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Abstract
We address the problem of optimal transport with a quadratic cost functional and a constraint on the flux through a
constriction along the path. The constriction, conceptually represented by a toll station, limits the flow rate across.
We provide a precise formulation which, in addition, is amenable to generalization in higher dimensions. We work
out in detail the case of transport in one dimension by proving existence and uniqueness of solution. Under suitable
regularity assumptions, we give an explicit construction of the transport plan. Generalization of flux constraints to
higher dimensions and possible extensions of the theory are discussed.

1. Introduction

In recent years, the Monge-Kantorovich theory of optimal mass transport has impacted a wide range of
mathematical and scientific disciplines from probability theory to geophysics and from thermodynamics
to machine learning [1, 7, 10, 20, 21]. Indeed, the Monge-Kantorovich paradigm of transporting one
distribution to another, by seeking to minimize a suitable cost functional, has proved enabling in many
ways. It gave rise to a class of control problems [5, 6], underlies variational principles in physics [13, 16],
provided natural regularization penalties in inverse problems [2], led to new identification techniques
in data science [12, 17], in graphical models [9], and linked to large deviations in probability theory
[4, 15].

Historically, the Monge-Kantorovich theory proved especially relevant in economics when physical
commodities were the object to be transported – a fact that contributed to L. Kantorovich receiving
the Nobel prize. Extensions that pertain to physical constraints along the transport naturally were soon
brought up. For instance, moment-type constraints have been considered in [18, Section 4.6.3] and, more
recently, far generalized in [8]. Congestion being a significant impediment to transport has also drawn
the attention of theorists and practitioners alike. For instance, besides optimizing for transportation,
considerations of an added path-dependent cost to alleviate congestion have been considered in [3], see
also [19, Section 4] for a comprehensive study of this research direction. Along a different direction,
constraints have been introduced for probability densities as part of the optimization problem. Such
bounds can capture the capacity of the transportation medium and as such have been studied in [14] or
dynamical flow constraints as in [11].

In the present work, we formulate and address a natural variant of the standard optimal mass transport
problem by imposing a hard constraint on the flux rate at a point along the path between distributions.
Specifically, we pose and resolve the most basic problem where the restriction on throughput of the
transport plan takes place at a single point. With this constraint in place, we seek to minimize a usual
quadratic cost functional.
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Figure 1. Illustration of optimal transport through a toll with finite throughput.

The analysis we provide focuses on one-dimensional distributions, with transport taking place on R.
We prove existence and uniqueness of an optimal transport plan and, under suitable regularity conditions,
give an explicit construction. A slight generalization of our formulation, where the distributions have
support on R

d but the transportation is to take place through a specified ‘constriction’ point, with a
similar throughput constraint, can be worked out in the same manner, and it is sketched in the concluding
remarks. The more general case where the transport takes place on higher dimensional manifolds with
the throughput through possibly multiple points, curves, or surfaces similarly restricted is substantially
more challenging and much remains open.

The problem formulation and ideas in the mathematical analysis that follows can be visualized by
appealing to Figure 1. We begin with two probability densities ρ0, ρ1 having support on R and finite
second-order moments and seek to transport one to the other, ρ0 to ρ1, within a window of time (herein,
of duration normalized to 1) while minimizing a quadratic cost in the local velocity. That is, we seek to
minimize the action integral of kinetic energy along the transport path. The minimal cost of the unre-
stricted transport is the so-called Wasserstein distance W2(ρ0, ρ1) (a metric on the space of probability
measures); we refer to standard references [20, 21] for the unconstrained optimal transport problem.
The schematic in Figure 1 exemplifies a constraint at a pre-specified point, x0, that can be seen as the
location of constriction, or, of a toll along the transport, where throughput is bounded. That is, the flow
rate across x0 for mass times velocity is bounded by a value h. A vertical axis pointing downwards at x0

marks the time when a specific mass-element crosses the toll, necessitating at least 1/h duration for the
unit mass of the probability density ρ0 to go through, in the most favourable case where the throughput
rate is maintained for the duration (that is normalized to 1 time unit).

In the body of the paper, we prove existence and uniqueness of an optimal transport plan, and,
assuming suitable regularity of the distributions, we provide an explicit construction for the solution.
We further explore consequences of the toll being kept maximally ‘busy’ while mass is being trans-
ported through, in conjunction with minimizing the quadratic cost criterion on the kinetic energy, and
we highlight ensuing properties of the optimal plan.

Specifically, in Section 2 we develop the formulation of the flux constraint and give a precise def-
inition of the problem (Problem 1). In Section 3, we prove existence and uniqueness (Theorem 1)
of solution, while conveniently recasting the problem in terms of a flux variable (Problem 2).
Section 5 deals with the structural form of the transport and properties of solutions; we summarize
the basic elements that allow an explicit construction of the solution in Algorithm 1. Section 6 pro-
vides a rudimentary example of transporting between uniform distributions, that highlights the essential
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property that speed needs to be suitably adjusted so as to fully utilize the throughput of the toll, while
minimizing the quadratic cost. We close (Section 7) with a discussion on possible extensions of the
problem to higher dimensions and multiple tolls. While the theory may be readily extended in certain
cases, much remains to be understood. Such problems are of natural engineering and scientific interest.

2. Problem formulation

We consider two probability measures ρ0 and ρ1 on R, having finite second-order moments and that
each admits a density with respect to the Lebesgue measure. Throughout, we follow a standard (slight)
abuse of notation and use the same symbols ρi : R→R≥0, for i= 1, 2, for the corresponding probability
densities of the two measures. In this case, there exists a unique non-decreasing optimal transport map T
from ρ0 to ρ1 (Theorem 2.5, [19]). Following a standard formulation of transport problems, we consider
Y : [0, 1]×R→R such that1 Y0#ρ0 = ρ0 and Y1#ρ0 = ρ1, and we are interested in minimizing

J(∂tY) :=
∫ 1

0

∫
R

(∂tYt(x))2ρ0(x)dxdt. (2.1)

In the absence of any additional constraint on Y , the solution is Y�
t (x)= x+ t(T(x)− x) for T the optimal

transport map between ρ0 and ρ1 and J(∂tY�
t )=W2

2 (ρ0, ρ1), the squared Wasserstein-2 distance between
the two [20]. Here, however, for a certain x0 ∈R, we introduce a constraint on the flux passing through
x0, as explained below. Throughout the paper, T will always denote the optimal transportation map in
the absence of any such constraint. The purpose of the present work of course is to develop a theory that
addresses the case of transport with a bound on the flux through x0.

When all functions are smooth and well defined, a flux constraint at x0 can be expressed as

|ρt(x0)vt(x0)| ≤ h ∀t ∈ (0, 1)

for ρt the density of Yt#ρ0 and vt(x0)= ∂tYt(Y−1
t (x0)). However in the general case, if ρt is not continuous

(or does not even exist), this constraint is not well defined. One way to deal with such a situation is to
recast the constraint as requiring that,2 ∀t ∈ (0, 1),

lim sup
α1→0
α2→0

1

|α2 − α1|
∫

1{x0∈(Yt(x)+α1,Yt(x)+α2)}|∂tYt(x)|ρ0(x)dx≤ h. (2.2)

Then, if ρ0 is continuous and Yt is a C1 diffeomorphism, the left-hand side (LHS) of (2.2) amounts to

LHS (2.2)= lim sup
α1→0
α2→0

1

|α2 − α1|
∫

1{x0∈(y+α1,y+α2)}|∂tYt(Y
−1
t (y))|ρt(y)dy

= ρt(x0)vt(x0).

Interestingly, when Yt fails to be a C1 diffeomorphism, special care is needed. For instance, take
x0 = 0 and Yt(x)= 1{x∈[−2,−1]}(1− 2t)3x. The constraint (2.2) is satisfied since ∂tYt(x)= 0 at t= 1/2, and
no mass sits near the toll for any t �= 1/2. Thus, the formulation (2.2) fails to capture the situation where
infinite mass passes through with zero velocity. We reformulate so as to avoid this technicality.

Consider the modified constraint that bounds the flux passing through x0, expressed as requiring that
∀t ∈ (0, 1)

lim sup
α1→0
α2→0

1

|α2 − α1|
∫

1{x0∈(Yt+α1 (x),Yt+α2 (x))}ρ0(x)dx≤ h. (2.3)

1As is common, Yt#ρ0 denotes the push-forward of ρ0 under Yt , see [20].
2We use the standard notation 1A for the characteristic function of the set A.
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In the case where Yt is C1, using the Taylor expansion of Y in time, the left-hand side (LHS) of (2.3)
amounts to

LHS (2.3)= lim sup
α1→0
α2→0

1

|α2 − α1|
∫

1{x0∈(Yt(x)+∂tYt(x)α1+o(α1),Yt(x)+∂tYt(x)α2+o(α2))}ρ0(x)dx

= lim sup
α1→0
α2→0

∫ (
1{Yt(x)∈(x0−∂tYt(x)α2+o(α2),x0−∂tYt(x)α1+o(α1))}

|∂tYt(x)|1{|∂tYt(x)|>0}
|α2 − α1||∂tYt(x)|

+ 1{Yt(x)∈(x0+o(α1),x0+o(α2))}
1{∂tYt(x)=0}
|α2 − α1|

)
ρ0(x)dx.

Using a change of variables, we readily see that (2.3) implies (2.2) and that if Yt is a C1 diffeomorphism,
the two constraints are identical. Note also that, ∀t ∈ (0, 1), condition (2.3) is equivalent to

∀α1, α2 ∈R,
∫

1{x0∈(Yt+α1 (x),Yt+α2 (x))}ρ0(x)dx≤ h|α2 − α1|. (2.4)

Define

�= {x ∈ Supp (ρ0) | x0 ∈ (x, T(x)) or x0 ∈ (T(x), x)}, (2.5)

where T is the optimal transport map of the unconstrained problem. Thus, � contains the support of
mass that needs to cross the toll station, at some point in time, in either direction. From (2.4), it is evident
that h≥ ρ0(�) is necessary for the existence of a map satisfying the constraint (since the transport will
take place over the time interval [0, 1]). Typically, h>ρ0(�) is required, except in some special cases
where h= ρ0(�) may suffice, as for example when ρ0 = 1{[0,1]}, x0 = 1 and ρ1 = 1{[1,2]}. From here on we
assume that h>ρ0(�).

We are now in a position to cast our optimization problem in terms of a velocity field vt(x) that will
effect the transport; formally, vt(x)= ∂tYt(x) relates to our earlier notation when functions are smooth.
For any v ∈ L2([0, 1]×R, R), define the map Yv : [0, 1]×R→R as the flow of v:

Yv
t = Id+

∫ t

0

vτdτ , (2.6)

with Id denoting the identity map in R.

Definition 2.1. Let V denote the set of functions v : [0, 1]×R→R for which
∫ 1

0

∫
R

v(x, t)2ρ0(x)dxdt
<∞ and are such that Yv (the flow of v) satisfies:

(i) Yv
1#ρ0
= ρ1

(ii) ∀t ∈ (0, 1), Yv
t satisfies the constraint (2.4).

Our problem can now be stated as follows.

Problem 1. Determine

inf
v∈V

J(v), (2.7)

over the classV of Definition 2.1, and assert existence, uniqueness, and the functional form of minimizing
solutions.

We first show that there exist velocity fields belonging to V .

Proposition 2.2. Supposing that ρ0, ρ1 have finite second-order moments and are absolutely continuous
with respect to the Lebesgue measure, the set of functions V of Definition 2.1 is non-empty.

Proof. Let us build an explicit map v ∈ V . First, for x /∈� (with � defined in (2.5)), we can set vt(x)=
T(x)− x, as mass at the point x does not cross the toll. Let us now take care of the points that lie in �
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by splitting it into two sets:

�1 = {x ∈�|x< x0} and �2 = {x ∈�|x> x0}.
The velocity vt(x) for x ∈� will be piecewise constant with 3 different pieces.

(i) Define T1 the optimal transport map between the densities ρ0|�1 (the restriction of ρ0 to �1) and
μ1(x)= h1{x∈[x0−ρ0(�1)/h,x0]}. Likewise, define T2 the optimal transport map between the densities
ρ0|�2 and μ2(x)= h1{x∈[x0,x0+ρ0(�2)/h]}. Let

t� = ρ0(�)

and a :�→R defined by

a(x)= 1{x∈�1}
2

1− t�/h
(T1(x)− x)+ 1{x∈�2}

2

1− t�/h
(T2(x)− x).

Then, the flow of a transports the densities ρ0|�1 onto μ1 and ρ0|�2 onto μ2 in a time (1− t�/h)/2.
(ii) Define b : [x0 − ρ0(�1)/h, x0 + ρ0(�2)/h]→R by

b(x)= 1{x∈[x0−ρ0(�1)/h,x0]}
ρ0(�1)

t�
− 1{x∈[x0,x0+ρ0(�2)/h]}

ρ0(�2)

t�
.

Likewise, the flow of b transports the densities μ1 onto μ+1 (x)=μ1(x− ρ0(�1)
h

) and μ2 onto
μ−2 (x)=μ2(x+ ρ0(�2)

h
) in a time t�

h
. Writing T for the optimal transport map between ρ0 and ρ1,

let be T ′1 the optimal transport map between the densities μ+1 and T#ρ0|�1
. Likewise, let be T ′2 the

optimal transport map between the densities μ−2 and T#ρ0|�2
respectively.

(iii) Finally, define c : [x0 − ρ0(�2)/h, x0 + ρ0(�1)/h]→ by

c(x)= 1{x∈[x0−ρ0(�2)/h,x0]}
2

1− t�/h
(T ′2(x)− x)+ 1{x∈[x0,x0+ρ0(�1)/h]}

2

1− t�/h
(T ′1(x)− x).

Then, the flow of c transports the densities μ+1 onto T#ρ0|�1
and μ−2 onto T#ρ0|�2

in a time (1−
t�/h)/2.

Therefore, the flow of the three velocity fields a, b, c applied successively transports ρ0|� onto T#ρ0|� in a
time (1− t�/h)/2+ t�/h+ (1− t�/h)/2= 1. Furthermore, mass crosses the toll only during the interval
[(1− t�/h)/2, t�/h+ (1− t�/h)/2] and the flow rate at the toll values h ρ0(�1)

t�
+ h ρ0(�2)

t�
= h during this

time. Finally, as ρ0 and ρ1 have finite second-order moment, we easily see that a, b and c verify the L2

condition.

3. Existence of a solution

Let us first define the set of flows of velocity fields in the class V .

Definition 3.1. The class of functions Y is defined as the set of maps Y : [0, 1]×R→R such that there
exist v ∈ V so that Y is the flow of v, i.e., Yt = Yv

t = Id+ ∫ t

0
vτdτ .

From here on, the v in the notation Yv
t is suppressed as we are truly interested in the transport map.

We first derive certain useful properties of candidate minimizers of our problem. To this end, for any
Y ∈Y and x ∈�, we define

tollY(x)= inf{t | x0 = Yt(x)}.
Thus, the function tollY specifies the times of transit through the toll station of mass that is initially
located at x and then transported via Y .
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It is clear that the function tollY must be injective3 for a minimizing solution and that mass flow takes
place always in the same direction across the toll station. Then, ∀t ∈ (0, 1), (2.3) is equivalent to

lim sup
α1→0
α2→0

1

|α2 − α1| tollY#ρ0 ((t+ α1, t+ α2))≤ h,

and so, if tollY#ρ0 (the measure on [0, 1] that weighs the mass that goes through x0 at different times
t ∈ [0, 1]) admits a continuous density �toll, the constraint amounts to �toll(t)≤ h. Note also that this
condition is different than simply stating ρt(x0)≤ h, as the latter does not take into account the speed
of transport. Then we see that for x /∈�, we can restrict ourselves to considering maps Y ∈Y such that
Yt(x)= x+ t(T(x)− x) for T the optimal transport map between ρ0 and ρ1. Thus, in the sequel, without
loss of generality we always suppose that�= Supp (ρ0) and that sup Supp (ρ0)≤ x0 ≤ inf Supp (ρ1). For
clarity, we group together the set of assumptions used on probability measures ρ0 and ρ1.

Assumptions 1. The probability measures ρ0 and ρ1 satisfy the following:

• They have finite second-order moments.
• They are absolutely continuous with respect to the Lebesgue measure.
• sup Supp (ρ0)≤ x0 ≤ inf Supp (ρ1).

Note that � in (2.5) is precisely Supp (ρ0), since all the mass in ρ0 needs to be transported across
the toll. Also note that if h is large enough so that the optimal transport map T verifies the constraint,
then T automatically provides a solution to Problem 1. Thus, the problem is equivalent to that in the
unconstrained case.

For Y ∈Y and tollY , its corresponding transit-time function define the map Y : [0, 1]×R→R by

Yt(x)=
{

x+ t x0−x
tollY (x)

if t≤ tollY(x)

x0 + (t− tollY(x)) T(x)−x0
1−tollY (x)

if t≥ tollY(x)
(3.1)

and note Y = {Y | Y ∈Y} the set of functions of this type. The next statement states that we can restrict
our minimization problem to functions of the form (3.1). Specifically, it states that for any candidate
minimizer Y ∈Y , the speed of transport needs to remain constant at all times prior to transit, and again,
constant at all times after transit. In addition, from the functional form, we see that Y1 = T(x) for all x.
This last statement says that the final destination of mass originally located at x is the same, whether we
apply T or the optimal plan that abides by the constraint; the only thing that changes in the two cases is
the speed while the mass traverses the segment before x0 and after (cf. example in Section 6).

Proposition 3.2. For ρ0 and ρ1 satisfying Assumptions 1, we have

inf
Y∈Y

J(∂tY)= inf
Y∈Y

J(∂tY)

Proof. For Y ∈Y and tollY , define

Yc
t (x)=

{
x+ t x0−x

tollY (x)
if t≤ tollY(x)

x0 + (t− tollY(x)) Y1(x)−x0
1−tollY (x)

if t≥ tollY(x)
(3.2)

Thus, Yc maintains the terminal destination Y1(x) and the crossing time tollY(x), for the mass that was
initially at x, while the speed of each particle remains constant before and after crossing. It follows that
Yc ∈Y and that J(∂tYc)≤ J(∂Y) as for any x ∈ Supp (ρ0) and path γx ∈C1([0, tollY(x)], [x, x0]), the mean
squared velocity of this path is always larger than the one of the path of constant speed, i.e.,∫ tollY (x)

0

γ̇x(t)
2dt≥

∫ tollY (x)

0

(
x0 − x

tollY(x)

)2

dt= (x0 − x)2

tollY(x)
.

3This is followed by cyclic monotonicity since the cost is convex, see [21, Section 2.3].
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We can then restrict Y to the set of functions that are of the form (3.2) since candidate minimizers will
always be of that form.

As the position Y1(x) in (3.2) doesn’t impact the constraint (2.3), we consider how Y1(x) may depend
on the time of crossing tollY(x). Specifically, Y1 must be a minimum over the set of functions

{f : Supp (ρ0)→ Supp (ρ1) | f#ρ0 = ρ1},
for the cost ∫ 1

tollY (x)

∫
R

(
Y1(x)− x0

1− tollY(x)

)2

ρ0(x)dxdt=
∫
R

(Y1(x)− x0)2

1− tollY(x)
ρ0(x)dx.

From this, we deduce that almost everywhere, tollY(x)≤ tollY(y) iff Y1(x)≥ Y1(y). Indeed, for
x1, x2, t1, t2 ∈R>0, we have that if x1 < x2 and t1 ≤ t2 then x1

t1
+ x2

t2
< x1

t2
+ x2

t1
. Then if tollY(x)≤ tollY(y)

and Y1(x)< Y1(y), then
(Y1(x)− x0)2

1− tollY(x)
+ (Y1(y)− x0)2

1− tollY(y)
>

(Y1(x)− x0)2

1− tollY(y)
+ (Y1(y)− x0)2

1− tollY(y)

so Y1 would not be optimal. Furthermore, as the problem is reversible (we can switch ρ0 and ρ1), we can
deduce in the same way that tollY(x)≥ tollY(y) iff x≤ y. Therefore, Y1(x) is increasing, and we conclude
that it is identical to T the optimal transport map between ρ0 and ρ1.

From Proposition 3.2, we deduce that for Y , the flow of a (candidate) optimal solution, the map
x �→ tollY is strictly decreasing on the support of ρ0 and that Yt is one to one, for all t. We also deduce
that for almost every x ∈ Supp (ρ0), the velocity vt(x) is constant (in t) before crossing the toll, changes
at the toll, and then stays the same until Yt(x) reaches T(x) at time t= 1. This can be formally written as

vt(x)= v0(x)1{t<tollY (x)} + v1(x)1{t≥tollY (x)}.

Let us write v(x)= x0−x
tollY (x)

for the velocity of transport prior to crossing the toll, for the mass ini-
tially located at x at the start. Then, in light of Proposition 3.2, our problem is reduced to the following
formulation.

Problem 1′. Determine

arg min
v

∫ 1

0

∫
R

(
v(x)21{t≤ x0−x

v(x) } +
(

T(x)− x0

1− x0−x
v(x)

)2

1{t≥ x0−x
v(x) }
)
ρ0(x)dxdt

= arg min
v

∫
R

(
v(x)(x0 − x)+ (T(x)− x0)2

1− x0−x
v(x)

)
ρ0(x)dx, (3.3)

subject to x �→ x0−x
v(x)
= tollv(x) being decreasing and bounded between 0 and 1, (since x0−x

v(x)
= toll(x)) and

lim sup
α1→0
α2→0

1

|α2 − α1|
∫

1{(t+α1)v(x)<x0−x<(t+α2)v(x)}ρ0(x)dx≤ h. (3.4)

We now argue the existence of a minimizer v�.

Proposition 3.3. For ρ0 and ρ1 satisfying Assumptions 1, Problem 1 admits a solution.

Proof. Let (vn)n be a minimizing sequence of Problem 2 (therefore also of Problem 1) and write
tolln : Supp (ρ0)→ (0, 1) the associated toll function: tolln(x)= x0−x

vn(x)
. Let (αk)k be a dense sequence in

Supp (ρ0) (for example the rational numbers). By compactness, we have that ∀k ∈N, tolln(αk) admits
a converging subsequence in n. Then using a diagonal argument, there exists a subsequence (vϕ(n))n

and βk ∈ [0, 1] such that, ∀k ∈N, tollϕ(n)(ak)−−−→
n→+∞

βk, and αk ≤ αl ⇐⇒ βl ≤ βk. For x ∈ Supp (ρ0), and
(αψx(k))k a decreasing subsequence converging to x, let be toll(x)= limk βψx(k) = limk limn tollϕ(n)(aψx(k)),
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which is well defined as βψx(k) is increasing. Then, tollϕ(n)(x) converges to toll(x) for any x being a point
of continuity of toll. As toll is a non-increasing map, it has at most a countable number of points of
discontinuity; therefore, tollϕ(n) converges to toll a.e. Let be f : R→R a continuous bounded map, we
then have by dominated convergence∫

R

f (tollϕ(n)(x))ρ0(x)dx−−−→
n→+∞

∫
R

f (toll(x))ρ0(x)dx,

so tollϕ(n)#ρ0 converges weakly to toll#ρ0 . For x ∈ Supp (ρ0) \ {x | toll(x)= 0}, define v(x)= x0−x
toll(x)

, it is
well defined a.e. because {x | toll(x)= 0} has measure 0 as (vn)n is a minimizing sequence. Then, vϕ(n)

converges a.e. to v and as the constraint (3.4) is equivalent to

∀α1, α2 ∈R, tollv((t+ α1, t+ α2))≤ h|α2 − α1|,
v verifies the constraint. Finally, using Fatou’s lemma we have limn J(vn)≥ J(v) so v is a minimizer of
Problem 1.

4. Uniqueness of the solution

Before we proceed with the proof of uniqueness of the minimizer, we recast our problem in terms of
flux as the optimization variable. For u ∈ L1([0, 1]×R, R), a candidate flux (i.e., mass times velocity)
defines a corresponding mass-measure ρu

t on R by duality via: ∀φ ∈C∞c (R, R),∫
R

φ(x)dρu
t (x)=

∫
R

φ(x)ρ0(x)dx+
∫ t

0

∫
R

(∇φ(x))ur(x)dxdr.

Equivalently, we have that ρu solves in the weak sense the continuity equation{
∂tρ

u
t =−∇ · u

ρu
0 = ρ0

.

For a flux u such that ∀t ∈ (0, 1), ρu
t admits a positive density, let us express the cost of u as

J(u)=
∫ 1

0

∫
R

ut(y)2

ρu
t (y)

dydt (4.1)

In the above, by a slight abuse of notation as it is often done, we used ρu to denote both the measure and
the corresponding density, allowing these to be distinguished by the specific usage and context. Let us
define the set of admissible fluxes.

Definition 4.1. The class of functions U is defined as the set of flux u : [0, 1]×R→R defined a.e. such
that J(u)<∞ and

(i′) ∀t ∈ (0, 1), ρu
t admits a positive density function and ρu

1 = ρ1

(ii′) for Tu
t the optimal transport map between ρ0 and ρu

t , for x ∈ Supp (ρ0) a.e. the map t �→ Tu
t (x) is

a bijection from [0, 1] to [x, T(x)] and is differentiable a.e.
(iii′) satisfy

∀t ∈ (0, 1), lim sup
x1→x0, x2→x0

1

|x2 − x1|
∫ x2

x1

|ut(y)|dy≤ h. (4.2)

In the proof of Proposition 4.2, we show that U is non-empty as any solution v ∈ V of Problem 2
generates a flux u ∈ U . We can now recast our problem in terms of flux as the optimization variable.

Problem 2. Consider

inf
u∈U

J(u). (4.3)
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over the classU of Definition 4.1. Determine existence, uniqueness, and functional form for a minimizing
solution u.

We will first prove the equivalence of the above formulation in Problem 2 with that in Problem 1.
The advantage of Problem 2 is that the constraint is now convex which will be convenient in proving
uniqueness. Note that here we use roman J with argument the flux field, to echo the earlier usage in (2.1)
where the action integral J first appeared with argument the velocity.

Proposition 4.2. For ρ0 and ρ1 satisfying Assumptions 1, Problems 1 and 3 are equivalent.

Proof. Let Y ∈Y be a solution of Problem 1, vt(·)= ∂tYt(Y−1
t (·)) the associated velocity (defined every-

where except at the points (toll(x), x), for all x ∈ Supp (ρ0)) and ρt = Yt#ρ0 the associated mass flow. Then
for φ ∈C∞c (R, R), we have

∫
R

φ(x)dρt(x)=
∫
R

φ(Yt(x))ρ0(x)dx

=
∫
R

(
φ(Y0(x))+

∫ t

0

∂tφ(Yr(x))dr
)
ρ0(x)dx

=
∫
R

(
φ(Y0(x))+

∫ t

0

∇φ(Yr(x))vr(Yr(x))dr
)
ρ0(x)dx

=
∫
R

φ(x)ρ0(x)dx+
∫ t

0

∫
R

∇φ(x)vr(x)dρr(x)dr.

Therefore, Y defines a unique flux u ∈ L1([0, 1]×R, R) (u is L1 by Jensen inequality) by ut(x)= vt(x)ρt(x)
with J(u)= J(∂tY). Furthermore, writing Tt for the optimal transport map between ρ0 and ρt, we have
for x ∈ Supp (ρ0) almost everywhere, the map t �→ Tt(x) is a bijection from [0, 1] to [x, T(x)] and its
differential at x equals vt(Tt(x)). On the other hand, for v(x)= ∂tY0(x)= x0−x

tollv(x)
we have that the left-hand

side of (3.4) amounts to

LHS (2.4)= lim sup
α1→0
α2→0

∫
1{Yt(x)+α1v(x)<x0<Yt(x)+α2v(x)}

v(x)

|α2 − α1|v(x)
ρ0(x)dx

= lim sup
ε1→0
ε2→0

1

|ε2 − ε1|
∫

1{y+ε1<x0<y+ε2}vt(y)ρt(y)dy.

Therefore, u ∈ U and we conclude that inf
u∈U

J(u)≤min
Y∈Y

J(∂tY).
For establishing the reverse direction, let be u ∈ U and define Tu

t the optimal transport map between
ρ0 and ρu

t . For Ft(x)= ∫ x

−∞ ρ
u
t (y)dy, the cumulative distribution function of ρu

t , it is well known that
Tu

t (x)= F−1
t (F0(x)), see [21, Chapter 1]. For x ∈ Supp (ρ0), write fx : [x, T(x)]→ [0, 1] for the inverse in

time of t �→ Tu
t (x), i.e., for y ∈ [x, T(x)], Tu

fx(y)(x)= y. Since ∀t ∈ [0, 1] we have Ft(F−1
t (F0(x)))= F0(x),

we obtain for all φ ∈C∞c ((0, 1)×R, R),

∫ 1

0

∫
R

∂tφt(x)Ft(F
−1
t (F0(x)))dxdt=

∫ 1

0

∫
R

∂tφt(x)F0(x)dxdt

∫ 1

0

∫
R

∂tφt(x)
∫
R

1{y≤Tu
t (x)}ρ

u
t (y)dydxdt= 0. (4.4)
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Furthermore, for x, y ∈R using integration by parts we have∫ 1

0

∂tφt(x)1{y≤Tu
t (x)}ρ

u
t (y)dt=

∫ 1

0

∂tφt(x)1{fx(y)≤t}ρ
u
t (y)dt

=−
∫ 1

0

φt(x)1{fx(y)≤t}∂tρ
u
t (y)dt− φfx(y)(x)ρu

fx(y)(y),

so the left-hand side of (4.4) equals

−
∫
R

∫
R

(∫ 1

0

φt(x)1{y≤Tu
t (x)}∂tρ

u
t (y)dt+ φfx(y)(x)ρu

fx(y)(y)

)
dxdy. (4.5)

Through a change of variable s= fx(y) and recalling that Tu
fx(y)(x)= y, we obtain that∫

R

φfx(y)(x)ρu
fx(y)(y)dy=

∫ 1

0

φs(x)ρu
s (Tu

s (x))∂tT
u
s (x)ds.

On the other hand, as (ρu
t , ut) solves the continuity equation we have∫

R

1{y≤Tu
t (x)}∂tρ

u
t (y)dy=−

∫
R

1{y≤Tu
t (x)}∇ut(y)dy=−ut(T

u
t (x)).

Then, we have that (4.5) equals

−
∫
R

∫ 1

0

φt(x)
(−ut(T

u
t (x))+ ρu

t (Tu
t (x))∂tT

u
t (x)

)
dtdx.

Therefore, from (4.4) we deduce that (t, x) almost everywhere we have

∂tT
u
t (x)= ut(Tu

t (x))

ρu
t (Tu

t (x))
.

Therefore, Tu
t defines a map in Y such that

J(∂tT
u
t )=

∫ 1

0

∫
R

(∂tT
u
t (x))2dtρ0(x)dx=

∫ 1

0

∫
R

(
ut(Tu

t (x))

ρu
t (Tu

t (x))

)2

dtρ0(x)dx

=
∫ 1

0

∫
R

ut(y)2

ρu
t (y)

dtdy= J(u).

Then, we deduce that inf
u∈U

J(u)≥min
Y∈Y

J(∂tY). Furthermore, as every y ∈ arg minY∈Y J(∂tY) defines a flux
u ∈ U with J(u)≤ J(∂ty), in particular, we have

min
u∈U

J(u)=min
Y∈Y

J(∂tY).

Using the equivalence of Problems 1 and 2, we can now prove the uniqueness of the minimizer.

Theorem 1. For ρ0 and ρ1 satisfying Assumptions 1, Problem 2 (and so Problem 1) admits a unique
solution.

Proof. Suppose that we have u1 and u2, two solutions of min
u∈U

J(u) . For λ ∈ (0, 1), t ∈ [0, 1] and x ∈R,

by convexity of the map R×R>0 � (a, b) �→ a2

b
, we have that

(λu1
t (x)+ (1− λ)u2

t (x))2

λρu1

t (x)+ (1− λ)ρu2

t (x)
≤ λu1

t (x)2

ρu1

t (x)
+ (1− λ)

u2
t (x)2

ρu2

t (x)
. (4.6)

As u1 and u2 are both solutions, we have that

λJ(u1)+ (1− λ)J(u2)=min
u∈U

J(u)≤ J(λu1 + (1− λ)u2),
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so (4.6) is an equality almost everywhere. To lighten the notation, let us write a1 = u1
t (x), b1 = ρ1

t (x),
a2 = u2

t (x) and b2 = ρ2
t (x). Then, when (4.6) is an equality, we have that the polynomial

P(λ)= (λa1 + (1− λ)a2)
2 − (λb1 + (1− λ)b2)(λ

a2
1

b1

+ (1− λ)
a2

2

b2

)

is identically zero. One can prove that the polynomial P is identically zero iff a1
b1
= a2

b2
i.e., u1

t (x)

ρu1
t (x)
= u2

t (x)

ρu2
t (x)

.

In this case, we then have ∂tTu1

t (Tu1

t (x))= ∂tTu2

t (Tu2

t (x)) for Tui

t the optimal transport map from ρ0 to ρui

t

with i= 1, 2. Then, as Tu1

0 = Tu2

0 = Id, we deduce that ρu1 = ρu2 so u1 = u2 almost everywhere.

5. Properties and structural form of the solution under smoothness assumption

We are now in a position to build explicitly the solution v� of Problem 1 in the case when ρ0 and ρ1

have additional smoothness assumptions. In the process of building the solution, we also the establish
structural properties of the solution. Throughout this section, we will assume that ρ0 and ρ1 satisfy the
following set of assumptions.

Assumptions 2. The probability measures ρ0 and ρ1 satisfy the following:

• They are absolutely continuous with respect to the Lebesgue measure with probability density
functions that are continuous, have bounded convex support, and are bounded from below on
their support.

• sup Supp (ρ0)< x0 < Supp (ρ1).

Under the stated assumptions on ρ0, ρ1, by using the closed-form expression for the optimal transport
map T in dimension one [21, Chapter 1], it is immediate to see that T is C1. For v : Supp (ρ0)→R such
that4 x �→ tollv(x)= x0−x

v(x)
is decreasing and bounded between 0 and 1 on Supp (ρ0), the expression

Cy(v)= lim sup
α1→0
α2→0

1

|α2 − α1|
∫

1{(tollv(y)+α1)v(x)<x0−x<(tollv(y)+α2)v(x)}ρ0(x)dx

gives the value of the flux passing through the toll station when the mass initially at y is crossing. Let us
first prove that from the additional assumptions on ρ0 and ρ1, we have that the solution is continuous.

Proposition 5.1. For ρ0 and ρ1 satisfying Assumptions 2, the solution v� ∈ L2 admits a continuous
representative.

Proof. From Section 1, we know that the solution v� ∈ L2 admits a representative such that the function
x �→ tollv� (x)= x0−x

v�(x)
is decreasing. Now by absurd, suppose that v� is not continuous on the interior of

Supp (ρ0). Then, there exists y in the interior of Supp (ρ0) and ε > 0 such that ∀δ > 0, ∃yδ ∈ Supp (ρ0)
with |y− yδ|< δ and |v�(y)− v�(yδ)|> ε. Suppose that ∀δ > 0, yδ − y> 0 (the proof would be the same
for yδ − y< 0). As tollv� (x)= x0−x

v�(x)
is not continuous in y and it is decreasing, we have that

lim
x→y
x>y

tollv� (x)< tollv� (y).

Let us define α = T(y)− y− v�(y). Suppose first that α > 0, then as tollv� is decreasing we have for x≤ y,

v�(x)= (tollv� (x))−1(x0 − x)≤ (tollv� (y))−1(x0 − x)= x0 − x

x0 − y
(T(y)− y− α)

= T(x)− x− α x0 − x

x0 − y
+ x0 − x

x0 − y
(T(y)− y)− T(x)− x.

4The notation tollv signifies tollY , for the corresponding Y obtained via (2.6).
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Then, as T is continuous, we have that−α x0−x
x0−y
+ x0−x

x0−y
(T(y)− y)− T(x)− x tends to−α when x tends to

y. We deduce that for γ > 0 small enough,

v�(x)+ γ (T(x)− x)≤ T(x)− x

for all x ∈ (y− γ , y]. Then by strict convexity of J, the function

v2(x)= v�(x)+ γ1{x∈(y−γ ,y]}(T(x)− x− v�(x))

verifies that

J(v�)− J(v2)

= γ
∫ y

y−δ

(
(v�(x)− T(x)− x)(x0 − x)+ (T(x)− x0)2

1− x0−x
v�(x)

− (T(x)− x0)2

1− x0−x
T(x)−x

)
ρ0(x)dx

= γ
∫ y

y−δ

(
v�(x)(x0 − x)+ (T(x)− x0)2

1− x0−x
v�(x)

− (T(x)− x)2
)
ρ0(x)dx

> 0,

as the path of constant speed t �→ x+ t(x− T(x)) has a smaller total squared velocity than the path
t �→ x+ t

(
v�(x)1{t≤tollY (x)} + T(x)−x0

1− x0−x
v� (x)

1{t>tollY (x)}
)
. Furthermore for Y small enough, we have that Cx(v2)< h

for all x ∈ (y− γ , y), as ρ0 is continuous and tollv� is decreasing so Cx(v�)<Cyδ (v�) for δ small enough.
Therefore, we have that v2 is a better solution to the problem.

If now α ≤ 0, then by continuity of T we have that for γ > 0 small enough, v�(x)+ 2γ ≥ T(x)− x,
for all x ∈ (y, y+ γ ]. As previously we can find a better solution v2(x)= v�(x)− γ1{x∈(y−γ ,y]}(T(x)− x−
v�(x)) to the problem which contradicts the fact that v� is the minimizer.

The next proposition states that at the points where v� does not saturate the constraint, v� is equal to
the unconstrained transport T − Id.

Proposition 5.2. For ρ0 and ρ1 satisfying Assumptions 2, if there exists y ∈ Supp (ρ0) such that Cy(v�)<
h, then we have v�(y)= T(y)− y.

Proof. Suppose ∃y ∈ Supp (ρ0) such that Cy(v�)< h and v�(y) �= T(y)− y. Define gε(x)=
1{x∈(y−ε,y+ε)}ε3 exp (− 1

ε2−(x−y)2 + 1
ε2 ). Then, there exist ε �= 0 ∈R and δ > 0 such that ∀x ∈ (y− δ, y+ δ)

we have |v�(x)+ gε(x)− (T(x)− x)|< |v�(x)− (T(x)− x)| and Cx(v� + gε)< h, since gε introduces a
vanishingly small bump at a suitable location. Through the flow of v� + gε , the points in (y− δ, y+ δ)
travel with a velocity that is closer to the velocity of the path t �→ x+ t(T(x)− x). The velocity of the
path t �→ x+ t(T(x)− x) being constant, it is the one that is minimal for the cost of the total squared
velocity. By strict convexity of J, we have that J(v�)> J(v� + gε). This contradicts the optimality of v�.

We can now deduce some regularity of the function v�.

Corollary 5.3. For ρ0 and ρ1 satisfying Assumptions 2, the optimal solution v� of Problem 1 is C1 almost
everywhere.

Proof. As T is C1, then v� is also C1 at points y that lie in the interior of the closed set {y ∈
Supp (ρ0) | v�(y)= T(y)− y}. Otherwise if for some y it holds that v�(y) �= T(y)− y, then ∃δ > 0 such
that ∀x ∈ (y− δ, y+ δ), v�(x) �= T(x)− x which implies by Proposition 5.2 that Cx(v�)= h. Solve the
ordinary differential equation{

∂xv(x)= v(x)2ρ0(x)−hv(x)
h(x0−x)

for y− δ ≤ x≤ y+ δ
v(y+ δ)= v�(y+ δ) (5.1)

for v(x). Note that this equation is solved backwards, starting from a terminal condition at y+ δ.
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It can be shown that the function v is well defined by establishing existence and uniqueness of the
solution to (5.1) using the Cauchy-Lipschitz theorem and inherent boundedness. Indeed, if

v(x)>
h

inf{ρ0(y) | y ∈ Supp (ρ0)} ,
then ∂xv(x)> 0, and so v is decreasing with decreasing value of its argument on a small interval [x− ε, x],
i.e., τ �→ v(x− τ ) is decreasing for τ ∈ [0, ε]. Likewise, if

0< v(x)<
h

sup{ρ0(y) | y ∈ Supp (ρ0)} ,
then ∂xv(x)< 0, and so v is increasing (again with decreasing value of its argument) on a small interval
[x− ε, x]. Therefore, we can conclude that if v exists, it is bounded on its interval of definition. Now,
as v�(y+ δ)> 0, and v �→ v2ρ0(x)−hv

h(x0−x)
is Lipschitz on any compact set, we can apply the Cauchy-Lipschitz

theorem to establish existence and uniqueness. We then have that v is well defined as the unique solution
of (5.1) on [y− δ, y+ δ] and is C1 on this interval. From the definition of v, it follows that Cx(v)= h,
and therefore v has the same flux as v�. By uniqueness, v which is C1 on [y− δ, y+ δ] is optimal, i.e.,
v= v∗. Finally as v� is C1 on the interior of the set {y ∈ Supp (ρ0) | v�(y)= T(y)− y} and is also C1 on
the set {y ∈ Supp (ρ0) | v�(y) �= T(y)− y}, we deduce that v� is C1 almost everywhere as the boundary
of those two sets is at most countable. Note that the set {y ∈ Supp (ρ0) | v�(y)= T(y)− y} might have an
empty interior. However, it does not change the fact that the set of points where v� is not C1 lies in the
boundary of the set {y ∈ Supp (ρ0) | v�(y) �= T(y)− y}. As the cardinality of the boundary of this set is
at most countable, we can still conclude that v� is C1 almost everywhere.

Now that we have established that v� is C1 a.e., we can write the constraint (3.4) for functions v ∈
C1(Supp (ρ0), R) as: for x ∈ Supp(ρ0), a.e.

Cx(v)= v(x)ρ0(x)

1+ x0−x
v(x)
∂xv(x)

≤ h. (5.2)

We now define the class of candidate functions that we focus on in the present section.

Definition 5.4. The class of functions V is defined as the set of maps v : Supp (ρ0)→R, that are C1 a.e.
and are such that

(i) the map x �→ x0−x
v(x)

is decreasing and bounded between 0 and 1
(ii) v verifies condition (5.2) a.e.

Note that from Corollary 5.3, we have that V is non-empty. For v : Supp (ρ0)→R, define

J(v)=
∫
R

(
v(x)(x0 − x)+ (T(x)− x0)2

1− x0−x
v(x)

)
ρ0(x)dx.

We can then rewrite Problem 1 in the present case where ρ0 and ρ1 are continuous, have bounded convex
support, and are bounded from below on the interior of their support, as follows.

Problem 3. Consider

min
v∈V

J(v) (5.3)

over the class of functions V of Definition 5.4. Determine existence, uniqueness, and a functional form
for a minimizing solution v.

To solve Problem 3, we define velocity fields v on all of R, even outside Supp (ρ0), as this suitably
defined extension of v will be conveniently expressed as a solution of a differential equation. To this end,
we note that the constraint (5.2) can be alternatively expressed in the form

Calt
x (v) := v(x)2ρ0(x)− h(x0 − x)∂xv(x)

v(x)
≤ h. (5.4)
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This alternative formulation applies even for points x where ρ0 = 0 and will help define the sought
extension for v�.

Let us first extend on all of R the optimal transport map between ρ0 and ρ1. To this end, define
α0 = inf Supp (ρ0), β0 = sup Supp (ρ0), α1 = inf Supp (ρ1), β1 = sup Supp (ρ1), and set

T+(x)=

⎧⎪⎨
⎪⎩

T(x) when x ∈ Supp (ρ0)

β1 + x− β0 when x≥ β0

α1 + x− α0 when x≤ α0.

Let γ0, γ1 ∈R be the uniquely defined points such that x0−α0
v�(α0)
= x0−γ0

T+(γ0)−γ0
and x0−β0

v�(β0)
= x0−γ1

T+(γ1)−γ1
. The point

γ1 is the point that, when transported by T − Id, crosses the toll at the same time and β0 crosses the toll
when being transported by v�. Note that we have γ0 ≤ α0 and γ1 ≥ β0. We also extend v� on the whole
R as

v�+(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T(x)− x when x≤ γ0 or x≥ β0

v�(α0)
x0−x

x0−α0
when γ0 ≤ x≤ α0

v�(x) when x ∈ Supp (ρ0)

v�(β0)
x0−x

x0−β0
when β0 ≤ x≤ γ1

For notational simplicity, in the sequel, we suppress the labelling on T+, v�+ and use T , v� instead
for the extended versions as well. To build v�, we first establish that on the points where T − Id does not
satisfy the constraint, v� actually saturates the constraint. As an immediate consequence of Proposition
5.2, we have the following lemma:

Lemma 5.5. For ρ0 and ρ1 satisfying Assumptions 2, for all x ∈ Supp (ρ0) such that Cx(T − Id)> h we
have Cx(v�)= h.

We next characterize a leading segment of the distribution corresponding to points with velocity
faster than that of the optimal unconstrained transport. It is essential that the leading edge ‘speeds up’
to allow the trailing portion to pass through and meet the time constraint. Specifically, we show that v�
is greater than T − Id at the points to the right of points where T − Id does not satisfy the constraint.

Lemma 5.6. For ρ0 and ρ1 satisfying Assumptions 2, for x1 = sup{x ∈ Supp (ρ0) | Cx(T − Id)> h} and
y1 = sup{x ∈R | Calt

x (v�)= h} we have that ∀x ∈ (x1, y1), v�(x)≥ T(x)− x.

Proof. First note that y1 ≥ x1 by Lemma 5.5. Suppose that

{v�(x)< T(x)− x} ∩ (x1, y1) �= ∅
and let a= sup{x ∈ (x1, y1) | v�(x)< T(x)− x}. We consider separately the two cases ρ0(a)= 0 and
ρ0(a)> 0 below:

(i) If ρ0(a)= 0 then ∀x≥ a, ρ0(x)= 0, so

v�(x)= T(y1)− y1

y1 − x0

(x− x0),

as Calt
x (v�)= h for all x∈ [a, y1]. Furthermore, T(a)− a= β1 + a− β0 − a= T(y1)− y1 and T(a)− a=

v�(a) so necessarily a= y1 and Supp (ρ0)= [α0, y1]. Then, ∃z ∈ (x1, y1) such that, ρ0(z)> 0, v�(z)<
T(z)− z, and ∂xv�(z)> T ′(z)− 1.

(ii) If ρ0(a)> 0, then by convexity of Supp (ρ0) we also have existence of that z ∈ (x1, y1) with the
same properties. In both cases, we have

v�(z)ρ0(z)

1+ x0−z
v�(z)
∂xv�(z)

<
(T(z)− z)ρ0(z)

1+ x0−z
T(z)−z

(T ′(z)− 1)
≤ h

which contradicts the definition of y1.
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The following lemma states that if v� saturates the constraint on a maximal interval (i.e., such that,
the points just outside do not saturate the constraint), then either v� = T − Id throughout, or it is strictly
greater than T − Id on a portion of the interval and strictly less than T − Id on another portion of the
interval. This property is inherited by the convexity of the cost.

Lemma 5.7. Suppose that ρ0 and ρ1 satisfy Assumptions 2 and let be [a, b]⊂ {x ∈R | Calt
x (v�)= h} with

[a, b] of maximal size. Then, [a, b] has the following properties:

• There exists x ∈ [a, b] such that v�(x)> T(x)− x if and only if ∃y ∈ [a, b] such that v�(y)< T(y)− y.
• If for all δ > 0, there exists y1 ∈ (a, a+ δ) such that v�(y1)> T(y1)− y1 then for all δ > 0, there

also exists y2 ∈ (a, a+ δ) such that v�(y2)< T(y2)− y2.
• If for all δ > 0, there exists y1 ∈ (b− δ, b) such that v�(y1)< T(y1)− y1 then for all δ > 0, there

also exists y2 ∈ (b− δ, b) such that v�(y2)> T(y2)− y2.

Proof. Suppose that ∀x ∈ [a, b], we have v�(x)≥ T(x)− x and we do not have equality on the whole
interval. Define

�a(ε)=
∫ b

a

(
(x0 − x)(v�(x)+ ε)+ (T(x)− x0)2

1− x0−x
v�(x)+ε

)
ρ0(x)dx.

Then, we have ∂x�a(0)= ∫ b

a
(x0 − x)(1− (T(x)−x0)2

(v�(x)−(x0−x))2

)
ρ0(x)dx> 0. Let be c< a such that ∂x�c(0)> 0 and

∃δ > 0 with v�(c)2ρ0(c)−hv�(c)
h(x0−c)

− ∂xv�(c)=−δ. Then, there exist d ∈ (c, a) such that ∂x�d(0)> 0 and ∃δ > 0

with v�(d)2ρ0(d)−hv�(d)
h(x0−d)

− ∂xv�(d)=−δ/2. Let us define kε as the function solving the ODE{
∂xkε(x)=−∂xv�(x)+ (v�(x)+kε )2ρ0(x)−h(v�(x)+kε (x))

h(x0−x)
for x≤ d,

kε(d)=−ε.

Then for ε > 0 small enough, we have ∂xkε(x)<−δ/4, ∀x ∈ (c, d). Therefore, for ε > 0 small enough
∃y ∈ (c, d) such that kε(y)= 0. Define

vε(x)=

⎧⎪⎨
⎪⎩

v�(x) if x /∈ (y, b),

v�(x)− ε if x ∈ (d, b),

v�(x)+ kε(x) if x ∈ (y, d].

Then for ε > 0 small enough, vε verifies the constraint and J(vε)< J(v�).
Furthermore, recalling that the speed of a particle at x ∈ Supp (ρ0) after having crossed the toll is

T(x)−x0

1− x0−x
v�(x)

, then for v� : Supp (ρ1)→R<0 defined by

v�(y)= x0 − y

1− x0−T−1(y)
v�(T−1(y))

,

we have that v� is a solution to the problem of transfering between ρ1 and ρ0. Therefore, applying the
previous derivations to v�, we deduce that for [T(a), T(b)]⊂ {x ∈R | Calt

x (v�)= h} with [T(a), T(b)]
of maximal size, if there exists y1 ∈ [T(a), T(b)] with v�(y1)< T−1(y1)− y1, then there exists y2 ∈
[T(a), T(b)] with v�(x)> T−1(y2)− y2. Now as we have the relation v�(x)< T(x)− x iff v�(T(x))<
−(T(x)− x), we deduce that if there exists x1 ∈ [a, b] such that v�(x1)< T(x1)− y1 then there exists
x2 ∈ [a, b] such that v�(x2)< T(x2)− y2.

Let us now prove the second and third point. Suppose that there exists δ > 0 and y1 ∈ (a, a+ δ) such
that v�(y1)> T(y1)− y1 and ∀x ∈ (a, a+ δ), we have v�(x)≥ T(x)− x. Then defining

�a(ε)=
∫ a+δ

a

(
(x0 − x)(v�(x)+ ε)+ (T(x)− x0)2

1− x0−x
v�(x)+ε

)
ρ0(x)dx,
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Figure 2. Density ρ0(x) vs. x.

Figure 3. Flux ρt(x0)vt(x0) at crossing.

and carrying out the same derivation as previously we obtain that v� is not optimal. Now applying the
same reasoning to v�, we obtain the third point.

We are now in a position to build explicitly v� using the lemmas. The process of building v∗ consists
of determining its value successively on intervals [zyi , yi] and [yi+1, zyi ], with

. . . > yi > zyi > yi+1 > zyi+1 > . . .

such that v�(x) �= T(x)− x for x ∈ [zyi , yi] a.e., while v�(x)= T(x)− x on the complement where x /∈⋃
i

[zyi , yi]. By Proposition 5.2, we know that Calt
x (v�)= h on intervals [zyi , yi], a fact that will help us

determine v� and the succession of points that define these intervals.
We explain the process in Figures 2-4 with an example. This example presents a situation where

the behaviour of the corresponding optimal solution v� is characterized by two distinct intervals [zyi , yi]
i= 1, 2, where the constraint saturates. Thus, for this example, we identify three intervals of interest,
[zy2 , y2], [y2, zy1 ], and [zy1 , y1]. In the first and the last, the constraint saturates, whereas in the middle
interval it does not. We proceed by working our way from right to left, always assuming that Supp (ρ0)
is to the left of the toll, as in the figures.

In general, the process begins by first computing the optimal transport map T , without involving
the constraint. Then, we identify x1 as the rightmost point where the throughput hits the limit set at x0.
Naturally, if the optimal transport map satisfies the throughput constraint, then it is the optimal map and
specifies v∗ throughout. Assuming that x1 is finite, then a search to the right of x1, that we explain later
on, identifies y1 as the rightmost point where v needs to be adjusted so as to abide by the throughput
constraint while minimizing the transportation cost. In the example depicted in Figure 2, y1 is shown
located to the right of β0 (= the supremum of the support of ρ0), though this is not always the case,
and depends on the terminal distribution ρ1 via the optimization problem that specifies y1. We choose
to explain this case, where y1 is to the right of β0 so as to highlight that this is indeed possible.

Continuing on with our specific example, for the interval [zy1 , y1], we have v� = vy1 , with vy defined
in equation (5.6) explained below, which ensures that Calt

x (v)= h. Then, on [y2, zy1 ] we have once again
that the velocity is specified by the ‘unconstrained’ optimal map T , i.e, that v� = T − Id, and so Calt

x (v)=
Calt

x (T − Id). Finally on [zy2 , y2], we have v� = vy2 as Calt
x (v)= h. Note that in this specific example where

y1 ≥ β0 and zy2 ≤ α0, we have ∀x ∈ [zy2 , α0], toll(x)= toll(α0) and ∀x ∈ [β0, y1], toll(x)= toll(β0).
We now detail how to build explicitly v� in the general case. As noted, if T − Id verifies the

constraint throughout, which can now be explicitly stated as in (5.2), then v∗ = T − Id is the optimal solu-
tion. Otherwise define x1 = sup{x ∈ Supp (ρ0) | Cx(T − Id)> h}, and thereby we determine y1 ∈ [x1, x0]

https://doi.org/10.1017/S0956792524000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000317


European Journal of Applied Mathematics 17

Figure 4. Illustration of the flow through the toll. The middle segment [y2, zy1 ] transports through the toll
unimpeded by the constraint towards the final destination, via the optimal transport map T , designed for
unconstrained transport; each point in this interval maintains the same velocity before and after the toll.
In contrast, the segments to the left and right, [zy2 , y2] and [zy1 , y1], respectively, are adjusted accordingly
so as to saturate the constraint. The exact position of their respective end points (that may even be outside
the support of ρ0, as a matter of computational simplicity, in which case they correspond to zero density)
is computed via the solution of an optimization problem and depend on the terminal distribution ρ1 as
well.

(cf. Lemma 5.5) such that

y1 = sup{x ∈R | Calt
x (v�)= h}. (5.5)

For any y ∈R with x1 ≤ y< x0, define the velocity vy(x) as the solution of the differential equation{
∂xvy(x)= vy(x)2ρ0(x)−hvy(x)

h(x0−x)
for x≤ y.

vy(y)= T(y)− y
(5.6)

Note that this equation is solved backwards, starting from a terminal condition at y. This value for the
velocity ensures that the transport will saturate the constraint to left of y (i.e., Calt

x (vy)= h will hold
for x≤ y). The functional form of vy(x) will be used next to identify the first interval [zy1 , y1], where
the velocity will depart from that of the unconstrained transport T , via solving a suitable optimization
problem to determine y1. Since we know that the equality Calt

x (v�)= h will be true on a certain interval
[zy1 , y1], on that interval we will have v� = vy1 .

Let wx1
y = inf{x≤ x1 | ∀s ∈ (x, x1), vy(s)≥ T(s)− s} (well defined by Lemma 5.6) and

zx1
y = inf{x≤wx1

y | ∀s ∈ (x, wx1
y ), vy(s)< T(s)− s}. (5.7)

Then, we have that v�(x)= vy1 (x), ∀x ∈ (zx1
y1

, x1) by Lemma 5.7 and Proposition 5.2.
We now determine y1 by solving a suitable optimization problem. For x≤ y< x0, define

Jx(y)=
∫
R

(
(T(s)− s)21{s /∈ (zx

y, y)}

+ ((x0 − s)vy(s)+ (T(s)− x0)2

1− x0−s
vy(s)

)1{s ∈ (zx
y, y)}

)
ρ0(s)ds.
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We have Jx(y)= J(v+y ) for the function v+y such that v+y = vy on [zx
y, y] and v+y = T − Id on R \ [zx

y, y].
Then, the first step of the building process of v� is to find y1 solution of

y1 = arg min
y≥x1

Jx1 (y).

Such a y1 is well defined as Jx1 is continuous on [x1, x0]. Once y1 has been determined, we define x2 =
sup{x< zy1 | Cx(T − Id)> h}. If x2 is not defined then

v�(x)=
{

vy1 (x) if x ∈ (z1, y1),

T(x)− x if x /∈ (z1, y1),

otherwise we start again the same process to determine y2 as

y2 = arg min
y>x2

Jx2 (y).

If y2 < zy1 , it suggests that there is an interval [y2, zy1 ] where the transport follows the unconstrained map
T , and we continue in the same way.

However, it is possible that the condition yi ≤ zyi−1 fails at some point, for some i≥ 2. In that case,
intervals where the velocity departs from being T(x)− x, will merge. For instance, if we obtain yi > zyi−1

then as (y, y′) �→ Jxi−1 (y)+ Jxi (y
′) is convex on {(y, y′) | y′ ≤ zy}, it means that Calt

x (v�)= h, ∀x ∈ (xi, xi−1),
and therefore, we have to start the optimization again and determine yi−1 as

yi−1 = arg min
y>xi−1

Jxi (y).

If we obtain a value yi−1 > zyi−2 , we reset xi−1 as being equal to xi and, once again, we have to
redetermine

yi−2 = arg min
y>xi−2

Jxi−1 (y).

Otherwise, i.e., if we obtain a value yi−1 ≤ zyi−2 , we reset xi as xi = sup{x< zyi−1 | Cx(T − Id)> h} for this
updated value yi−1. Once again, if xi is well defined we continue the process by finding

yi = arg min
y>xi

Jxi (y).

We continue this iterative process until v� is defined on all of the support of ρ0. The construction process
is summarized in Algorithm 1.

To establish the correctness of this algorithm in constructing the solution v�, we start with a key
property of the function Jx

Proposition 5.8. Let be y ∈ Supp (ρ0) and x= sup{z≤ y|Cz(T − Id)> h}. There exists y� ∈ [x, x0] such
that the function y �→ Jx(y) is non-increasing on [x, y�] and then non-decreasing on [y�, x0]. Furthermore,
if Cz(T − Id)< h then ∀ε > 0, y �→ Jx(y) is not constant on [z− ε, z+ ε].

Proof. Let vy be the solution of (5.6) and its associated toll function tolly(x)= (x0 − x)/vy(x). We
have

∂xtolly(x)=− 1

vy(x)
− x0 − x

vy(x)2
∂xvy =− 1

vy(x)
− 1

h
(ρ0(x)− h

vy(x)
)=−ρ0(x)

h
,

so in particular for x≤ y we have

tolly(x)= toll(y)+ ρ0([x, y])/h,
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Algorithm 1. Building Process
1: x1← sup{x ∈ Supp (ρ0) | Cx(T − Id)> h}
2: z0← x0

3: i← 1
4: while xi >min Supp (ρ0) do
5: yi← arg miny≥xi Jxi (y)
6: while yi > zi−1 do
7: yi−1← arg miny≥xi−1 Jxi (y)
8: xi−1← xi

9: i← i− 1
10: end while
11: wxi

yi
← inf{x≤ xi | ∀s ∈ (x, xi), vy(s)≥ T(s)− s}

12: zi← inf{x≤wxi
yi
| ∀s ∈ (x, wxi

yi
), vy(s)< T(s)− s}

13: xi+1← sup{x≤ zi | Cx(T − Id)> h}
14: i← i+ 1
15: end while
16: return (zk, yk)k=1,...,i−1

with toll(y)= (x0 − y)/(T(y)− y). Then as vy(x)= (x0 − x)/tolly(x), we can rewrite Jx as

Jx(y)=
∫
R

(
(T(s)− s)21{s /∈ (zx

y, y)}

+ (
(x0 − s)2

toll(y)+ ρ0([s, y])/h
+ (T(s)− x0)2

1− toll(y)− ρ0([s, y])/h
)1{s ∈ (zx

y, y)}
)
ρ0(s)ds.

=
∫
R

(
(T(s)− s)21{s /∈ (zx

y, y)} + (f1(s, y)+ f2(s, y))1{s ∈ (zx
y, y)}

)
ρ0(s)ds,

with

f1(s, y)= (x0 − s)2

toll(y)+ ρ0([s, y])/h
and f2(s, y)= (T(s)− x0)2

1− toll(y)− ρ0([s, y])/h
.

Now as f1(zx
y, y)+ f2(zx

y, y)= (T(zx
y)− zx

y)
2 and f1(y, y)+ f2(y, y)= (T(y)− y)2, we deduce that

∂yJx(y)=
∫
R

(
∂yf1(s, y)+ ∂yf2(s, y)}

)
1{s ∈ (zx

y, y)}ρ0(s)ds

=−
∫
R

( ( (x0 − s)

toll(y)+ ρ0([s, y])/h

)2

(toll′(y)+ ρ0(y)/h)

−
(

(T(s)− x0)

1− toll(y)− ρ0([s, y])/h

)2

(toll′(y)+ ρ0(y)/h)
)
1{s ∈ (zx

y, y)}ρ0(s)ds

=
∫
R

((
(T(s)− x0)

1− toll(y)− ρ0([s, y])/h

)2

−
(

(x0 − s)

toll(y)+ ρ0([s, y])/h

)2
)

× (toll′(y)+ ρ0(y)/h)1{s ∈ (zx
y, y)}ρ0(s)ds.

Furthermore, for s≤ y, the function y �→ toll(y)+ ρ0([s, y])/h= tolly(s) is non-increasing as all the
points x ∈ (s, y) verify that Cx(vy)= h i.e., the flow rate is maximized between s and y. We can then
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conclude that toll′(y)+ ρ0(y)/h≤ 0 and that the function

y �→
(

(T(s)− x0)

1− toll(y)− ρ0([s, y])/h

)2

−
(

(x0 − s)

toll(y)+ ρ0([s, y])/h

)2

is non-negative and then non-positive, which gives the result.
Now if for z≥ x, Cz(T − Id)< h, then toll′(z)+ ρ0(z)/h< 0 so Jx(y) is not constant around z.

Let now

n= sup
(xi)i

∞∑
i=1

1{Cxi (T−Id)>h,Cxi+1 (T−id)<h}, (5.8)

where the supremum is taken over all increasing sequence (xi)i ∈ Supp (ρ0)N. It corresponds to the num-
ber of times the function x �→Cx(T − Id) oscillates around the value h. We are going to prove that the
problem is reduced to finding the intervals where Cx(v�)= h. To this end, let us define a class of candidate
minimizers that are characterized by the intervals where they saturate the constraint.

Definition 5.9. For N ∈N, the class of functions VN is defined as the set of maps v(zi ,yi)i : Supp (ρ0)→R

such that

i) there exists a sequence of disjoints intervals (zi, yi)⊂ Supp (ρ0) i= 1, . . . , N with

v(zi ,yi)i (x)=
∑

i

1{x ∈ (zi, yi)}vyi (x)+ 1{x /∈
⋃

i

(zi, yi)}(T(x)− x),

ii) for all x /∈⋃i (zi, yi), we have Cx(T − Id)≤ h,
iii) for all i ∈ {1, . . . , N} there exists x ∈ (zi, yi) such that Cx(T − Id)> h.

Let us prove that the solution v� belongs to a certain class VN for N ≤ n+ 1.

Lemma 5.10. Suppose that ρ0 and ρ1 satisfy Assumptions 2 and that n defined in (5.8) is finite. There
exists N ∈ {0, . . . , n+ 1} such that Problem 3 is equivalent to infv∈VN J(v) and the infimum is attained.

Proof. First note that we have that infv∈VN J(v)≥min
v∈V

J(v) as every candidate in VN defines a candidate
in V . Let be

E= {x ∈ Supp (ρ0)| Cx(T − Id)> h}.
Then as E is open, it can be written as a union of disjoint intervals : E=⋃k≥1 (ak, bk). For all k≥ 1,
let be

ck = sup{x≤ ak| Cx(T − Id)< h} and dk = inf{x≥ bk| Cx(T − Id)< h}.
Then, the set

A=
⋃
k≥1

(ck, dk),

can actually be written as a finite union:

A=
m⋃

k=1

(αk, βk),

with m≤ n+ 1 and αk, βk points belonging to ∂{x ∈ Supp (ρ0)| Cx(T − Id)< h}. Then for all k ∈
{1, . . . , m} and x ∈ (αk, βk), we have Cx(v�)= h so in particular, v� = vβk on (αk, βk). Let be Yk =
sup{x≥ βk|∀y ∈ (αk, x), v�(y)= v�x(y)} and (yk)k=1,...,N (with N ≤m) the decreasing sequence such that
{yk| k= 1, . . . , N} = {Yk| k= 1, . . . , m}. Likewise, define Zk = inf{x≤ αk|∀y ∈ (x, βk), v�(y)= v�

βk
(y)}

and (zk)k=1,...,N the decreasing sequence such that {zk| k= 1, . . . , N} = {Zk| k= 1, . . . , m}. We have by
construction that v� = v(zk ,yk)k=1,...,N and that v� belongs to VN .

Using this result, we can now prove that when n is finite, Algorithm 1 builds the solution v�.
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Theorem 2. Suppose that ρ0 and ρ1 satisfy Assumptions 2 and that n defined in (5.8) is finite. There
exist N ∈N and a sequence of disjoints intervals

(
(zi, yi)

)
i
⊂ Supp (ρ0)N such that for all i ∈ {1, . . . , N}

we have the following properties.

(a) For x ∈ [zi, yi], we have v�(x)= vyi (x) (defined in (5.6)) and Calt
x (v�)= h.

(b) There exists wi ∈ (zyi , yi) such that ∀y ∈ [wi, yi), v�(y)≥ T(y)− y and ∀y ∈ (zyi , wi], v�(y)≤
T(y)− y.

(c) For all x /∈⋃N
i=1 [zi, yi], v�(x)= T(x)− x.

(d) The sequence
(
(zi, yi)

)
i
is the output of Algorithm 1.

Proof. We first build the intervals satisfying the points (a), (b) and (c). Let be (Zk, Yk)k=1,...,N the disjoint
intervals given by Lemma 5.10 such that v� = v(Zk ,Yk)k=1,...,N . From the definition of v(Zk ,Yk)k=1,...,N , we know
that (Zk, Yk)k=1,...,N satisfy the points (a) and (c). Let us show that we can subdivide each interval (Zk, Yk)
into a finite numbers of sub-intervals satisfying (b). Define for all k ∈ {1, . . . , N},

βk = sup{x≤ Yk|Cx(T − Id)> h} and αk = inf{x≥ Zk|Cx(T − Id)> h}.
We first argue that we actually have βk < YK . Suppose to the contrary that is not true, i.e., that βk = YK .

Then from the third point of Lemma 5.7, the function v� − (T − Id) is either strictly positive on an
interval (Yk − δ, Yk) or it oscillates around 0. If it oscillates around 0, then there exists x ∈ (Yk − δ, Yk)
such that v�(x)> T(x)− x and ∂xv�(x)< T ′(x)− 1. Therefore, we have that

v(x)ρ0(x)

1+ x0−x
v(x)
∂xv(x)

>
(T(x)− x)ρ0(x)

1+ x0−x
T(x)−x

(T ′(x)− 1)
≥ h, (5.9)

which is impossible, so we deduce that v� − (T − Id) is strictly positive on an interval (Yk − δ, Yk). But
again, as v�(Yk)= T(Yk)− YK , we deduce that there exists x ∈ (Yk − δ, Yk) such that ∂xv�(x)< T ′(x)− 1,
which implies that v� does not satisfies the constraint at x. As this is not possible, we deduce that βk < Yk.
Then, we also deduce from Lemma 5.6 that v�(x)≥ T(x)− x for all x ∈ (βk, Yk). In the same way, we can
prove that αk > Zk and v� ≤ T − Id on (Zk, αk).

Therefore, the interval (Zk, YK) can be subdivided into a finite number of intervals (zk,i, yk,i)i=1,...,nk that
verify (a) and (b) of the theorem. The number of sub-intervals is finite as the function x �→ v�(x)− T(x)−
x cannot oscillate around 0 at the point where Cx(T − Id)≥ h (same arguments as (5.9)). For points where
Cx(T − Id)< h, there exists δ > 0 such that for all y ∈ (x− δ, x+ δ) we have Cy(T − Id)< h, so x �→
v�(x)− T − x cannot oscillate around 0, otherwise there would be points where Cy(v�)< h which is not
possible as v� saturates the constraint on the interval. Now the sequence of intervals (zk,i, yk,i)i=1,...,nk ,k=1,...,N

is our desired sequence that verifies (a), (b) and (c) of the theorem.
Let us now prove (d) by induction. For a, b ∈ Supp (ρ), define Pa,b the solution to Problem 3 but for

the measure ρ0|[a,b] and ρ1|[T(a),T(b)] . We prove that each time Algorithm 1 checks the condition of the ‘while
loop’ at line 4, the current solution (zk, yk)k=1,...,i−1 in the memory of the algorithm is optimal on the
interval [zi−1, x0] (i.e., v(zk ,yk)k=1,...,i−1 = Pzi−1,x0). This is true at the first iteration as i= 1 and z0 = x0.

Now fix i≥ 2 and suppose that after a number of iterations of the ‘while loop’ at line 4, for each m ∈
{1, . . . , i}, the solution (zk, yk)k=1,...,m−1 is optimal on the interval [zm−1, x0] (i.e., v(zk ,yk)k=1,...,m−1 = Pzm−1,x0).
Compute line 5: yi = arg miny≥xi Jxi (y) and suppose that yi < zi−1. We have

J(Pzi ,x0 )= min
j=0,...,N

min
(τk ,δk)k=1,...,j

{
J(v(τk ,δk)k=1,...,j ) |Cx(v(τk ,δk)k=1,...,j )≤ h, x ∈ (zi, x0)

}
(5.10)

≥ min
j=0,...,N

l=0,...,j−1

min
(τk ,δk)k=1,...,j

xi∈(τl ,δl)

{
J(v(τk ,δk)k=1,...,j )

∣∣∣∣∣
Cx(v(τk ,δk)k=1,...,l )≤ h, x ∈ (zi−1, x0)

Cx(v(τk ,δk)k=l+1,...,j )≤ h, x ∈ (zi, δl+1)

}
. (5.11)

The first equality is given by Lemma 5.10. Then, the inequality is due to the fact that every candidate
minimizer v(τk ,δk)k=1,...,j to (5.10) is a candidate minimizer to (5.11). As the solution to (5.11) is v(zk ,yk)k=1,...,i

which actually verifies Cx(v(zk ,yk)k=1,...,i )≤ h, ∀x ∈ (zi, x0), we then deduce that v(zk ,yk)k=1,...,i is equal to Pzi ,x0 .
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Let us now treat the case where yi ≥ zi−1. We prove that the solution Pzi ,x0 verifies that Cx(Pzi ,x0 )= h for
all x ∈ (xi, zi−1). By contradiction, suppose that it is not the case and let be α= sup{x≥ xi|Cx(Pzi ,x0 )= h}.
Then, there exists β ∈ (α, zi−1) such that Cβ(Pzi ,x0 )< h. From Proposition 5.8, we have that as yi is the
minimum of Jxi and that β < yi, then y �→ Jxi (y) is decreasing at β. Therefore, as α < β we deduce
that there exists γ ∈ (β, yi) such that the function y �→ Pzi ,x0 (y)1{y/∈(α,γ )} + vγ (y)1{y∈(α,γ )} would be a better
minimizer than Pzi ,x0 , which should not be possible. We therefore have

Pzi ,x0 ∈ arg minj=1,...,i−1 min
(τk ,δk)k=1,...,j

(xi ,zi−1)⊂(τj ,δj)

{ J(v(τk ,δk)k=1,...,j ) |Cx(v(τk ,δk)k=1,...,j )≤ h}.

We now compute the line 7 of the algorithm: yi−1 = arg miny≥xi−1 Jxi (y). We can apply the same reasoning
whether yi−1 > zi−2 or not and obtain by induction that once line 12 of the algorithm has been executed,
we indeed have Pzi ,x0 = v(zk ,yk)k=1,...,i .

Next, we treat the case n=∞. We first prove a stability result with respect to the constant h.

Lemma 5.11. Suppose that ρ0 and ρ1 satisfy Assumptions 2. Then, there exists a constant C> (h−
1)−1 such that for all ε ∈ (0, C−1), writing v�

ε
the solution to Problem 3 for the flux constraint at h− ε,

we have

J(v�
ε
)≤ J(v�)+Cε.

Proof. Writing δ= supx∈Supp (ρ0) tollv�(x), as v� is the solution to Problem 3, we have that δ < 1. Suppose
that

ε ≤min{h(1− δ)
2

, h− 1}
and define vε = (1− ε

h
)v�. Then we have for all x ∈ Supp (ρ0),

Cx(vε)= (1− ε
h

)Cx(v�)≤ h− ε,

so vε is a candidate solution to the problem with constraint h− ε. Furthermore,

J(vε)=
∫
R

(
(1− ε

h
)v�(x)(x0 − x)+ (T(x)− x0)2

1− x0−x
(1− εh )v�(x)

)
ρ0(x)dx

≤ J(v�)+ ε
h

∫
R

(T(x)− x0)2(1− ε

h
)v�(x)

((1− ε

h
)v�(x)− (x0 − x))(v�(x)− (x0 − x))

ρ0(x)dx.

≤ J(v�)+ ε
h

(
1− δ

2δ
(x0 − sup Supp (ρ0))

)−1 ∫
R

(T(x)− x0)2(1− ε

h
)v�(x)

v�(x)− (x0 − x)
ρ0(x)dx.

≤ J(v�)+Cε.

Now if n=∞, it implies that the map x �→Cx(T − Id) oscillates indefinitely around h. For ε > 0,
take U a uniform random variable on [0, ε]. As x �→Cx(T − Id) cannot oscillate around more than a
countable number of values, we have that with probability 1, x �→Cx(T − Id) oscillates only a finite
number of times around U. Therefore, we can solve Problem 3 with the flux constraint h−U using
Theorem 2. For vU the solution given by Algorithm 1, we have that for all x ∈ Supp (ρ0),

Cx(vU)≤ h−U ≤ h,

and by Lemma 5.11,

J(vU)≤ J(v�)+Cε.
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Figure 5. Example of transporting a uniform distribution through a constriction (with h= 1.5) to a
similar uniform terminal distribution. While the optimal unconstrained transport will preserve the shape
of marginals at each time t, the flux constraint necessitates an optimal velocity that changes with x,
stretching the leading edge of the distribution as it approaches the toll. Note that the snapshots of the
transported distributions Yt�ρ0 ‘squeeze’ while crossing the toll, and that the flow is symmetric with time.

6. Numerical example

We provide an example to highlight the departure of the optimal transport plan through a toll with
a bound on the flux, from the ideal unconstrained transport T . The example we have selected is basic,
with uniform probability densities ρ0(x)= 1{x ∈ [0, 1]}, ρ1(x)= 1{x ∈ [2, 3]}, and a toll at x0 = 3/2 with
a bound h on the flux, with 1< h≤ 2. The stringent constraint on the flux, which necessitates varying
velocities so as to redistribute the mass flow as it traverses the toll, is clearly seen in the succession of
distributions Yt�ρ0 displayed in Figure 5. Evidently, these readily contrast with the unconstrained transport
that pushes forward ρ0 with constant speed giving ρt(x)= ρ0(x− 2t).

Specifically, with the flux constraint in place, we obtain that the optimal transport is effected by

Yt(x)=
{

x+ tv(x) for t≤ toll(x)= 3/2−x
v(x)

,

3/2+ (t− toll(x))g(x) for t≥ toll(x).

Then, the constraint (5.2) gives that v solves the ODE
v(x)

1+ 3/2−x
v(x)

∂xv(x)
= h.

It follows that v(x)= h(2x−3)
2x−3+α for a certain value α ∈R . Using the fact that the optimal solution must

be symmetric in time (v(x)= g(1− x)) and that g(x)= x+0.5
1−toll(x)

, we finally obtain that v(x)= h(2x−3)
2x−1−h

.
Snapshots of the flow along the path from ρ0 to ρ1 are depicted in Figure 5.
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7. Discussion and conclusion

We have presented theory for the most basic optimal transport problem in R, through a constriction
where a throughput constraint is imposed. We modelled the formulation after the standard Monge-
Kantorovich optimal transport with a quadratic cost. We have shown that an optimal transport exists
and is unique under general assumptions. Under some suitable assumptions on the densities to be trans-
ported to one another, we have shown explicitly how to construct the transport plan. Moreover, we have
highlighted natural properties of the transport plan.

More generally, in the case where ρ0 and ρ1 are densities on R
d and that all the trajectories have to

pass through a single point x0 ∈Rd, we can readily extend the result presented as follows. For λαSd−1 , the
Lebesgue measure on the sphere of radius α and centre x0 is defined as

ν0(α)=
∫
αSd−1

ρ0(x)dλαSd−1 (x)

and ν1 the same way. Then, the problem in R
d is equivalent to solving the problem in dimension 1

between the measure ν0, ν1 defined as ν0(x)= 1{x< 0}ν0(−x) and ν1(x)= 1{x> 0}ν1(x).
A significant departure from the current setting arises in the case of multiple tolls, or of a continuum of

tolls, where the flux rate is bounded on a curve, surface, etc. The case where a sequence of tolls, possibly
even zero-dimensional (points), where mass has to flow through all in succession, is of particular interest
in engineering applications. Indeed, in the modern information age, knowledge of obstructions ‘down the
road’ can undoubtedly be used to optimize transportation cost upstream. On the other hand, the paradigm
of multiple alternative tolls that one can choose to cross is expected to have a more combinatorial flavour.
Lastly, one could generalize the problem presented in this paper to transport of densities in dimension d,
with a flux constraint on a measurable set with respect to the p-dimensional Hausdorff measure Hp (with
p≤ d). For instance, an analogous flux constraint on a measurable set A⊂R

d with 0<Hp(A)<∞ can
be cast as ∀B⊂ A measurable with Hp(B)> 0 and t ∈ (0, 1)

∀α1, α2 ∈R,
Hp(A)

Hp(B)

∫
1{∃τ∈(t+α1,t+α2) | Yτ (x)∈B}ρ0(x)dx≤ h|α2 − α1|.

The proof of existence and uniqueness of a solution should follow using similar arguments. However, to
completely characterize the behaviour of the solution as in the simpler case treated herein is expected to
be considerably more challenging; one would need a finer description of how the mass distributes while
traversing the toll.

Transport problems with a throughput restriction are quite natural in a variety of scientific disciplines.
Of course, transportation through tolls on highways represents perhaps the most rudimentary paradigm
in an engineering setting. Likewise, throughput through servers with a throughput bound is common
in queuing systems. A continuum theory as envisioned herein, in higher dimensions and with multiple
serial tolls, may produce useful practical insights. Finally, while fluid flow, passing through constric-
tions or porous media, though not directly abiding by the rigid setting of bounded throughput, could
provide an idealized pertinent model in certain situations. Evidently, for an accurate model for fluid
past constrictions, besides distinguishing between compressible and incompressible, throughput must
be dictated by pressure, which in turn may be introduced in a suitable cost functional to be optimized
for a further broadening of the general programme.
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