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ON COMPLETE INTERSECTIONS 
AND THEIR HILBERT FUNCTIONS 

LES REID, LESLIE G. ROBERTS AND MOSHE ROITMAN 

ABSTRACT. We deal here with the existence of half-way nonzero divisors for com
plete intersections and with related properties of their Hilbert functions. 

In this note we discuss the Hilbert function H — H{d\, ...,dn)(\ <d\ < di < • • • < 
dn) of a complete intersection k[X\,..., Xn]/ (F\,..., Fn), where k is a field, Xt are inde-
terminates of degree 1, deg(F,) = d^ and (F\,..., Fn) is a regular sequence. As indicated 
by the notation, H depends only on(d\,d2,...,dn). We first study H by considering the 
particular example A — k[X\ ,...,Xn]/ (Xj1 , . . . , X„n ). Our main conclusions are that H is 
strictly increasing, indeed is a differentiable O-sequence, up to a certain integer u (which 
we determine explicitly), then is constant for awhile, and by symmetry decreases to 0. 
These results are trivial for n = 1, well known and easy for n = 2, but appear to be much 
more difficult if n > 2. 

Richard Stanley has indicated the following argument: suppose that k = C. Then 
A = H*(Pg] x • • • x Pc", C) (after dividing all degrees on the right by 2). The class of 
the hyperplane section (for some embedding of P^ ' x • • • x P^" in P^) can be taken to 
be (the canonical image in A of) S — X\ + • • • + Xn. By the hard Lefschetz Theorem 
(see [SI]), multiplication by Sf~21 gives an isomorphism from A; to At-i. (t is the largest 
integer such that Hit) ^ 0). Our results on H described above (except for the explicit 
determination of u) follow, in characteristic 0, from this property of S. However the hard 
Lefschetz Theorem seems to be rather heavy machinery for such seemingly elementary 
results. We call elements with the same property as S strongly faithful. In Theorem 5 we 
give an elementary ring theoretic proof that S is strongly faithful in A if the characteristic 
of k is 0. (Richard Stanley informs us that he has obtained an elementary combinatorial 
proof, based on [PSS]. See, for example, the discussion at the end of [SI, Section 2]). We 
then discuss the question of whether every complete intersection in characteristic 0 has 
a linear strongly faithful element, present some partial results and conclude by stating 
some conjectures. 

Throughout this paper k is a field, 1 < d\ < 6fe < • • • < dn are integers and 
(Fi , . . . ,Fn) is a sequence of homogeneous polynomials in k[X\,... ,Xn] of degrees 
d\,...,dn respectively. By an algebra we mean a standard graded /:-algebra as defined 
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in [S] (that is, a A:-algebra of the form k[X\,..., Xn]/1 where the Xt have degree one and 
/ is a homogeneous ideal). We set t = E|LiW" — 1). We denote elements in k[X] = 
k[X\,... ,X„] by capital letters and their canonical images in A by the corresponding 
lower case letters. 

We now give an elementary proof of the above description of//, working in the algebra 
A. Adopting the convention that //(/) = 0 for i < 0, we have //(/) = H(t - i) for all 
integers /. In particular, H(i) = 1 and H(i) = 0 for / > t. (For a given r, if M = Xj*1 • • • Xa

n
n 

withO <at <dt-\ a n d E L i ^ = r, thenM <-• (Xf_1 • • • X ^ - ^ / M givesabijection 
between bases of Ar and At-r). Thus H is symmetric about tj 2. 

Let B any graded fc-algebra and consider R = B[X]/ (Xm), where X has degree 1. Let 
(bf)i>o be the Hilbert function of B (bt = 0 for / < 0, by the usual convention). Then it 
is clear that HR(i) = bx + • • • + bi-m+i (m terms). We can visualize HR in the following 
manner: graph HB and imagine a caterpillar with m segments climbing this hill from left 
to right. For given i, the/ h segment of the caterpillar is represented by a dot at the point 
(i — j +1, HA(i —j +1 )), the segment j = 1 being the head, which is at x coordinate /. Then 
///?(/) is the sum of the heights of the segments. For example let B = k[X\,X2]/ (X^,Xl), 
and A = ik[Xi,X2,X3]/(Xf,X|,^), thus A = fl[X]/(X4), where X = X3. Then HB is 
the sequence 12 3 2 1 0 0 . . . and the caterpillar has 4 segments. We read in the graph the 
corresponding heights and sum them up: HA(3) — 2 + 3 + 2 + 1 = 8. 

Figure 1 

We use the caterpillar image in our proofs, their formalization being obvious. 

For a, b in R, let [a, b] = {i G Z | a < i < b}. We say that a sequence H is 
increasing (respectively strictly increasing) in the interval [a, b] if / < j implies //(/) < 
//(/*) (respectively //(/) < //(/)) for all i,j in [a, b]. The words decreasing and strictly 
decreasing will be used in a similar manner. Now we prove the following. 
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THEOREM 1. LetA = k[Xu...,Xn]/(Xd
l\...,Xfr),whewkisafieldandl <dx < 

d2'"<dn.Lett'=T.U(di-\). 
Suppose dn < (t+l)/2.Iftis even, then HA is strictly increasing in the interval 

[0, tj 2] and strictly decreasing in the interval [t/2,t+l].Ift is odd, then HA is strictly 
increasing in the interval [0, (t — 1)/ 2], constant in the interval [(t — 1)/ 2), (t + 1)/ 2] 
and strictly decreasing in the interval [(t + 1)/ 2, t + 1]. 

Suppose dn > (t + 1)/ 2. 77ie« //^ w strictly increasing up to aflat top which begins 
at t* := Y!i=\(di — 1) and mds <zf dn — 1; afterwards it is strictly decreasing to 0. 

PROOF. The result is clear if n = 1, since / /A(0 = 1 for 0 < / < d\ — 1 = t 
and 0 otherwise. We proceed by induction on n, applying the caterpillar argument with 
B = k[Xu...,Xn-l]/(Xd

l\...,X
d
n
n_:{),R = A and m = dn. By induction, HB strictly 

increases to a flat top of length at most dn-\ and so at most dn (by the length of the flat 
top, we mean the number of integers where HB attains its maximum). Assume first that 
dn < f1 — Y%=l(di — 1) (equivalently dn < (t + 1)/ 2). The caterpillar cannot fit inside 
the flat top of HB, so HA increases strictly until the caterpillar is symmetrically situated 
about the peak of HB, and the flat top is of length 1 or 2, according to whether t is even 
or odd respectively. If dn > f (that is dn > (t+1)/ 2), the flat top of HA occurs when the 
caterpillar completely covers the graph of HB between 0 and tl and so the flat top begins 
at t* and ends at dn — 1. This completes the proof of the theorem. • 

If a is a real number, then [a] denotes the largest integer < a. 

By taking into account the symmetry of HA and by direct computation, we obtain the 
following reformulation of Theorem 1. 

COROLLARY2. Let A, t, f be as in Theorem!. Let u := min^, \tj 2]), v := max(jn — 
1, [(t +1)/ 2]). Then HA is strictly increasing in the interval [0, u], constant in the interval 
[u, v] and strictly decreasing in [v, t + 1]. We have: v = t — u. The flat top of HA is of 
length max(Jn — Z7,1) for t even and max(J„ — / , 2) for t odd. m 

We say that a O-sequence H is differentiate on [0, a] if the sequence V H defined by 
V H(i) = H(i) — H(i — 1) is an O-sequence on [0,a] (that is, the defining condition 2.2 
(iii) of [S, page 61] is satisfied for n G [0, a - 1]). (Recall that H(i) = 0 for i < 0). 

LEMMA 3. Let H be a differentiate O-sequence on [0, a]. Let d > 0 be a positive 
integer. Let G be defined by G(i) = H(i) — H(i — d). Then G is an O-sequence on [0, a]. 

PROOF. We can assume that a is an integer. Let H' be defined by H'(i) = H(i) for 
/ < a and H'{i) = H(a) for / > a. Then H' is a differentiate O-sequence, so by [GMR] 
there is a reduced graded fc-algebra D with Hilbert function //, where & is an infinite field. 
Thus, D has a non-zero-divisor/ of degree 1. Then on [0, a], G is the Hilbert function of 
Dj' fd, completing the proof of the lemma. • 

THEOREM 4. Let the notation be as in Theorem 1 and Corollary 2. Then HA is dif-
ferentiable in the interval [0, v]. 
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PROOF. By [G, (141.(9e))], we have for all i, VHA(i) = HB(i) - HB(i - dn) (this 
can be seen easily in the caterpillar image. As the argument increases from i — 1 to /, HB 

gains HB(i) at the head and loses HB(i — dn) at the tail). 
We assume by induction on n that HB is differentiable on [0, i J 2]. HA is then differen

t ia te on [0, i J 2] by Lemma 3. V HA is decreasing in |Y/ 2,t—u\. Indeed, in this interval 
HB(i) is decreasing and HB(i — dn) is increasing so V HA(i) — HB(i) — HB(i — dn) is de
creasing. (In the caterpillar image, the head is descending and the tail is still climbing). 
Thus HA is differentiable in [0, t — u] — [0, v]. • 

For / < r /2, we have V HA(i) = 0 ^=> HB(i) = HB(i - dn) = 0 (indeed, if 
VHA(i) = 0 and i < tj 2, then u + 1 < / < tj 2, so i < i and HB(i) = 0). 

We have proved that H = HA is differentiable in its interval of increase. It is not 
clear if a similar result holds for differentiability of second order of //, i.e. is H twice 
differentiable in the interval of increase of V HI 

It follows from the formula V HA(i) = HB(i) - HB(i - dn) that V HA(i) = HB(i) for 
/ < dn. Hence, HA is twice differentiable in [0, min(Jn, v

7)], where [0, v7] is the interval 
of differentiability of HB. 

We now turn to the proof of the Stanley observation. 

THEOREM 5. Let k be a field ofzero characteristic, A = k[X\,... ,Xrt]/(Xf',... ,Xjf") 
= k[x\,... ,xn]for 1 < d\ < - • • < dn. Let m > 1 and letf be a nonzero homogeneous 
element in A such that (x\ + • • • + xn)

mf = 0. Then, deg/ > (t — m + 1)/ 2, where 
f = £ ? = 1 ( 4 - l ) . 

PROOF. By induction on deg/. First let deg/ = 0, so (x\ + • • • + xn)
m — 0. Assume 

that deg/ < (t - m + 1)/ 2, that is f > m. As / = £?=i(<*i - 1) and char A: = 0, in the 
expansion of (Xi + • • • + Xn)

m there occurs a monomial X1/ • • -Xl£ with /,- < 4 — 1 f° r a ^ 
j , thus (JCI + • • • + xn)

m ^ 0, a contradiction. It follows that deg/ > (t — m + 1)/ 2. 
Let deg/ > 0. Set B = k[Xu... ,X„_i]/ (Xf1,... , ^ r j ), X = Xn, /? = B[X] and 

d = dn, so A = R/ RXd. Let 5 = JCI + • • • + xn-\ +X and let F be a homogeneous element 
of R whose canonical image in A is / . (Notice that R = B[X] has a natural grading 
which is determined by the grading of B, X being homogeneous of degree 1). We have 
SmF = GXd, where G G R. Differentiate with respect to X to obtain: (SmF)f = mSm~lF+ 
SmFf = G'Xd+dGXd-\ Hence, Sm~\mF^SP) = 0 mod (X^1). Multiply by S to obtain 
that Sm+lFi = 0 mod (Xd~l). As charfc = 0, by the inductive assumption on the degree, 
we obtain: d e g / = d e g F = l+degf" > l + ((f- l ) - ( m + l ) + l ) / 2 = ( r - m + l ) / 2 . • 

COROLLARY 6. Let k be a field of zero characteristic, A = 
A:[Xi,...,Xn]/(Xf«,...,X^) = k[xu...,xn]forl < dx < < dn. Let f be a nonzero 
homogeneous element in A such that (x\ + • • -+xn)f — 0. Then, deg/ > max(^/ 2, dn — 1), 
where t = E?=iW-~ !)• 

PROOF. By Theorem 5 (for m — 1), we have: deg/ > t/2. We have as in the 
proof of Theorem 5: A = B[Xn]/ (Xf«), where B = k[Xx,...,Xn_j ] / (Xf],...,X%:{ ). 
Let F be a homogeneous element in B[Xn] which h a s / as its canonical image. Then, 
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(Xi + • • • + Xn)F = GXd
n
n for some G G B[Xn], so degF + 1 > dn. It follows that 

degf>dn-l. m 
The previous corollary implies part of the results presented above, namely that HA is 

differentiable in the interval [0, u] (see Theorem 4). 
Obviously, we may replace the element (JCI + • • • + xn) in Corollary 6 by any element 

of the form c\X\ + • • • + cnxn, where c\,..., cn are nonzero scalars. 
As remarked by Ed Davis (SUNY at Albany), Corollary 6 is false in the case k is of 

finite characteristic. Indeed, let k be of finite characteristic p, let dn be a power of/?, so 
fd" = o for any homogeneous element/ of positive degree in A. We can certainly have 
dn < tj 2, so the annihilator of/ contains the element/^"-1, which is of degree < tj 2 
( i f d e g / = l ) . 

Motivated by the previous presentation, especially by Theorem 5, we introduce the 
following 

DEFINITION. Let A be a graded fc-algebra. Let s be a nonzero homogeneous element 
of degree d. The element s is called faithful if for all / > 0, the map A,- —-• A;+̂  induced 
by multiplication by s is an injection or a surjection. The element s is strongly faithful if 
sl is faithful for all i > 0. 

By definition a strongly faithful element is faithful. 
In case (Fi , . . . , Fn) is a complete intersection in fc[Xi,... ,X„] and F is a nonzero 

homogeneous polynomial, we say that F is faithful (strongly faithful) with respect to 
the given complete intersection if its canonical image in k[X\,... ,Xn]/(Fi, . . . ,Fn) is 
faithful (strongly faithful). 

Let A be a 0-dimensional (graded standard) Gorenstein ̂ -algebra. Let t be the maximal 
integer for which At ^ 0, so that HA(Ï) = HA(Î — Ï) for all /. Assume that HA is increasing 
on [0, tj 2] (as is the case if A is a complete intersection). Let s be a nonzero homogeneous 
element of degree din A. Using the perfect pairing A/ x At-t —> At = k induced by 
multiplication, we see that multiplication by s induces an injection At —> Ai+d if and 
only if it induces a surjection At-i-d —• Ar_/. Since HA(Î) < HA(i + d) if and only if 
i < (t — d)j 2, we have that s is faithful if and only if it induces injections A, —• A ^ for 
i <(t — d)/ 2, equivalently it induces surjections A( —• Ai+d for i>(t — d)/ 2. 

For x in A, multiplication by JC will be denoted by Tx. 
For a given positive integer m, we denote by a = a (m) the greatest integer which is 

strictly less that mj 2 and by (3 = f3 (m) the least integer which is strictly greater than 
m 12. Thus a + f3 — m. Moreover (3 — a equals 1 if m is odd and equals 2 if m is even. 
Using the previous remarks, we obtain 

PROPOSITION 7. Let A be a 0-dimensional Gorenstein algebra such that HA is in
creasing on [0, tj 2]. Let s be a nonzero homogeneous element of degree d in A. Set 
a = a(t + d — 1) and (3 = (3(t + d — 1). Let B be the graded algebra Aj As. The 
following conditions are equivalent: 

(0) The element s is faithful in A. 
(1) Bp = 0. 
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(2) Bi = 0foralli>(t + d)/2. 
(3) The map Ts\Ap-<j is surjective. 

(4) The map TS\A( is surjective for all i > (t — d)j 2. 

(5) The map r5|Aa_j+i is injective. 
(6) The map Ts\At is injective for all i < (t — d)j 2. 

(7) If a is a nonzero homogeneous element in A such that sa = 0, then deg a > 
(t - d)j 2 (equivalently deg a > (t - d + 1)/ 2). 

PROOF. The equivalences (0) <^^ (4) <=> (6) and (3) <=> (5) were explained 
above. We have (1) 4=> (2) because B is a standard fc-algebra. Clearly (2) <̂ => (4), 
(1) <^> (3) and (6) <^> (7). • 

In particular, we conclude from the previous proposition that if (F\,..., Fn) is a com
plete intersection in k[X\,... ,Xn] and Fn+\ is a nonzero homogeneous polynomial, then 
Fn+\ is faithful with respect to this complete intersection if and only if the algebra 
k[X\,... ,X„]/(Fi, . . . ,Fn+\) is zero in degree (3 — fi(t(d\,...,dn+i)). Note that this 
condition is symmetric with respect to the polynomials F\,..., Fn+\. 

From Proposition 7 we obtain 

PROPOSITION 8. Let A be a 0-dimension Gorenstein algebra such that HA is increas
ing on [0, tj 2]. Let s be a nonzero element in A\. Set a = a(t) and (3 = (3 (t). Let B be 
the graded algebra AjAs. The following conditions are equivalent: 

(0) The element s is faithful in A. 
(1) Bp = 0. 
(2) Bt = 0foralli> t/2. 

(3) The mapTs\Ap-\ is surjective. 

(4) The map Ts\ A/_i is surjective for all i > t/ 2. 

(5) The map Ts\Aa is injective. 

(6) The map TS\A( is injective for all 0 < / < t/2. 

(7) If a is a nonzero homogeneous element in A such that for some m > 1 we have 
sma = 0, then deg a > ((* + 1)/ 2) - m. m 

Similarly we have 

PROPOSITION 9. Let A be a 0-dimensional Gorenstein algebra such that HA is in
creasing on [0, t/2]. Let s be a nonzero element in A\. The following conditions are 
equivalent: 

(0) The element s is strongly faithful in A. 

(1) The map Tst-n : At —* Af_/ is bijectivefor all 0 < i < t/2. 

(2) The map Tsm : At —^ Am+t is surjective for all m + 2i> t. 

(3) The map Tsm : At —> Am+t is injective for all m + 2i < t. 

(4) Fori < m < t, if &m) is the graded algebra A/Asm, then C\m) = Ofor i > 
(t + m)/ 2. 
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(5) If a is a nonzero homogeneous element in A such that for some m > 1 we have 
sma — 0, then deg a > (t — m)j 2 (equivalently deg a > (t — m + 1)/ 2). m 

For general 0-dimensional Gorenstein algebras linear faithful elements do not neces
sarily exist even in zero characteristic [S, Example 4.3]: indeed, using the notations of 
this example, for a given s > 4, if there exists in R a linear faithful element v = (w, <j> ) 
then multiplication by v induces a surjection R\ —• R2, so it follows from the defini
tions that multiplication by w in 5 induces a surjection S\ —• 52, which is impossible 
since dim* S\ < dim* 52. In case of finite characteristic, we have already seen that lin
ear faithful elements do not necessarily exist even for complete intersections of the form 
(Xf l,..., X„n). On the other hand, if the characteristic is 0, Theorem 5 states that for com
plete intersections of the type (Xf1,... ,Xf"), any linear element c\X\ + ... cnxn with all 
the coefficients Q nonzero, is strongly faithful. 

Obviously, if s is a strongly faithful element of degree 1 in a 0-dimensional Goren
stein algebra A, then s* ̂  0. Nevertheless, for a faithful element of degree 1, this extra 
condition does not imply that the element is strongly faithful. Indeed, for any field k and 
3 < m < n consider the complete intersection k[x,y] = k[X, Y]/ (jr^X+Y)"-"1*2}™-2). 
Let s = x+y. We have k[x, y]/ (s) = k[X]/ (Xm), thus this algebra is zero in degree m. But 
t = m + n — 2 and m < n, so m < (3 (t) and s is faithful by Proposition 8, (1) ^=^ (0). 
If s* — 0, then for 5 = X + y, there are homogeneous polynomials/ and g such that 

Sn+m-2 =pr+ gsn-m+iym-i^ I t f o l l o w s t h a t S
n~m+2 divides/, so 52m~4 belongs to the 

ideal generated by X™ and Y™-2. Now t(m,m — 2) = 2m — 4, so this contradicts the 
fact that 5 is strongly faithful with respect to the complete intersection (Xm, Ym~1). We 
conclude that s* ^ 0. The element s is not strongly faithful because s

n~m+2yn~2 = 0 and 
(n - m + 2) + 2(m - 2) = t (Proposition 9, (0) <̂ => (5)). 

We now express the property of (F\,..., Fn) being a complete intersection in terms of 
the coefficients of the polynomials F\,...,Fn. Let 1 < d\ < • • • < dn be given integers. 
Let (Fi , . . . , Fn) be homogeneous polynomials in k[X\,... ,Xn] of degrees d\,..., dn re
spectively. For a given j , let CMj be the set of all monomials of degree j . For any /, let 
Fi — ^MeHi CÏMM with C^M in k. Let (Mi,... ,Mr) be all monomials of degree t + 1 
w i th r= ("+

+/).For any sequence of r polynomials of the form MFt with M a monomial 
of degree t + 1 — di consider the matrix of the coefficients of these polynomials with 
respect to (Mi,... ,M r). Let Si be the set of all such matrices, so Si is finite. Clearly the 
ideal / = (Fi, . . . ,Fn) is a complete intersection if and only if dim/,+1 = r, equiva
lently det C 7̂  0 for some matrix C in SA. Thus the set of complete intersections is open 
with respect to the Zariski topology in the affine space defined by the coefficients of the 
polynomials Ft. 

Generally, we say that a property of a sequence of polynomials (Fi , . . . , Fn ) of degrees 
d\,...,dn respectively, is generic over k if it holds for an open subset of the affine space 
defined by the coefficients which contains a rational point over k. Thus generically, a 
sequence of polynomials (F\,..., Fn) of given degrees is a complete intersection (for 
arbitrary characteristic). 
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Let s — e\x\ + ••• + enxn be a linear element in A = k[x\,... ,xn] = 
k[X\,..., Xn] I {F\,..., Fn) with et in k. We express the property of s being faithful in A in 
terms of the coefficients ej and ciyM. Assume that (F\,..., Fn) is a complete intersection. 
By Proposition 8(1), the element s is faithful if and only if the algebra 
fc[Xi,...,Xn]/(Fi,... ,F„,s) is zero in degree f3 = (3(t). Equivalently, this means that 
for the ideal J = (F\,..., Fn, s) we have Jp = k[X\ ,...,Xn]p. Similarly to the argument 
proving the genericity of complete intersection, we obtain that the set of complete inter
sections with linear faithful elements is an open subset in the Zariski topology (of the 
affine space defined by the coefficients ej and c^). 

We see that for any field k and given integers (d\,...,dn), a complete intersection 
of type (d\,...,dn) has generically a linear faithful element if and only if there exists a 
complete intersection over k with a linear faithful element. 

For a given complete intersection (F\,..., Fn) there is a finite set of polynomials !P in 
k[X\,...,Xn] such that an element e\X\+- • •+enxn\s faithful if and only if P(e\,... ,en) ^ 
0 for some polynomial P in (P. Hence if k is infinite this property holds if and only 
if for algebraically independent elements u\,...,un over k, P(u\,..., un) ^ 0 for some 
polynomial P in CP. This means that the existence of linear faithful elements is equivalent 
to the element u\X\ + • • • + unxn being a faithful element in the algebra A (g)* k(u\,..., un). 

For a given algebraically closed field k and integers 1 < d\ < • • • < dn, let k[C,E] = 
£ [ Q M , £ I , . . . , En] be a polynomial ring over k, the indeterminates corresponding to the 
coefficients C^M and e i , . . . ,en in the previous notation. We have seen that there is a 
determinantal ideal J\ in k[C] which defines the complement of the set of complete in
tersections of type (d\,..., dn). Also there is a determinantal ideal J^ in k[C,E] which 
determines among the set of complete intersection of type {d\, • • •, dn) those with no lin
ear faithful elements. Thus any complete intersection of type (d\,..., dn) over k has a 
linear faithful element if and only if J\ Ç y/j2. Moreover this criterion is algorithmic. 
(The ideals J\ and J2 are in fact defined over the prime field). 

Similar results hold for linear strongly faithful elements. 

In case char & = 0, by Theorem 5, the set of complete intersections which have linear 
strongly faithful elements contains a rational point over k. Hence we sum up part of the 
previous discussion as follows: 

THEOREM 10. If char k = 0, then a sequence of n polynomials in k[X\,... ,Xn] of 
given degrees is generically a complete intersection with linear strongly faithful ele
ments. 

Ifk is infinite the existence of a linear (strongly) faithful element for a given complete 
intersection is equivalent to the element u\X\ + . . . unxn being (strongly) faithful with 
respect to the algebra A<S>k k(u\,..., un), where u\,...9un are algebraically independent 
elements over k. m 

In case n = 1, i.e. A = fc[X]/X*+1, every nonzero linear element is strongly faithful. 
For n = 2 w e have 
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PROPOSITION 11. Let A = k[Xi,X2]/(FuF2) be a complete intersection. Then, if 
d\ — d2, every nonzero linear element of A is faithful. If d\ < d2f then a linear element 
s is faithful <̂ => S / Fu ink[XuX2]. 

PROOF. First assume that d\ = d2, so tj 2 = d\ — 1. We obtain from degree consid
erations that every nonzero linear element of A is faithful. 

Now assume that d\ < d2. Clearly s is not faithful if S divides F\. Assume that S 
does not divide F\ and let SG G (F\, F2) for some homogeneous polynomial G of degree 
< tj 2, thus deg G < d2 — 1. It follows from degree considerations that SG G (Fi), so 
F\ divides G and s is faithful. • 

We can partly generalize Proposition 11 as follows: for any complete intersection in 
k[X\,..., Xn] such that (// 2) +1 < dn, a nonzero linear element is faithful if and only if 
it is not a zero-divisor mod(Fi,... , Frt_i ). As a result of Proposition 11 we obtain 

COROLLARY 12. Let A — k[X\,X2]/ (F\,F2) be a complete intersection. There are 
no linear faithful elements in A if and only ifd\ < d2y the field k is finite and X\X2 —X^X\ 
divides F\y where q is the number of elements ofk. m 

For the next theorem we need 

LEMMA 13. Let k be afield of zero characteristic and set R = k[X, Y]. For given m 
and n, let W be an m-dimensional subspace ofRm+n. Let u be a transcendental element 
over k. For any k-vector space V, denote V <g>k k(u) by V(u). We have 

Rm+n(u) = W(U) ®(X+ uY)mRn{u). 

PROOF. We consider the ring T = k[u,X, Y] with the grading inherited from k[X, Y], 
so To = k[u\. Let S — X + uY. From dimension considerations it is enough to show 
that SmTn D k[u]W = (0). Let G be a nonzero element in Tn such that SmG belongs to 
this intersection. Write G = SrGo with Go not divisible by S in T. Consider k[u,X, Y] 
as a polynomial ring in u over k[X, Y]. Differentiate SmG = Sm+rGo with respect to 
u : (SmG)' = Sm+r-{Gu where Gx = (m + r)YGQ + SG'0 is not divisible by S in T. Thus 
we obtain inductively polynomials G,- not divisible by S such that (5mG)(l) = Sm+r~lGt 
for 0 < i < m. Now, the m + 1 forms (SmG)(l) belong to W(u) and they are linearly 
independent over k(u): otherwise for some 0 < j < m and for 0 < i < j there are 
polynomials at in k[u] such that a ; ^ 0 and, £(= 0 ai(Sm+r~lG() = 0. It follows that 
yw+r-y+i ^ 1 ^ 0CjSm+r~jGj, so S divides G/, a contradiction. The linear independence of 
these m + 1 forms contradicts the fact that dim^ W = m. • 

We obtain from the previous lemma by specializing the element u over k that there is 
an element c in k such that Rm+n = W 0 ( I + cY)mRn. 

THEOREM 14. Ifk is afield of zero characteristic, then any complete intersection in 
k[X\,X2] has a linear strongly faithful element. 

PROOF. Denote X\ by X and X2 by Y. Let / = (F, G) be a complete intersection in 
R = k[X, Y] and set t = deg F + deg G — 2 as usual. For a given / < {tj 2) set W — It-t, 
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m = dim* W and n = t — i — m. By the previous lemma and in the same notation, 
we have R(u)t-i — W(u) ® SmR(u)n. Therefore sm:An —» At-t is a surjection. (As usual 
A = R/ (F, G)). Now, m = dim* /,_/ >t — 2i because if H is the Hilbert function of the 
given complete intersection, we have I + t — i — dim/: /,_,- = H(t — i) = H(i) < i + 1. 
Thus n — t — i — m < / so sf~2l:A( —->• A,_; is also a surjection, hence an isomorphism 
because / /A(0 = tÎA(t— i). Therefore condition (1) of Proposition 9 is satisfied and so S 
is a strongly faithful element over k(u). By Theorem 10, the complete intersection (F, G) 
has a linear strongly faithful element over k. m 

PROPOSITION 15. Let k be an infinite field and n> I. The existence of linear faithful 
elements for any complete intersection in k[X\,... ,Xn+i] implies the existence of linear 
strongly faithful elements for any complete intersection in k[X\, ...,Xn]. 

PROOF. Let (Fi, . . . ,F„) be a complete intersection in k[X\,...,Xn], and let 
i i i , . . . , un+\ be algebraically independent elements over k. Set K = k(u\,..., un+\) and 
S = u\X\ + — - + un+\Xn+i. Let m > 1. By Theorem 10, S is faithful with respect to the 
algebra K[XU... ,Xn+l]/ (Fu • • . , F n , ^ + 1 ) . Since the algebras 

^[X1 , . . . ,Xn + 1]/(F1 , . . . ,Fw ,X^1 ,5)and 

^[X1 , . . . ,Xn]/(F1 , . . . ,Fw , (W lX1 + --. + WwZ„r) 

are isomorphic it follows from Propositions 8(2) and 9(4) that u\X\ +.. . unXn is a strongly 
faithful element for K[X\,...,Xn]/(F\,... ,Fn). By Theorem 10, the ^-algebra 
k[X\,..., Xn]/ (F n , . . . , Fn) has linear strongly faithful elements. • 

PROPOSITION 16. 77ze existence of linear strongly faithful elements for generic com
plete intersections of any type in k[X\,... ,Xn] implies the existence linear faithful ele
ments for generic complete intersections of any type in k[X\,... ,X„+i]. 

PROOF. If S is a linear strongly faithful element for a complete intersection 
(Fi , . . . , Fn) of type (d\,..., Jn) in k[X\,..., X„], then for any integer drt+i, X„+i + 5 is a 
faithful element for the complete intersection (F\,..., Fn, X^1 ) in /:[Xi,..., Xn+Î ]. Since 
this is a complete intersection of type (d\,..., dn+\) with a faithful element, this implies 
that generic complete intersections of type (d\,...,dn+\) have faithful linear elements. • 

Proposition 16 is a new result just for the case of finite characteristic; for the case 
of zero characteristic we know already that generic complete intersections have linear 
strongly faithful elements. We conjecture that the same holds for the case of finite char
acteristic; to show this it is enough to produce an example of a complete intersection 
with a linear strongly faithful element for any given type over a field of order p for any 
prime p. 

We conjecture that any complete intersection over a field of zero characteristic has 
linear faithful elements. By Proposition 15 it is equivalent to conjecture the existence of 
linear strongly faithful elements. 
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