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ON MOMENT CONDITIONS FOR SUPREMUM OF
NORMED SUMS OF MARTINGALE DIFFERENCES

Wi CHONG AHN, BONG DAE CHOI AND SOO HAK SUNG

Let {Sn, n ^ 1} denote the partial sum of sequence (Xn) of identically dis-
tributed martingale differences. It is shown that E \Xi\q (lg |Jfi|)r < oo im-
plies £(sup((lgn)l>r/*/nl>/»)|5n|p) < oo, where 1 < p < 2, p < g, r £ R
and lgz = max{l, log"1" x) For the independent identically distributed case, the
converse of the above statement holds.

1. INTRODUCTION

Let {Xn, n ^ 1} be a sequence of random variables and {cn, n ^ 1} constants
such that 0 < cn f oo. For each n ^ 1, let Sn = Xi + • • • + Xn. In this paper, we will
investigate the conditions on {Xn) and (cn) under which

(1.1) E(sup\Sn\*/cn\ <oo.

For independent identically distributed (i.i.d.) random variables (Xn) with EX\ —

0 and cn = np/« (1 < q < 2, p < q), it was shown by Choi and Sung [l] that (1.1) is

equivalent to E \Xi\9 < oo. This paper is a continuation of [l], and for the references

about related works to the equivalent statements for (1.1), see [1].

In this paper, first we find conditions on (cn) to guarantee the statement (1.1) when

(Xn) is a sequence of identically distributed martingale differences. From this result, it

is shown that if (Xn) are independent identically distributed with EX\ = 0 and cn =

nP/9/(lgn)pr/* (Kq<2,p<q,reR) then (1.1) is equivalent to E IX^9 (lg |Xj|)r <

oo, where lgz = max{l,log+ x}. When r = 0, this equivalence is reduced to the one

mentioned above.

Throughout this paper, C > 0 will always stand for a constant which may be

different in various places. I(A) means the indicator function of event A.
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2. MAIN RESULTS

The following theorem [1] is essential for our main result and gives a sufRcient condi-

tion of (1.1) for general increasing sequences (cn) and positive constants a (0 < a < 2).

THEOREM 1 . Let {Xn, n ^ 1} be a sequence of random variables and {cn, n >
oo

1} constants such that 0 < cn | co. If £ E\x*\aPI°%. < °° for some P > ! and

n=l

0 < a/3 < 2, then

wiere aj. = 0 i f 0 < a / 3 < l and ak = ^(Xi | JTi, • • • , Xk-i) if 1 < a/3 < 2.

The next result gives conditions on (cn) to guarantee the statement (1.1).

THEOREM 2 . Let {Xn, n ^ 1} be a sequence of identically distributed martin-
ga/e differences and {cn, n ^ 1} constants such tiiat 0 < cn | oo and

n = l

If cVp £ l /c- / p = 0(n) and cPn £) 1/cf = 0(n) for some /3 with 1 < p/3 < 2 and

1 < /?, tAen

< oo.

PROOF: Define Fn - *{XU- • • ,Xn},Yn - XnI(\Xn\
p ^ cn)

-E(XnI(\Xn\" < c«) | ^ . - i ) and Zn = XnI(\Xn\" > cn)-E(XnI(\Xn\" > c») | ^ - O -
Then X n = Yn + Zn. The proof will be completed by showing that

n Cn

(2.1) ^ ( s u p 1 ^ 1 " ) <oo

and

(2.2) g [ s u p ' ^ = 1 " " ) <oo.

Result (2.1) is proved by applying Theorem 1 to the case a = p and P — 2/p, if we
show that

°° E\Y I2

(2.3) J ^ —Lj^L < oo.
n = l C "
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Since E \Yn\
2 < E \Xi \2 JflXi \p ^ cn), we have

n=l c n n=l
oo - n

= E 4F E £ i*11
n = l

oo

1 = 1

OO

t=0

To prove (2.2), by Theorem 1, it is enough to show that

n = l

Since E\Zn\
p0 ^ 2?P E | Xi \vP I{ |Jfi |p > cn), we have

n=l u n n=l n

OO ^ OO

n=l ^ i=

n = l

n = l

2^ f ] P(c, < IXxl" < ci+1)
» = 1

OO

OO

|p > Ci) < oo. D
t = 0
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LEMMA 3 . ([2], p.155) Let X be a random variable and {cn, n ^ 1} constants
such that 0 < cn | oo. Let <f> be any even nondecreasing function satisfying <f>(cn) = n

for all n > 1. Then

OO

E<f>(X) < oo if and only if ^ P(\X\ > cn) < oo.
n = l

Let <f>(x) — qrxq(lgx)T on [0, oo) for 1 < q < 2 and r £ R. Since <f>'(x) is positive
for large x and <f>(x) - » o o a s i - » oo, we can choose an increasing sequence (cn) such
that <j>{cn) = n for n ^ no and cn —> oo. Thus we obtain a nondecreasing sequence
{cn, n ^ 1} by letting cn = cno for 1 < n < n0. Then we have cn ~ n1/«/(lgn)r '9 by
the following calculation: from the identity <j>(cn) = n, that is, grc*(lg cn)

r = n,

n
1'"

C(lg n)r/« cn{r log q + q lg cn + r lg (lg cn))
r/q

— ; > 1 as n —* oo.

Thus there exists an integer N such that

for n > N. Hence we have

P(\X\ > (l+e)cn) <'£P[\X\> -—-j- < £ P(\X\ > (1 - e)cn).
n=JV n=W V US") / n=7V

Since E \X\q (lg |JT|)r < oo if and only if E(C \X\)"(\g C \X\)T < oo, we have by Lemma

3 that
OO

E\X\9 (lg \X\)r < oo if and only if £ P ( I X I > Ccn) < oo.
n=l

Thus we have that

(2.4) E |X| ' (lg |X|) r < oo if and only if £ P |X| > — — - q < oo.
( l )n = l

THEOREM 4 . L e t { X n , n ^ l } be a sequence of identically distributed martingale

differences with E \XX \q (lg |Xi | ) r < oo for 1 < q < 2 and r € .R. Then for p < q
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PROOF: Let cn = (« 1 / V( lgn ) r / * ) • Choose a constant /? with

P = s/p{p<s <q, 1 < s < q). Then we have by (2.4) that £ P ( | X i | p > cn) < oo.
n=l

Some computation shows that

Thus we have

Similarly we have

^ r
Thus the result follows from Theorem 2. D

COROLLARY 5 . Let {X, Xn,n ^ 1} bei.i.d. random variables with mean zero.
Then the fallowings are equivalent: far 1 < g < 2, p < q and r £ R

<oo;

(b) El supn (^fc1)' \Xn\
p\ < oo;

(c) E\X\<Qg\X\)r<oo.

PROOF: The proof is similar to [1] and is omitted. D

REMARK. The result in [1] is a special case of Corollary 5 in the case r = 0.
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