7 − e9,−(e7 + e8 + e9), 1− α−1
p p−4−s

e1 − e2, 1− α3
pp
−s; e2 − e9, 1− α−3

p p−s; e1 + e5 + e6, 1− αpp−s; −(e5 + e6 + e9), 1− α−1
p p−s.

Hence we have the degree-56 local L-function:

(1− αpp−s)2(1− α−1
p p−s)2

3∏
i=0

(1− α3−2i
p p−s)

·
8∏
i=5

(1− αpp±i−s)(1− α−1
p p±i−s)

4∏
i=1

(1− αpp±i−s)2(1− α−1
p p±i−s)2.

Therefore, we have proved the following theorem.

Theorem 11.1. The degree-56 standard L-function L(s, πF , St) of πF is given by

L(s, πF , St) = L(s, Sym3 πf )L(s, πf )2
4∏
i=1

L(s± i, πf )2
8∏
i=5

L(s± i, πf ),

where L(s, Sym3 πf ) is the third symmetric power L-function.

Let ΓC(s) = 2(2π)−sΓ(s). Then the local L-factor at ∞ is given by

L(s, π∞, St) = ΓC(s+ 3(2k−9)
2 )ΓC(s+ 2k−9

2 )ΓC(s+ 2k−9
2 )2

4∏
i=1

ΓC(s+ 2k−9
2 ±i)2

8∏
i=5

ΓC(s+ 2k−9
2 ±i),

and the completed L-function satisfies the functional equation

Λ(s, πF , St) = L(s, π∞, St)L(s, πF , St) = −Λ(1− s, πF , St).

Note that the root number is −1, since the root number of L(s, Sym3 πf ) is −1 [CM04].
We have also proved the following theorem.

Theorem 11.2. The standard L-function L(s, E2l,0(Z), St) of E2l,0(Z) is

L(s, E2l,0(Z), St)

= ζ(s+ l − 9
2)2ζ(s− l + 9

2)2ζ(s− 3l + 27
2 )ζ(s− l + 9

2)ζ(s+ l − 9
2)ζ(s+ 3l − 27

2 )

·
8∏
i=5

ζ(s± i− l + 9
2)ζ(s± i+ l − 9

2)

4∏
i=1

ζ(s± i− l + 9
2)2ζ(s± i+ l − l

2)2.

Remark 11.3. We write the degree-56 standard L-function of πF as

L(s, πF , St) = L(s, Sym3 πf )

4∏
i=−4

L(s+ i, πf )

8∏
i=−8

L(s+ i, πf ).

This suggests the following parametrization of πF . Let L be the (hypothetical) Langlands group
over Q, and let ρf : L −→ SL2(C) be the two-dimensional irreducible representation of L
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corresponding to πf . Let Symn be the irreducible (n+ 1)-dimensional representation of SL2(C).
Note that if n = 2m − 1, Im(Symn) ⊂ Sp2m(C), and if n = 2m, Im(Symn) ⊂ SO2m+1(C). We
have the tensor product maps SL2(C) × Sp2m(C) −→ Sp4m(C) and SL2(C) × SO2m+1(C) −→
Sp4m+2(C). Hence ρf⊗Sym16 : L×SL2(C) −→ Sp34(C), and ρf⊗Sym8 : L×SL2(C) −→ Sp18(C).
Let Sym3 ρf : L×SL2(C) −→ Sp4(C) be the parameter of Sym3 πf , where it is trivial on SL2(C).
Consider the parameter

ρ = Sym3 ρf⊕(ρf⊗Sym16)⊕(ρf⊗Sym8) : L×SL2(C) −→ Sp4(C)×Sp34(C)×Sp18(C) ⊂ Sp56(C).

Note that E7(C) ⊂ Sp56(C). We expect that ρ will factor through E7(C), and give rise to a
parameter ρ : L × SL2(C) −→ E7(C), which parametrizes πF .
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Appendix

In this appendix we will compute the discriminant of some quadratic forms from § 4.2 and prove
the orthogonal relation of theta functions in the proof of Lemma 5.9.

Let S =
(
a u
ū b

)
∈ J2(K) where K is a field whose characteristic is different from 2,3. Recall

det(S) = ab−N(u) and the quadratic form λS(x, y) = 1
2(S, xtȳ + ytx̄) on X(K) (see (4.1)).

Lemma A.1. Let disc(λS) be the discriminant of the quadratic form λS , i.e., the determinant of
the representation matrix of λS . Then disc(λS) = det(S)8.

Proof. Let S =
(
a u
ū b

)
, where a, b ∈K and u ∈ CK . Let x =

(
x1
x2

)
, y =

(y1
y2

)
where x1, x2, y1, y2 ∈ CK .

Let

λS(x, y) = 1
2(S, xtȳ+ytx̄) = 1

2(a(x1ȳ1 +y1x̄1)+ b(x2ȳ2 +y2x̄2)+u(x2ȳ1 +y2x̄1)+(x1ȳ2 +y1x̄2)ū)

be the bilinear form given by S.
For x ∈ CK , let x = x0e0 + · · ·+ x7e7. Then with respect to the basis, the matrix of λS is(

aI8 X
tX bI8

)
∈M16(K), X = (Tr(ei((−ej)ū)))16i,j68.

Then the discriminant of the bilinear form is the determinant of the above matrix, which is given
by disc(λS) = det(abI8− tXX). Now we claim that tXX is a diagonal matrix. Clearly, for each j,
we have

7∑
k=0

(Tr(ek(−ej)ū))2 = N(u).

Let i 6= j, and consider
7∑

k=0

(Tr(ek(−ei))ū)(Tr(ek(−ej))ū). (A.1)

For a given ek, let ek(−ei) = el and ek(−ej) = el′ . Then we claim that there exists ea such
that ea(−ei) = el′ and ea(−ej) = −el. This implies that (A.1) = 0. Now, from elei = el′ej , we
have

el = (−ejel′)(−ei) = (ejel′)ei = −ej(el′ei),
by non-associativity. So −elej = ejel = el′ei. Let ea = el(−ej) = el′ei. Therefore, disc(λS) =
det(S)8. 2
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In order to prove the orthogonal relation in the proof of Lemma 5.9, by the above lemma, we

need to consider the following. Let n be a positive integer and T be a positive definite symmetric

matrix of size n. Assume T = (tij)16i6j6n is even integral, i.e., tii ∈ Z for i = 1, . . . , n and tij ∈ 1
2Z

for 1 6 i < j 6 n. For λ ∈ Qn, we define the theta function on H× Cn by

θ[λ](T ; τ, z) =
∑
x∈Zn

e(t(x+ λ)T (x+ λ)τ + 2t(x+ λ)Tz), (τ, z) ∈ H× Cn, e(∗) = e2π
√
−1∗,

where [λ] stands for the image of λ under the natural projection Qn −→ Qn/Zn and the

definition of the above theta function depends only on [λ]. Let ΛT be a complete representative

of (2T )−1Zn/Zn.

Lemma A.2. For any λ, µ ∈ ΛT , the following orthogonal relation holds:∫
(C/Z+τZ)n

θ[λ](T ; τ, z)θ[µ](T ; τ, z)e−4π(Im τ)−1T [Im z] dz =

{
2−n det(T )−1/2(Im τ)n/2 if λ = µ,

0 otherwise.

Proof. Put z = a+ τb, a, b ∈ Rn. Then we have∫
(C/Z+τZ)n

θ[λ](T ; τ, z)θ[µ](T ; τ, z)e−4π(Im τ)−1T [Im z] dz

= (Im τ)n
∫

(R/Z)n

∑
x,y∈Zn

{∫
(R/Z)n

e(2t(x+ λ)Ta− 2t(y + µ)Ta) da

}
· e(2
√
−1(t(x+ λ)Tb+ t(y + µ)Tb))

· e(t(x+ λ)T (x+ λ)τ − t(y + µ)T (y + µ)τ)e−4π(Im τ)−1T [Im z] db,

where T [Im z] = t(Im z)T (Im z). Note that, for given x, y ∈ Zn, 2t(x− y + λ− µ)T ∈ Zn if and

only if λ = µ by the definition. Therefore∫
(R/Z)n

e(2t(x+ λ)Ta− 2t(y + µ)Ta) da =

{
1 if x = y and λ = µ,

0 otherwise.

If λ = µ, we have∫
(C/Z+τZ)n

θ[λ](T ; τ, z)θ[λ](T ; τ, z)e−4π(Im τ)−1T [Im z] dz

= (Im τ)n
∫

(R/Z)n

∑
x∈Zn

e−4π(Im τ)t(b+x+λ)T (b+x+λ) db = (Im τ)n
∫
Rn
e−4π(Im τ)tbTb db.

Since T is diagonalizable by an orthogonal matrix over R, we may assume that T = diag(t1, . . . ,

tn), ti ∈ R>0. Hence

∫
Rn
e−4π(Im τ)tbTb db =

n∏
i=1

∫
R
e−4π(Im τ)tit

2
dt =

n∏
i=1

1√
4(Im τ)ti

= 2−n det(T )−1/2(Im τ)−n/2.

Hence we have the claim. 2
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