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ON EXPLICIT BOUNDS IN LANDAU'S THEOREM. II 

JAMES A. JENKINS 

1. Quite some years ago a number of mathematicians were interested 
in obtaining explicit expressions for the bounds in Schottky's and 
Landau's theorems, specifically numerically évaluable bounds of a par­
ticular form. The best bounds of this type in Schottky's theorem were 
given by the author [3]. For Landau's theorem the chosen form is as 
follows. Let F(Z) be regular in \Z\ < 1, omit the values 0 and 1 and have 
Taylor expansion about Z = 0 

F(Z) = a0 + aiZ + . . . . 

Then 

K | S 2|ao|{|log|a0|| + K}. 

Using the same method employed for Schottky's theorem the author 
showed that one can take K = 5.94. By a slight modification of the 
author's method Lai [6] gave the further value K = 4.76. On the other 
hand it is known [7] that one cannot have K less than (1/47T2) F(J)4 which 
is approximately 4.37. In this paper we will prove that this particular 
value is indeed the best value for K. 

The proof begins as before with the remark that for given a0 the 
maximal value of \a,\\ is attained for the function F0(Z) mapping 
\Z\ < 1 onto the universal covering surface of the JF-sphere punctured at 
0, 1, co. This defines a function which we will call ^(W). The first step 
is to show that 

M(W0 £ 2|W|{|log|W|| +K*} 

with K* equal to one-half the maximum of ii(W) on\W\ = 1. This uses 
the basic remark that (MCW 7 ) ) - 1 ! ^^ ! is the Poincaré metric for the punc­
tured sphere and employs a technique of [1, p. 13]. Finally it is shown that 
the maximum of n{W) on \W\ = 1 is attained at W = —1. This is done 
by the methods of the Topological Theory of Functions. 

2. LEMMA 1. Let 2K* denote the maximum of }JL(W) on \W\ = 1. Then 

(1) ix(W) £ 2\W\{\\og\W\\ +K*} 

for W in D, the sphere punctured at 0, 1, co . 

Received August 16, 1979. This research was supported in part by the National 
Science Foundation. 

559 

https://doi.org/10.4153/CJM-1981-045-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-045-1


560 JAMES A. JENKINS 

We denote ( M W ) " 1 by \(W), [2r(log r + i^*)]"1 by p(W0 for 
W — reid, r ^ 1,0 real. As remarked in [3], to prove (1) it is enough to 
show \(W) '^ p(W) for \W\ è 1. From the inequality on p. 425 of [4] 

|ai| £ 2|a0|{log|a0| + M(t)} 

it follows that \(W) > p(W) for \W\ sufficiently large. Further as W 
tends to 1 from | W\ ^ 1 

\im\(W) = oo, limp (IV) = (2K*)-K 

Thus if we had \(W) < p(W) at a point in \W\ > 1, log \(W) -
log p(W) would have a point of minimum Wo in this set at which we 
would have 

logX(Wo) < logp(Wo). 

Since, as remarked above, X(lV)|rfW/| is the Poincaré metric for D (in 
the usual notation, in Ahlfors' notation it would be 2\(W)\dW\) we have 

AlogX(^) = 4(\(JV))2. 

Moreover, by direct calculation 

Alogp(PF) = 4r 2 (p(^)) 2 . 

At the minimum point Wo we would have 

A(logA(W0 - logp(WO) è 0 

thus 

4X2(^o) ~ MWo\V(W0) ^ 0 

and 

HWo) > P(Wo) 

a contradiction. 

3. LEMMA 2. r&e maximum of n(W) on \W\ = 1 is (l/27r2)r(l)4. 

This is the value of ix{W) for W = — 1 [7]. It might be possible to 
obtain this result from an explicit representation of the function Fo(Z) 
but the most familiar ones do not seem particularly suited to such an 
application. We will proceed instead as follows. We denote v(W) = 
| W/|~V(W/) and study the level sets of v by the methods of the Topological 
Theory of Functions. We observe first that v is symmetric both in the 
real axis and in the unit circle. It tends to zero as we approach W = 1 
and to infinity as we approach W = 0 and W = GO . At a non-critical 
point of v the level sets have the structure of a regular curve family. A 
priori the critical points of v need not be isolated but the curve family 
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structure at them is either that of a regular curve family (non-isolated) 
or that of a saddle point or circle domain (isolated). Since log v is super-
harmonic, v can have no points of minimum in D. Again, since A log v < 0, 
all saddle points are simple (i.e., the limiting end point of four level 
arcs). Thus, while a priori the function v need not be pseudoharmonic, if 
we delete from D the isolated maximum points, in the residual domain 
the level sets of v form a harmonique curve family J ^ [5]. Since they are 
level sets recurrence of elements of &~ is ruled out. 

LEMMA 3. In a suitable deleted neighbourhood of W = 0, 1 or oo, the 
elements of ̂  have the structure of a circle domain. 

Consideration of the explicit asymptotic behavior of the Poincaré 
metric at the points 0, 1, oo shows that they cannot be accumulation 
points of critical points of v. Consider then, for example, the case W — 0 
and a deleted disc neighborhood of this point not containing W = 1, 
W = oo or an isolated point of maximum for v. We can apply the analysis 
of harmonique curve families in doubly-connected domains given in [2]. 
No element of Ĵ ~ can have a limiting end point at 0 and since the elements 
of 3^ are level sets of a C2 function there can be no asymptotes. The 
result is then immediate. The cases of W = 1 and W = oo are just the 
same. 

It follows similarly that every element of Ĵ ~ is either a Jordan curve 
or an open arc joining two (not necessarily distinct) saddle points. More­
over there are only a finite number of saddle points for J^. The elements 
of ,jF~ with limiting end points at them divide the sphere into a finite 
number of domains. From the index theory [5] for a harmonique curve 
family it follows that each such domain is simply- or doubly-connected. 
A simply-connected domain contains either 0, 1 or co or an isolated point 
of maximum for v. The elements of Ĵ ~ in a double-connected domain 
have the structure of a ring domain. 

Consider the simply-connected domain E containing W = 1. Con­
sider also a saddle point Pi for v at which the value of v is v\. In two 
opposite sectors determined by elements of Ĵ ~ with limiting end points 
at Pi we will have v < vu If either of these sectors did not lie in E it 
would lie either in a simply-connected domain, in which there would be 
a point of minimum for v, which is impossible, or in a doubly-connected 
domain, say G\. On the opposite boundary component of G\ we would 
have a saddle point P2 where v would have a value v2 with v2 < v\. In 
Gij v > v2. In some sector at P2 we would have v < v2 and this sector 
could not lie in E or G\. In a finite number of steps we would obtain a 
contradiction. 

Thus every saddle point for v lies on the boundary of E and opposite 
sectors lie in pairs in E. Further since there are three exception points for 
v, by the symmetry of v and the index theory, W = — 1 must be a saddle 
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point. Moreover opposite pairs of sectors there will contain respectively 
arcs on \W\ = 1 and JW = 0. The latter cannot lie in E since this 
domain is simply-connected and has the same symmetries as v. Thus the 
former arcs lie in E and again for the same reasons the open arcs on 
\W\ — 1 determined by W = ± 1 lie in their entirety in E. Thus on these 
arcs v decreases steadily from its values at W = — 1 to its limiting value 
(zero) at W = 1. This completes the proof. 

THEOREM. / / F(Z) is regular for \Z\ < 1, does not take the values 0 and 
1 and has Taylor expansion about Z = 0 

F{Z) = a0 + aiZ + ... 

then 

|ai| g 2|a0|{|log|ao|| + K*} 

with K* = (l/47T2)r(|)4. This result is best possible. 

Remark. The proof of Lemma 3 shows that in a neighborhood of an 
isolated boundary point the level sets of a representative function for 
the Poincaré metric have the structure of a circle domain. 

REFERENCES 

1. Lars V. Ahlfors, Conformai invariants (McGraw-Hill, 1973). 
2. James A. Jenkins and Marston Morse, Curve families F* locally the level curves of a 

pseudoharmonic function, Acta Mathematica 91 (1954), 1-42. 
3. James A. Jenkins, On explicit bounds in Schottkys theorem, Can. J. Math. 7 (1955), 

76-82. 
4. On explicit bounds in Landau's theorem, Can. J. Math. 8 (1956), 423-425. 
5# A topological Three Pole Theorem, Indiana University Mathematics Journal 21 

(1972), 1013-1018. 
6. W. Lai, Ûber den Satz von Landau, Science Record J+ (1960), 339-342. 
7. Review of [3], Mathematical Reviews 16 (1955), 579. 

Washington University, 
St. Louis, Missouri 

https://doi.org/10.4153/CJM-1981-045-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-045-1

