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On Pointwise Estimates of Positive Definite
Functions With Given Support

Mihail N. Kolountzakis and Szilárd Gy. Révész

Abstract. The following problem has been suggested by Paul Turán. Let Ω be a symmetric convex body

in the Euclidean space R
d or in the torus T

d. Then, what is the largest possible value of the integral

of positive definite functions that are supported in Ω and normalized with the value 1 at the origin?

From this, Arestov, Berdysheva and Berens arrived at the analogous pointwise extremal problem for

intervals in R. That is, under the same conditions and normalizations, the supremum of possible

function values at z is to be found for any given point z ∈ Ω. However, it turns out that the problem

for the real line has already been solved by Boas and Kac, who gave several proofs and also mentioned

possible extensions to R
d and to non-convex domains as well.

Here we present another approach to the problem, giving the solution in R
d and for several cases

in T
d. Actually, we elaborate on the fact that the problem is essentially one-dimensional and investigate

non-convex open domains as well. We show that the extremal problems are equivalent to some more

familiar ones concerning trigonometric polynomials, and thus find the extremal values for a few cases.

An analysis of the relationship between the problem for R
d and that for T

d is given, showing that the

former case is just the limiting case of the latter. Thus the hierarchy of difficulty is established, so that

extremal problems for trigonometric polynomials gain renewed recognition.

1 Extremal Problems for Positive Definite Functions,
Periodic and Not

Let us denote Td :=
[
− 1

2
, 1

2

) d
⊂ Rd with the usual modified topology of periodicity,

that is, take the topology of Td := Rd/Zd. For Ω ⊆ Td any open domain1, we put

(1) F
∗(Ω) := { f : T

d → R : supp f ⊆ Ω, f (0) = 1, f positive definite },

and, analogously, when Ω ⊆ Rd is any open set,

(2) F(Ω) := { f : R
d → R : supp f ⊆ Ω, f (0) = 1, f positive definite.}

Recall that positive definiteness of functions (and even measures and tempered
distributions) can be defined or equivalently characterized by nonnegativity of the
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1Note that 0 /∈ Ω entails f (0) = 0, hence the function classes F∗(Ω) and F(Ω) defined in (1) and (2)
are empty; therefore, it suffices to restrict attention to the case 0 ∈ Ω.

401

https://doi.org/10.4153/CJM-2006-017-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-017-8


402 M. N. Kolountzakis and S. G. Révész

Fourier transform. In case (1) positive definiteness means f̂ (n) ≥ 0 (∀n ∈ Zd), while

in case (2) it means f̂ (x) ≥ 0 (∀x ∈ Rd).

In 1970 in a discussion with S. B. Stechkin [17], Paul Turán posed the following
problem. Let d = 1 and Ω := (−h, h) ⊂ T: what is the largest possible value of the
integral

∫
T

f over all f ∈ F∗((−h, h))? The question was later investigated in higher

dimensions and in Rd as well. As a natural condition for the above Turán extremal
problem, convexity of the underlying domain Ω is usually supposed.

For an account of the problem see [1, 9] and the references therein. However, no
authors seem to have noticed that Boas and Kac had already settled the analogous

(and relatively easy) case of an interval (−h, h) ⊂ R, see [3, Theorem 5].
The natural pointwise analogue of the above question of Turán for intervals in T

or R was studied in [2]. For general domains in arbitrary dimension these problems
can be formulated as follows.

Problem 1.1 (Boas–Kac-type pointwise extremal problem for the space) Let Ω ⊆
Rd be an open set, and let f : Rd → R be a positive definite function with supp f ⊆ Ω

and f (0) = 1. Let also z ∈ Ω. What is the largest possible value of f (z)? In other words,

determine

(3) M(Ω, z) := sup
f∈F(Ω)

f (z).

Remark 1.2 Obviously, M(Ω, z) ≤ 1, as

1 ± f (z) =

∫

R

(1 ± exp(2πizt)) f̂ (t) dt =

∫

R

(1 ± cos(2πzt)) f̂ (t) dt ≥ 0.

One might miss a more precise specification of the function class f : Rd → R

here and similarly in the problems listed below. The fact that considering L1, C or
C∞ leads to the same answer, i.e., the same extremal values, will be discussed at the

beginning of §2.

Problem 1.3 (Turán-type pointwise extremal problem for the torus) Let Ω ⊆ Td

be any open set, and let f : Td → R be a positive definite function with supp f ⊆ Ω and

f (0) = 1. Let also z ∈ Ω. What is the largest possible value of f (z)? In other words,

determine

(4) M
∗(Ω, z) := sup

f∈F∗(Ω)

f (z).

Remark 1.4 Let Ω ⊆ (− 1
2
, 1

2
)d and f : Ω → R. For the function f to be positive

definite on the torus means a nonnegativity condition for the Fourier transform

f̂ (ξ) =

∫

Rd

e2πi〈ξ,x〉 f (x) dx

only for a discrete set of values of ξ, namely ξ ∈ Zd, while positive definiteness of f

as a function on Rd is equivalent to nonnegativity of the Fourier transform f̂ for all
occurring values. From this it follows that we always have

(5) M
∗(Ω, z) ≥ M(Ω, z).
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The extremal value in Problem 1.1 was estimated together with its periodic ana-
logue Problem 1.3 in [2] for dimension d = 1. However, Boas and Kac had already

solved the d = 1 case of Problem 1.1, which seems to have been unnoticed in [2].
These problems are not only analogous, but also related to each other and, in fact,

Problem 1.1 is only a special limiting case of the more complex Problem 1.3 (see The-
orem 6.6). On the other hand, Boas and Kac have already observed that Problem 1.1

(dealt with for R in [3]) is connected to trigonometric polynomial extremal prob-
lems. In particular, from the solution to the interval case they deduced the value (20)
below of the extremal problem due to Carathéodory [4] and Fejér [5]. They also es-
tablished a connection (see [3, Theorem 6]) that corresponds to the one-dimensional

case of the first part of our Theorem 2.1.
It is appropriate at this point to consider also the following type of trigonometric

polynomial extremal problems. Let us define for any H ⊆ N2 := N ∩ [2,∞),

(6) Φ(H) :=
{

ϕ : T → R+ | λ ∈ R, ϕ ≥ 0,

ϕ(t) ∼ 1 + λ cos 2πt +
∑

k∈H

ck cos 2πkt
}

and with a given m ∈ N2 and H ⊆ N2 also

(7) Φm(H) :=
{

ϕ : T → R | λ ∈ R, ϕ
( j

m

)
≥ 0 ( j ∈ Z),

ϕ(t) = 1 + λ cos 2πt +
∑

k∈H

ck cos 2πkt
}

.

Problem 1.5 (Carathéodory–Fejér type trigonometric polynomial problem)
Determine the extremal quantity

(8) M(H) := sup{λ = 2ϕ̂(1) | ϕ ∈ Φ(H)}.

Remark 1.6 Observe that M(H) ≤ 2, always, as

|λ/2| = |ϕ̂(1)| ≤ ‖ϕ‖1 =

∫
ϕ = ϕ̂(0) = 1.

Problem 1.7 (Discretized Carathéodory-Fejér type extremal problem) Determine

(9) Mm(H) := sup{λ = 2ϕ̂(1) | ϕ ∈ Φm(H)}.

Remark 1.8 It should be remarked here that obviously we have Φ(H) ⊆ Φm(H).
So we always have Mm(H) ≥ M(H).

In this note we present the exact solution of Problem 1.1 that is in line with what
Boas–Kac [3] suggests. Actually, we have to acknowledge that Boas and Kac men-
tioned the possibility of extending one of their methods, the Poisson summation, to
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higher dimensions, so some parts of what follows can be interpreted as implicitly
present already in their work [3]. But here we also obtain some results for the more

complex periodic version.
However, the main result of the present investigation is perhaps the understand-

ing that the above point-value extremal problems are in fact equivalent to the above
trigonometric polynomial extremal problems, thus transferring information on one

problem to the equivalent other problem in several cases. Until now the equivalence
formulated below remained unclear in spite of the fact that Boas and Kac found ways
to deduce the solution of the trigonometric extremal problems in Problem 1.5 from
their results on Problem 1.1. We also obtain a clear picture of the limiting relation be-

tween torus problems and space problems, and, parallel to this, between the finitely
conditioned trigonometric polynomial extremal problems of Problem 1.7 and the
positive definite trigonometric polynomial extremal problems of Problem 1.5.

2 Preliminaries: Formulation of the Equivalence Results

Note that in the above definitions (1), (2) or (6), (7) it is left a bit unclear what
function classes are considered as Rd → R, Td → R or T → R. However, this

causes no ambiguity, since it is not hard to see that the extremal problems (3), (4),
(8) or (9) yield the same extremal values when integrable functions (with continuity
of f supposed only at z in case of (3) or (4)) are considered, and when compactly
supported C∞ functions are taken into account. Indeed, on T or Td this follows after

a convolution by the Fejér kernels. The same way we can restrict ourselves even to
trigonometric polynomials in Φ(H) or Φm(H) as well.

Passing on to the case of the real space Rd, first we show that it suffices to consider
bounded open sets only. To this end let us consider the auxiliary positive definite

function

(10) ∆R(x) :=
1

|BR/2|
χBR/2

∗ χBR/2

with Br := {x ∈ Rd | |x| ≤ r}, and take fN := f ∆N to obtain

M(Ω, z) = lim
N→∞

M(ΩN , z) = lim
N→∞

M(int ΩN , z),

where ΩN := {x ∈ Ω | |x| ≤ N} = Ω ∩ BN , and thus ΩN ⊆ int ΩN+1.

Next observe that for any bounded open Ω, the condition supp f ⊆ Ω entails that
supp f is compact and of a fixed positive distance η from the boundary of Ω. Thus
convolution of f with the (convolution) square of some approximate identity kδ with
supp kδ ⊆ Bδ leads to a function fδ := f ∗kδ∗kδ satisfying supp fδ ⊆ supp f +B2δ ⊆ Ω

if δ < 1
2
η. Hence, with a smooth kδ we have fδ ∈ F(Ω) ∩C∞(Ω), while for arbitrary

fixed ǫ > 0 and with δ correspondingly small enough, fδ(z) ≥ f (z) − ǫ, in view of
the continuity of f at z.

Now let us define for z ∈ Ω the derived set

(11) H(Ω, z) := {k ∈ N2 | kz ∈ Ω, −kz ∈ Ω}.
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Our first goal is to show that in fact the Boas–Kac type Problem 1.1 is a one-
dimensional problem. This is contained in the following result.

Theorem 2.1 Let 0 ∈ Ω ⊆ Rd be any open set and z ∈ Ω ∩ (−Ω). With the above

notations we have

M(Ω, z) =
1

2
M(H(Ω, z)).

Remark 2.2 Note that in case z ∈ Ω, z /∈ −Ω, we trivially conclude that

M(Ω, z)= 0 since for all f ∈ F(Ω), supp f ⊆ Ω ∩ (−Ω) follows from (16) below.
Also 0 ∈ Ω is necessary, for a positive definite function f must vanish everywhere if
0 /∈ supp f .

To tackle the Turán-type Problem 1.3, one may consider f ∈ L1(Td) with conti-
nuity supposed at z, or even f ∈ C∞(Td).

Here positive definiteness of f is equivalent to f̂ (n) ≥ 0 (∀n ∈ Zd), and, simi-
larly to (16), one gets f (x) = f (−x) (∀x ∈ Td). Thus supp f is symmetric, hence

supp f ⊆ Ω ∩ (−Ω).
Once again we see that (4) vanishes unless z ∈ Ω ∩ (−Ω) and that it suffices to

restrict ourselves to sets symmetric about the origin. In other words, if z /∈ Ω or if
z /∈ (−Ω), then M∗(Ω, z) = 0, while for z = 0 obviously M∗(Ω, 0) = 1. These are

the trivial cases, and for the remaining cases we introduce a further notation. Put

(12) Z := Z(z) := {nz (mod T
d) | n ∈ Z}.

The set Z is finite if and only if we have z ∈ Qd, that is, z = (
p1

q1

, . . . , pd

qd
) with

p j , q j ∈ Z, (p j , q j) = 1( j = 1, . . . , d). In this case we have with m = [q1, . . . , qd],
the least common multiple of the denominators, that mz = 0(modTd), and for ar-

bitrary n, n ′ ∈ Z nz = n ′z(modTd) if and only if n ≡ n ′(modm).
Let us keep the definition (11) with an interpretation (modTd) for infinite #Z.

On the other hand, in case #Z = m we put

(13) Hm(Ω, z) := {k ∈ [2, m/2] | kz ∈ Ω, −kz ∈ Ω} = H(Ω, z) ∩ [2, m/2].

Moreover, for any set H ⊂ Z we define

H(m) := {k ∈ [2, m/2] | ∃h ∈ H such that ± k ≡ h (mod m)}.

Remark 2.3 Note the following relations for an arbitrary H ⊆ N2. First, if there

exists any index k ∈ H with k ≡ 1(mod m), then we obtain Mm(H) = ∞, because
1+a cos 2πt−a cos 2kπt is nonnegative at j/m for all j = 1, . . . , m and for any a ∈ R.
Similarly, for k ≡ ℓ (mod m) cos 2kπt − cos 2ℓπt vanishes at all points of the form
j/m, hence the frequencies can be changed mod m to reduce ϕ to a trigonometric

polynomial of degree at most m. Moreover, since this can be used even for negative
indices, and as cos(−k2πt) = cos k2πt , we can reduce the support of ϕ̂ to [0, m/2].
That is, either Mm(H) = ∞ (in case there is a k ∈ H with k ≡ 0,±1(mod m)), or
Mm(H) = Mm(H(m)).
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Now we can formulate

Theorem 2.4 Let 0 ∈ Ω ⊆ Td be any open set and z ∈ Ω∩ (−Ω). Then the extremal

quantity (4) depends only on the set Z. In case #Z is infinite, we have

(14) M
∗(Ω, z) =

1

2
M(H(Ω, z)).

In case #Z = m is finite, we have

(15) M
∗(Ω, z) =

1

2
Mm(Hm(Ω, z)).

3 Proof of Theorem 2.1

First note that it suffices to consider symmetric sets Ω ′ = Ω ∩ (−Ω) only. Indeed, if

Ω is arbitrary, and f ∈ F(Ω), f ∈ C∞
0 (Rd), then by f̂ ≥ 0 Fourier inversion yields

(16) f (x) = f (x) =

∫
f̂ (y)e2πi〈x,y〉 dy =

∫
f̂ (y)e−2πi〈x,y〉 dy = f (−x).

Thus for all f ∈ F(Ω), supp f is necessarily symmetric. On the other hand, H(Ω, z)
is symmetrized by definition (11) with respect to Ω. Hence we can restrict ourselves
to symmetric sets. Without loss of generality we can assume that Ω is also bounded.

Now given a bounded symmetric open set Ω the proof consists of proving the two
inequalities below.

M(Ω, z) ≤ M(H(Ω, z))/2(A)

Let f have f (0) = 1, be positive definite and have support in Ω. Define also the

positive definite Radon measure

µz :=
∑

k∈Z

δkz.

The function f being continuous, the measure

(17) νz = f · µz =

∑

k∈Z

f (kz)δkz

is well defined and positive definite as well.

Notice now, because of the boundedness of Ω, that the sum in (17) is actually a
finite one. More precisely, if we have e.g., Ω ⊆ Bn, then we find

νz :=

n−1∑

k=−(n−1)

f (kz)δkz = δ0 + f (z)(δz + δ−z) +
∑

k∈H(Ω,z)

f (kz)(δkz + δ−kz),
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and that

0 ≤ ν̂z(x) = 1 + 2 f (z) cos 2π〈z, x〉 +
∑

k∈H(Ω,z)

2 f (kz) cos 2πk〈z, x〉, (x ∈ R
d).

Setting t = 〈z, x〉 and observing that the trigonometric polynomial

1 + 2 f (z) cos 2πt +
∑

k∈H(Ω,z)

2 f (kz) cos 2πkt

is nonnegative, we obtain 2 f (z) ≤ M(H(Ω, z)).

M(Ω, z) ≥ M(H(Ω, z))/2(B)

For a function ϕ : T → R let us call the (restricted) spectrum of ϕ the set S :=
S(ϕ) := supp ϕ̂ ∩ N2 ⊆ N2. Also, we will use the term full spectrum and the notation
S ′ := S ′(ϕ) for the set S ′ := {−1, 0, 1} ∪ S ∪ (−S), whether the exponential Fourier

coefficients at −1, 0 or 1 happen to vanish or not.
Take any trigonometric polynomial ϕ ∈ Φ(H) with spectrum S ⊆ H := H(Ω, z).

Recall that taking the supremum in (8) over the function class (6) yields the same
result as considering such trigonometric polynomials only. Consider the measure

αz := δ0 + (λ/2)(δz + δ−z) +
∑

k∈S

(ck/2)(δkz + δ−kz),

whose Fourier transform is essentially equal to the polynomial ϕ(t) in (6). Hence αz

is a positive definite measure.
Take now the “triangle function” ∆ǫ defined as in (10), but here with a subscript

ǫ small enough to guarantee that

(1) the sets kz + Bǫ, k ∈ S ′, are disjoint, i.e., ǫ < |z|
2

;
(2) these sets are all contained in Ω, i.e., ǫ < dist{∂Ω, S ′z}.

Finally define
f := αz ∗ ∆ǫ,

which is a positive definite function supported in Ω with value 1 at the origin and
with f (z) = λ/2. This proves that M(Ω, z) ≥ M(H(Ω, z))/2, as desired.

4 Applications of Theorem 2.1

The first application concerns the original convex case of the pointwise Boas–Kac
type problem formulated in Problem 1.1. A symmetric, bounded convex domain

with nonempty interior, i.e., a convex body, defines a norm. So for a vector x let ‖x‖
denote the norm of x defined by Ω, that is

‖x‖ := inf{λ > 0
1

λ
x ∈ Ω}.

In other words, Ω is the unit ball of the norm ‖ · ‖.
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Corollary 4.1 (Boas–Kac [3]) Let Ω ⊆ Rd be a convex open domain, symmetric

about 0. Suppose that

(18)
1

n + 1
≤ ‖z‖ <

1

n
,

for some n ≥ 1. Then

M(Ω, z) = cos
π

n + 2
.

Proof of Corollary 4.1 First observe that for the symmetric, convex, bounded, open

set Ω the norm of z satisfies (18) if and only if H(Ω, z) = [2, n]. Thus by Theorem
2.1 the problem reduces to the extremal problem

(19) Mn := sup{λ | ∃ϕ(t) ≥ 0, ϕ(t) = 1 + λ cos 2πt +

n∑

k=2

ck cos 2πkt}.

This problem was settled by Fejér, see e.g., [5] or [6, pp. 869–870]. To finish the proof,
we quote from these or from [11, Problem VI. 52, p. 79] the formula

(20) Mn = 2 cos
π

n + 2
.

Note that [2, Theorem 2] gave the estimate n
n+1

≤ M(Ω, z) ≤ 1
2
(1 + cos( π

n+1
)) for

the one-dimensional case. The above exact solution and some calculation shows that
both of these estimates are sharp for n = 1, but none of them is for n > 1. However,

this is covered (at least for d = 1) by [3, Theorem 2].
Now the n → ∞ limiting case easily leads to

Corollary 4.2 (Boas–Kac [3]) Suppose that the open set Ω ⊆ Rd contains all integer

multiples of the point z ∈ Rd. Then M(Ω, z) = 1.

Moreover, we also derive easily the d-dimensional extension of [3, Theorem 3].

Corollary 4.3 (Boas–Kac) Suppose that for some n ∈ N the open set Ω ⊂ Rd contains

no integer multiples kz of the point z ∈ Rd with k > n. Then we have again M(Ω, z) ≤
Mn = 2 cos π

n+2
.

Apart from the convex case there are several cases of (3) when through the trigono-
metric extremal problem (8), either the precise value, or at least some estimate can

be found.

Theorem 4.4 Let Ω be a symmetric open set and z ∈ Ω. Then the value of the ex-

tremal quantity (3) satisfies the following relations.

(i) If H(Ω, z) = {n}, then M(Ω, z) =
1

2 cos π
2n

.

(ii) If H(Ω, z) = N2 \ {n}, then M(Ω, z) = cos π
2n

.

(iii) If H(Ω, z) = (n,∞) ∩ N2, then M(Ω, z) =
1

2 cos π
n+2

.
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(iv) If H(Ω, z) = 2N + 1, then M(Ω, z) =
2
π .

(v) If H(Ω, z) = 2N, then M(Ω, z) =
π
4

.

Remark 4.5 The extremal quantities M and M are monotonic in the sets Ω and H,
respectively, hence the above relations imply the corresponding inequalities when we
know only that e.g., nz ∈ Ω, etc. We skip the formulation.

Proof of Theorem 4.4 In view of Theorem 2.1, the calculation of M(Ω, z) hinges on
finding the value of M(H(Ω, z)). The solutions of the corresponding trigonometric
polynomial extremal problems, relevant to the above list (i)–(v), can be looked up

from the literature as follows.

(i) An easy calculation, see [12].
(ii) See [12, Proposition 1].
(iii) See [13].

(iv) See the end of [16].
(v) See [15, pp. 492–493].

When M(Ω, z) is known for a certain H(Ω, z), then further cases can be obtained
via the following duality result.

Lemma 4.6 (see [12]) Let H ⊆ N2 be arbitrary. Then we have

M(H)M(N2 \ H) = 2.

In fact, this gives (ii) once (i) is known; (iii) and Corollary 4.3 and also (iv) and (v)
are similarly related, although they were obtained differently in the works mentioned
above.

To formulate the corresponding relation in Problem 1.1 we can record

Corollary 4.7 For any open set Ω ⊆ Rd and z ∈ Ω we have

M(Ω, z)M(Ω∗, z) =
1

2
,

where Ω∗ is any open, symmetric set containing 0, z and (N2 \ H(Ω, z))z, but disjoint

from H(Ω, z)z.

Ending this section, let us recall that investigation of Turán-type problems started

with keeping an eye on number theoretic applications and connected problems. The
interesting papers of Gorbachev and Manoshina [7, 8] mention [10].

Problem 4.8 Determine

∆(n) := sup{M(H)/2 | H ⊆ N2, |H| = n}.

We only know (cf. [12])

1 −
5

(n + 1)2
≤ ∆(n) ≤ 1 −

0.5

(n + 1)2
.

The question is relevant to the Beurling theory of generalized primes, see [14].

https://doi.org/10.4153/CJM-2006-017-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-017-8


410 M. N. Kolountzakis and S. G. Révész

5 Proof of Theorem 2.4

As above, without loss of generality we can restrict ourselves to sets Ω symmetric
about the origin. Similarly to the proof of Theorem 2.1, we are to prove two inequal-
ities for both cases.

Case #Z = ∞ : M∗(Ω, z) ≤ M(H(Ω, z))/2.

Let f ∈ F∗(Ω) ∩ C∞(Td). We consider the measure

σ(N)
z :=

N∑

k=−N

(
1 −

|k|

N

)
δkz.

This measure is positive definite since for all n ∈ Zd we have

σ̂(N)
z (n) =

∫

Td

e−2πi〈n,x〉dσ(N)
z (x) =

N∑

k=−N

(
1 −

|k|

N

)
e2πi〈n,kz〉

=: K(N)(2π〈n, z〉),

where K(N) is the usual Fejér kernel, which is nonnegative. Let us denote H(N) :=
H(Ω, z) ∩ [2, N].

The function f being continuous and even, the measure

(21) ρz := f · σ(N)
z = f (0)δ0 +

∑

k∈{1}∪H(N)

(
1 −

k

N

)
f (kz)(δkz + δ−kz)

is well defined and, by ρ̂z = f̂ ∗ σ̂(N)
z , is positive definite as well. In view of f (0) = 1

we now find for arbitrary n ∈ Zd that

0 ≤ ρ̂z(n) = 1 +
(

2 −
2

N

)
f (z) cos 2π〈z, n〉 +

∑

k∈H(N)

(
2 −

2k

N

)
f (kz) cos 2πk〈z, n〉.

Setting t := 〈z, n〉 yields

0 ≤ ϕN(t) := 1 + 2
(

1 −
1

N

)
f (z) cos 2πt +

∑

k∈H(N)

2
(

1 −
k

N

)
f (kz) cos 2πkt.

Since #Z = ∞, here for the various values of n ∈ Zd the derived variable t will be
dense in T.

Hence we can conclude that in the infinite case ϕN (t) ∈ Φ(H(Ω, z)). This gives

2
(

1 − 1
N

)
f (z) ≤ M(H(Ω, z)) for all N ∈ N. Whence the stated inequality.

Case #Z = m < ∞ : M∗(Ω, z) ≤ Mm(Hm(Ω, z))/2.

Let again f ∈ F∗(Ω) ∩ C∞(Td). Now we consider the measure

σz,m :=
1

2

[ m−1

2
]∑

k=−[ m−1

2
]

δkz +
1

2

[ m
2

]∑

k=−[ m
2

]

δkz.
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For all n ∈ Zd we have

σ̂z,m(n) =

∫

Td

e−2πi〈n,x〉dσz,m(x) = 1 +

[ m−1

2
]∑

k=1

cos 2πk〈n, z〉 +

[ m
2

]∑

k=1

cos 2πk〈n, z〉.

Since #Z = m < ∞, where m = [q1, . . . , qd] with z = (
p1

q1

, . . . , pd

qd
), (p j , q j) =

1( j = 1, . . . , d), for the various values of n ∈ Zd the derived variable t := 〈n, z〉
will cover exactly the values of j/m(mod T). For these values, however, direct cal-

culation shows that the above sum is either exactly m (in case n ≡ 0(mod m), i.e.,

t ∈ Z), or vanishes. Thus, again, the measure σz,m will be positive definite.
The function f being continuous and symmetric, the measure

(22) ρz,m := f · σz,m = f (0)δ0 +

[ m−1

2
]∑

k=1

f (kz)(δkz + δ−kz) +

[ m
2

]∑

k=1

f (kz)(δkz + δ−kz)

is well defined and, by ρ̂z,m = f̂ ∗ σ̂z,m, is positive definite as well. In view of f (0) = 1
we now find for all n ∈ Zd

(23) 0 ≤ ρ̂z(n) = 1 + 2 f (z) cos 2πt +

[
m−1

2
]∑

k=2

f (kz) cos 2πkt +

[ m
2

]∑

k=2

f (kz) cos 2πkt,

where t = 〈z, n〉 as above. So let us now write

ϕz,m(t) := 1 + 2 f (z) cos 2πt +

[
m−1

2
]∑

k=2

f (kz) cos 2πkt +

[ m
2

]∑

k=2

f (kz) cos 2πkt.

It follows that

ϕz,m(t) = 1 + 2 f (z) cos 2πt +
∑

k∈Hm(Ω,z)

c∗k cos 2πkt,

for some c∗k ∈ R. Similarly as above, (23) implies ϕz,m( j/m) ≥ 0 ( j = 0, . . . , m− 1).
That is, we conclude ϕz,m ∈ Φm(Hm(Ω, z)) and thus 2 f (z) ≤ Mm(Hm(Ω, z)). Hence
the statement.

Case #Z = ∞ : M
∗(Ω, z) ≥ M(H(Ω, z))/2.

Let ϕ be any trigonometric polynomial from the class (6). Then ϕ has (restricted)
spectral set S and full spectrum S ′ := {−1, 0, 1} ∪ ±S with S ⊆ H := H(Ω, z)
necessarily finite. Note that the supremum in the definition (8) of M(H(Ω, z)) can

be restricted to the trigonometric polynomials of (6).
Consider the measure

αz = δ0 + (λ/2)(δz + δ−z) +
∑

k∈S

(ck/2)(δkz + δ−kz),
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whose Fourier transform α̂z(n) = ϕ(〈z, n〉) (n ∈ Zd) is essentially the polynomial
ϕ(t) itself. Hence αz is a positive definite measure.

Now take the “triangle function” ∆ǫ, defined in (10), with a parameter ǫ small
enough to guarantee that

(1) the sets kz + Bǫ, (k ∈ S ′), are disjoint;
(2) these sets are all contained in Ω, i.e., ǫ < dist{∂Ω, S ′z}.

Since we consider only a finite subset S of H, and S ′ = {−1, 0, 1} ∪±S, these condi-
tions are met with some positive ǫ as no two different multiples of z are equal in Td.
Finally define

f := αz ∗ ∆ǫ,

which is a positive definite function supported in Ω with value 1 at the origin and

with f (z) = λ/2. This proves that M
∗(Ω, z) ≥ λ/2, hence taking supremum over all

polynomials ϕ ∈ Φ(H) concludes the proof.

Case #Z = m < ∞ : M∗(Ω, z) ≥ Mm(Hm(Ω, z))/2.

We denote here H := Hm(Ω, z). Now take any ϕ in (7).

Consider the measure

αz = δ0 + (λ/2)(δz + δ−z) +
∑

k< m
2
,k∈H

(ck/2)(δkz + δ−kz) + cm/2δmz/2,

with the last term appearing only if m is even and m/2 belongs to the spectral set (13).
Observe that for the true spectrum of this measure we have

(24) S∗ := supp α̂z := S∗(αz) ⊆ {−1, 0, 1} ∪ ±H \ {−m/2} = S ′ \ {−m/2},

where the last term (\{−m/2}) appears only if m is even. Thus it is easy to see that
the multiples kz (k ∈ S∗) are different even in Td.

Now let us prove that αz is positive definite. Taking n ∈ Zd arbitrarily, consider
the Fourier transform

α̂z(n) = 1 + λ cos 2π〈z, n〉 +
∑

k< m
2
,k∈H

ck cos 2πk〈z, n〉 + cm/2e−imπ〈z,n〉.

Here, by the condition 〈z, n〉 = j/m for some integer j, we have in the last term
e−mπ〈z,n〉 = (−1) j = cos π j = cos mπ〈z, n〉 and we get α̂z(n) = ϕ(〈z, n〉) = ϕ( j/n).
It follows that α̂z(n) ≥ 0 by definition (7).

Take now the “triangle function” ∆ǫ defined in (10) with a parameter ǫ small
enough to ensure

(1) the sets kz + Bǫ, (k ∈ S∗), are disjoint;
(2) these sets are all contained in Ω, i.e., ǫ < dist{∂Ω, S∗z}.

These conditions are met with some positive ǫ since no two different multiples
kz (k ∈ S∗) are equal in Td, and by definitions (7) and (24) we necessarily have
S∗z ⊆ Ω.
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Finally define

f = αz ∗ ∆ǫ,

which is a positive definite function supported in Ω with value 1 at the origin and

with f (z) = λ/2. This proves that M
∗(Ω, z) ≥ λ/2, hence taking supremum over all

polynomials ϕ ∈ Φm(H) concludes the proof.

6 Applications of Theorem 2.4 and Further Connections

Arestov, Berdysheva and Berens [2] mention the one dimensional symmetric interval

special case of the following fact.

Proposition 6.1 Suppose Ω ⊆
(
− 1

2
, 1

2

) d
is an open set. Then

M(Ω, z) ≤ M
∗(Ω, z).

Proof The original proof of [2] uses the natural periodization of functions f ∈
F(Ω). Taking g(x) :=

∑
n∈Zd f (x−n) maps F(Ω) injectively to F

∗(Ω), which proves
the proposition. However, we have also an alternative argument here, as Theorems
2.1 and 2.4 translate the extremal problems in question to extremal problems for
trigonometric polynomials. In case #Z = ∞ the Rd and Td interpretations of (11)

give HRd (Ω, z) ⊂ HRd (Ω + Zd, z) = HTd (Ω, z). For #Z = m < ∞HRd (Ω, z) ⊆
[2, m − 2]. Indeed, −z ∈ Ω ⊆ (− 1

2
, 1

2
)d, and as 0 6= mz but mz ≡ 0 (mod Td), we

obtain that (m − 1)z /∈ Ω in Rd, and similarly for k ≥ m kz /∈ [− 1
2
, 1

2
)d excludes the

possibility of k ∈ HRd (Ω, z). Thus it is easy to see that

(25) Mm(Hm(Ω, z)) = Mm(H(Ω, z) ∩ [2, m − 2]) = Mm(HRd (Ω, z)).

Now it is obvious that Φm(H) ⊇ Φ(H) and thus Mm(H) ≥ M(H) for arbitrary
H ⊆ N2, and we get the assertion even for the finite case.

Corollary 6.2 Let Ω ⊆ (− 1
2
, 1

2
)d be a convex, symmetric domain. Then we have

M
∗(Ω, z) ≥ w(‖z‖), where w(t) := cos

π

⌈1/t⌉ + 1
.

Proof Corollary 4.1 gives M(Ω, z) ≥ w(‖z‖). Thus combining Proposition 6.1 and
Corollary 4.1 proves the assertion.

Remark 6.3 The above estimate is a sharpening of (14) in [2, Theorem 3].

The following assertion is obvious both directly and by Theorem 2.1.

Proposition 6.4 For all open sets Ω ⊆ Rd and z ∈ Rd, α > 0 we have

M(αΩ, αz) = M(Ω, z).
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Proposition 6.5 For Ω ⊆
(
− 1

2
, 1

2

) d
open, z ∈ Td and N ∈ N we have

M
∗
( 1

N
Ω,

1

N
z
)
≤ M

∗(Ω, z).

Proof One can work out the generalization of the proof of [2, Lemma 5], which
is the one-dimensional interval special case of this assertion. Instead, we note that
k 1

N
z ∈ 1

N
Ω (mod Td) entails kz ∈ Ω (mod Td), and by Theorem 2.4 the #Z = ∞

case follows.
On the other hand for finite #Z(z) = m < ∞ we have #Z

(
1
N

z
)

= Nm and
Φm(H) ⊇ ΦmN (H). Thus combining (15) and (25) yields

2M
∗(Ω, z) = Mm(Hm(Ω, z)) = Mm(HRd (Ω, z))

= Mm

(
HRd

( 1

N
Ω,

1

N
z
))

≥ MmN

(
HRd

( 1

N
Ω,

1

N
z
))

= MmN

(
HmN

( 1

N
Ω,

1

N
z
))

= 2M
∗
( 1

N
Ω,

1

N
z
)

.

The next assertion is the generalization of [2, Theorem 4].

Theorem 6.6 For any bounded open set Ω ⊂ Rd and z ∈ Rd we have

lim
α→+0

M
∗(αΩ, αz) = M(Ω, z).

Remark 6.7 Here the condition of boundedness ensures that for α small enough

we have αΩ ⊂
(
− 1

2
, 1

2

) d
and the expression under the limit on the left hand side is

defined by (4).

Proof Again, extending the original arguments of [7, 8] or [2] leads to a proof.
There the idea is to multiply f ∈ F∗(αΩ) by a fixed positive kernel, say ∆ 1

4

, and

exploit that for α small ∆ 1

4

|αΩ is approximately 1.

Alternatively, we can argue as follows. Let Ω be bounded by R and let α < 1
2R

; then

αΩ ⊆
(
− 1

2
, 1

2

) d
. Moreover, using Rd interpretation of the arising sets we always have

(26) HRd (Ω, z) = HRd (αΩ, αz) ⊂
[

2,
R

|z|

]
,

while m(α) := #Z(αz) ≥ 1
α|z| → ∞ (α → 0). Note that here for irrational α we

can have m(α) = +∞, but defining the index function m(α) in this extended sense
does not question the asserted limit relation.

In what follows we unify terminology by writing H∞(Θ, w) = H(Θ, w) while

keeping the notation Hn(Θ, w) = H(Θ, w) ∩ [2, n/2] for finite n. For the finite
case we have HRd (αΩ, αz) = HRd (Ω, z) ⊆ [2, m(α)

2
], and in view of (11) and (26),

H := Hm(α)(αΩ, αz) = HTd (αΩ, αz) ∩ [2, m(α)

2
] = HRd (αΩ, αz) = HRd (Ω, z), too.
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Now if m(α) = ∞, then we are to consider the normalized, nonnegative trigonomet-
ric polynomials ϕ ∈ Φ∞(H) := Φ(H) defined by (6), while for finite m(α) < ∞,

the function set to be considered is Φm(H) defined by (7).

Now let αn → 0, and ϕn be an extremal polynomial in Φm(αn)(H). In view of
the nonnegativity conditions for these sets we get |ck| ≤ 2 (k ∈ H), applying finite

Fourier Transform in case m(αn) < ∞. Hence with K := ⌈2R/|z|⌉ we find ϕn ∈
FK := {ϕ(t) = 1 + 2

∑K
k=1 ak cos 2πkt | |ak| ≤ 1, k = 1, . . . , K}, which is a compact

subset of C(T). Thus without loss of generality we can suppose that ϕn → φ ∈ FK

uniformly as n → ∞. Since m(αn) → ∞, we must have φ ≥ 0. Moreover, if

we write φ(t) = 1 + 2
∑K

k=1 ak cos 2πkt and ϕn(t) = 1 + 2
∑K

k=1 a(n)

k cos 2πkt , then

limn→∞ a(n)

k = ak, so φ ∈ Φ(H) and

lim
n→∞

M
∗(αnΩ, αnz) = lim

n→∞
a(n)

1 = a1 ≤ M(Ω, z).

On the other hand Propositions 6.1 and 6.4 give the converse inequality.

7 Calculations of Extremal Values for Some Special Cases

Now we formulate a periodic case analogue of the Boas–Kac result Corollary 4.2.

Proposition 7.1 Suppose that the open set Ω ⊆ Td contains all integer multiples of

the point z ∈ Td, i.e., Z ⊂ Ω with Z defined in (12). Then M∗(Ω, z) = 1.

Proof In case #Z = ∞, Theorem 2.4 gives M
∗(Ω, z) = M(H(Ω, z))/2 =

M(N2)/2 = 1 immediately. Now let #Z = m < ∞. Then Theorem 2.4 yields
M∗(Ω, z) = Mm(Hm(Ω, z))/2 = Mm([2, m/2])/2. To see that this quantity achieves
1, it suffices to consider the cosine polynomial

ϕm(t) := 1 +

[
m−1

2
]∑

k=1

cos 2πkt +

[ m
2

]∑

k=1

cos 2πkt.

Direct calculation proves again ϕm( j/m) ≥ 0 ( j ∈ N), thus ϕm ∈ Φm([2, m/2])
and now we find Mm([2, m/2])/2 = 1.

With the following applications in mind we first prove

Lemma 7.2 Let m ∈ 2N be even. Then we have Mm([2, m/2)) = 1 + cos 2π
m

.

Proof Let m = 2n and

ϕ(t) = 1 +

n−1∑

k=1

ck cos 2πkt ∈ Φm([2, n)).
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Using the finite Fourier Transform coefficient formula and ϕ( j/m) ≥ 0 ( j ∈ N) we
obtain

c1 =
2

m

m−1∑

j=0

ϕ
( j

m

)
cos

2π j

m

=
1

n

n−1∑

l=0

ϕ
( l

n

)
cos

2πl

n
+

1

n

n−1∑

l=0

ϕ
( 2l + 1

m

)
cos

( 2πl

n
+

π

n

)

≤
1

n

n−1∑

l=0

ϕ
( l

n

)
+

1

n

n−1∑

l=0

ϕ
( l

n
+

1

m

)
cos

( π

n

)
= 1 + cos

( π

n

)
.

On the other hand, take the cosine polynomial

φm(t) := 1 +

n−1∑

k=1

(
1 + cos

πk

n

)
cos 2πkt.

Direct calculation gives

φm(
j

m
) =





m j ≡ 0 (mod m),

m/2 j ≡ ±1 (mod m),

0 otherwise,

whence φm( j
m

) ≥ 0 ( j ∈ N) and φm ∈ Φm([2, n)).

Corollary 7.3 (Arestov–Berdysheva–Berens [2]) For dimension one we have

(i) For (p, q) = 1, q even we have M
∗((− 1

2
, 1

2
), p

q
) =

1
2
(1 + cos 2π

q
).

(ii) For (p, q) = 1, q odd we have M∗((− 1
2
, 1

2
), p

q
) = 1.

(iii) For z /∈ Q we have M∗((− 1
2
, 1

2
), z) = 1.

Proof In case (i) #Z = q = 2r, and H(Ω, z) = N2 \ rN, Hq(Ω, z) = [2, r − 1].
Hence in view of Theorem 2.4 it suffices to show that Mq([2, r)) = 1 + cos(2π/q),
which follows from Lemma 7.2. For the cases (ii) and (iii) we clearly have Z ⊆ Ω,

hence Proposition 7.1 applies.

Similarly to the above result of [2], we can also answer the pointwise Turán ex-
tremal problem for Ω = (− 1

2
, 1

2
)d.
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Theorem 7.4 Let Ω = (− 1
2
, 1

2
)d ∈ Td. Then we have

(i) M∗((− 1
2
, 1

2
)d, z) = 1 if z /∈ Qd.

Moreover, if z ∈ Qd, z = ( p1

q1

, . . . , pd

qd
) with (p j , q j) = 1, q j = 2s j t j (s j ∈ N),

t j ∈ 2N + 1 ( j = 1, . . . , d) and m := [q1, . . . , qd] = 2st t ∈ 2N + 1, then we have

either

(ii) 1 ≤ s = s1 = · · · = sd, and then M∗((− 1
2
, 1

2
)d, z) =

1
2
(1 + cos 2π

m
), or

(iii) s = 0 or ∃ j, 1 ≤ j ≤ d with s j < s and then M∗((− 1
2
, 1

2
)d, z) = 1.

Proof Case (i) is covered by Proposition 7.1 above. If z ∈ Qd, then the set defined
in (12) is finite and we have #Z = m = [q1, . . . , qd]. Let us determine the set H(Ω, z)

first. For k ∈ N we have kz /∈ Ω iff kp j/q j ≡ 1/2 (mod 1) ( j = 1, . . . , d), i.e.,

2kp j/q j ≡ 1 (mod 2) ( j = 1, . . . , d). It follows that q j |2k ( j = 1, . . . , d), and we
can not have a solution k ∈ N if ∃ j so that q j is odd, since then 2k/q j must be even.
Hence we can consider the case when all s j ≥ 1 and, by (p j , q j) = 1, all p j is odd.

Then using p j ∈ 2Z + 1 the condition becomes 2k/q j ≡ 1 (mod 2) ( j = 1, . . . , d).
Hence m = [q1, . . . , qd]|2k and s = s j ( j = 1, . . . , d) since otherwise for any s j < s

we get 2k/q j = nm/q j = n2s−s j t/t j ≡ 0 (mod 2). In all, kz /∈ Ω occurs only in case

(ii), while case (iii) will again be covered by Proposition 7.1. In case (ii), when kz /∈ Ω

happens, it occurs precisely for multiples of m/2 ∈ N. That is, case (ii) now reduces
to the determination of M∗(Ω, z) = Mm([2, m/2))/2 = (1 + cos 2π/m)/2 in view of
Theorem 2.4 and Lemma 7.2.
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