A LOWER BOUND FOR $K_{X} L$ OF QUASI-POLARIZED SURFACES (X, L) WITH NON-NEGATIVE KODAIRA DIMENSION

YOSHIAKI FUKUMA

Abstract

Let X be a smooth projective surface over the complex number field and let L be a nef-big divisor on X. Here we consider the following conjecture; If the Kodaira dimension $\kappa(X) \geq 0$, then $K_{X} L \geq 2 q(X)-4$, where $q(X)$ is the irregularity of X. In this paper, we prove that this conjecture is true if (1) the case in which $\kappa(X)=0$ or 1 , (2) the case in which $\kappa(X)=2$ and $h^{0}(L) \geq 2$, or (3) the case in which $\kappa(X)=2$, X is minimal, $h^{0}(L)=1$, and L satisfies some conditions.

0 . Introduction. Let X be a smooth projective manifold over \mathbb{C} with $\operatorname{dim} X \geq 2$, and L a Cartier divisor on X. Then (X, L) is called a pre-polarized manifold. In particular, if L is ample (resp. nef-big), then (X, L) is said to be a polarized (resp. quasi-polarized) manifold. We define the sectional genus $g(L)$ of a pre-polarized manifold (X, L) is defined by the following formula;

$$
g(L)=1+\frac{1}{2}\left(K_{X}+(n-1) L\right) L^{n-1}
$$

where K_{X} is the canonical divisor of X.
Then there is the following conjecture.
CONJECTURE $0 . \quad$ Let (X, L) be a quasi-polarized manifold. Then $g(L) \geq q(X)$, where $q(X)=\operatorname{dim} H^{1}\left(X, O_{X}\right)$.

In this paper, we consider the case in which X is a smooth surface. If $\operatorname{dim} X=2$ and $h^{0}(L)>0$, then this conjecture is true. But in general, it is unknown whether this conjecture is true or not. In the papers [Fk1] and [Fk4], the author proved that $L^{2} \leq 4$ if L is ample, $g(L)=q(X), h^{0}(L)>0$ and $\kappa(X) \geq 0$. By this result, we think that the degree of (X, L) is bounded from above by using $m=g(L)-q(X)$ if $\kappa(X) \geq 0$. By studying some examples of (X, L), we conjectured the following.

CONJECTURE 1. If (X, L) is a quasi-polarized surface with $\kappa(X) \geq 0$.
Then $L^{2} \leq 2 m+2$ if $g(L)=q(X)+m$.
We remark that m is non-negative integer if $h^{0}(L)>0$. This conjecture is equivalent to the following conjecture.

[^0]CONJECTURE $1^{\prime} . \quad$ If (X, L) is a quasi-polarized surface with $\kappa(X) \geq 0$.
Then $K_{X} L \geq 2 q(X)-4$.
This conjecture 1^{\prime} is thought to be a generalization of the fact that $\operatorname{deg} K_{C}=2 g(C)-2$ if C is a smooth projective curve.

In this paper, we consider the above conjecture. The main results are the following.
MAIN THEOREM 1. Let (X, L) be a quasi-polarized surface with $\kappa(X)=0$ or 1 . Then $K_{X} L \geq 2 q(X)-4$.

If this equality holds and (X, L) is L-minimal, then (X, L) is one of the following;
(1) $\kappa(X)=0$ case. X is an Abelian surface and L is any nef and big divisor.
(2) $\kappa(X)=1$ case. $X \cong F \times C$ and $L \equiv C+(m+1) F$, where F and C are smooth curves with $g(C) \geq 2$ and $g(F)=1$, and $m=g(L)-q(X)$.
(See Theorem 2.1.)
MAIN THEOREM 2. Let (X, L) be a quasi-polarized surface with $\kappa(X)=2$ and $h^{0}(L) \geq 2$. Then $K_{X} L \geq 2 q(X)-2$.

If this equality holds and (X, L) is L-minimal, then (X, L) is the following; $X \cong F \times C$ and $L \equiv C+2 F$, where F and C are smooth curves with $g(F)=2$ and $g(C) \geq 2$.
(See Theorem 3.1)
Main Theorem 3. Let X be a minimal smooth surface of general type and let D be a nef-big effective divisor with $h^{0}(D)=1$ on X. If D is not the following type (\star), then $K_{X} D \geq 2 q(X)-4$:

$$
\begin{align*}
& D=C_{1}+\sum_{j \geq 2} r_{j} C_{j} ; C_{1}^{2}>0 \text { and the intersection matrix }\left\|\left(C_{j}, C_{k}\right)\right\|_{j \geq 2, k \geq 2} \\
& \text { of } \sum_{j \geq 2} r_{j} C_{j} \text { is negative semidefinite. }
\end{align*}
$$

(See Section 4.)
MAIN ThEOREM 4. Let X be a minimal smooth projective surface with $\kappa(X)=2$ and let D be a nef-big effective divisor on X such that D is the type (\star). Then $D^{2} \leq 4 m+4$ if $m=g(D)-q(X)$.

We remark that the classification of polarized surfaces (X, L) with $\kappa(X) \geq 1$ and $K_{X} L \leq 2$ is obtained by [DP]. We work over the complex number field \mathbb{C}.

1. Preliminaries.

DEFINITION 1.1. Let (X, L) be a quasi-polarized surface.
(1) We call $\left(X_{1}, L_{1}\right)$ a minimalization of (X, L) if $\varphi: X \rightarrow X_{1}$ is a minimal model of X and $L_{1}=\varphi_{*} L$ in the sense of cycle theory. (We remark that L_{1} is nef and big (resp. ample) on X_{1} if so is L.)
(2) We say that (X, L) is L-minimal if $L E>0$ for any (-1)-curve E on X. For any quasi-polarized surface (X, L), there exists a birational morphism $\rho:(X, L) \longrightarrow\left(X_{0}, L_{0}\right)$ such that $L=\rho^{*} L_{0}$ and $\left(X_{0}, L_{0}\right)$ is L_{0}-minimal. Then we call $\left(X_{0}, L_{0}\right)$ an L-minimalization of (X, L).

LEMMA 1.2 (DEbARRE). Let X be a minimal surface of general type with $q(X) \geq 1$. Then $K_{X}^{2} \geq 2 p_{g}(X)$. (Hence $K_{X}^{2} \geq 2 q(X)$ for any minimal surface of general type.)

Proof. See [D].
THEOREM 1.3. Let (X, L) be an L-minimal quasi-polarized surface with $\kappa(X) \geq 0$. If $h^{0}(L) \geq 2$, then (X, L) satisfies one of the following conditions.
(1) $g(L) \geq 2 q(X)-1$.
(2) For any linear pencil $\Lambda \subseteq|L|$, the fixed part $Z(\Lambda)$ of Λ is not zero and $\operatorname{Bs} \Lambda_{M}=\phi$, where Λ_{M} is movable part of Λ. Let $f: X \rightarrow C$ be the fiber space induced by Λ_{M}. Then $g(L) \geq g(C)+2 g(F) \geq q(X)+g(F), g(C) \geq 2, L F=1$ and $L-a F$ is numerically equivalent to an effective divisor for a general fiber F off, where $a \geq 2$.

Proof. See Theorem 3.1 in [Fk3].
LEMMA 1.4. Let $f: X \rightarrow C$ be a relatively minimal elliptic fibration with $q(X)=$ $g(C)+1$. If $L F=1$ for a nef-big divisor L on X, then $X \cong F \times C$ and $f: X \rightarrow C$ is the natural projection, where F is a general fiber of f.

Proof (See [FJ3]). By hypothesis f is a quasi-bundle (see Lemma 1.5 and Lemma 1.6 in [S]). Let $\Sigma \subset C$ be the singular locus of f and $U=C-\Sigma$. We fix an elliptic curve $E \cong f^{-1}(x)$ for $x \in U$. Then by [Fj3], we have a map $\varphi: \pi_{1}(U) \rightarrow \operatorname{Aut}\left(E, L_{E}\right)$. Since the translations of E preserving L_{E} are of order $d=\operatorname{deg} L_{E}$ by Abel's Theorem, $\operatorname{Aut}\left(E, L_{E}\right)$ is finite group. Let $G=\operatorname{Im} \varphi$. Then by [Fj3], there exists a Galois covering $\pi: D \rightarrow C$ such that $G=\operatorname{Gal}(D / C)$ acts effectively on the polarized pair $\left(E, L_{E}\right)$ and $X \cong(D \times E) / G$, where D is a smooth projective curve. Since $q(X)=g(C)+1$, we have $g(E / G)=1$. Hence G acts on E as translations. Therefore any element of G is of order $d=\operatorname{deg} L_{E}=1$. So $X \cong D \times E \cong C \times F$, and $f: X \rightarrow C$ is the natural projection by construction.

Lemma 1.5. Let X be a smooth algebraic surface, C a smooth curve, $f: X \rightarrow C$ a surjective morphism with connected fibers, and F a general fiber of f. Then $q(X) \leq$ $g(C)+g(F)$. Moreover if this equality holds and $g(F) \geq 2$, then $X \sim_{\text {bir }} F \times C$.

Proof. See e.g. [Be] p. 345 or [X].
LEMMA 1.6. Let X be a minimal smooth surface of general type. Then $K_{X}^{2} \geq 6 q(X)-$ 13 unless $X \cong C_{1} \times C_{2}$ for some smooth curves C_{1} and C_{2}.

Proof. We assume that $X \neq C_{1} \times C_{2}$ for smooth curves C_{1} and C_{2}. By Théorème 6.3 in [D], we have $K_{X}^{2} \geq 2 p_{g}(X)+2(q(X)-4)+1$. On the other hand, $p_{g}(X) \geq 2 q(X)-3$ by [Be]. Hence $K_{X}^{2} \geq 6 q(X)-13$.

Proposition 1.7. Let X be a minimal smooth surface of general type and let C be an irreducible reduced curve with $C^{2}>0$. Then $K_{X} C \geq(3 / 2) q(X)-3$.

Proof. If $q(X) \leq 2$, then this inequality is true. So we assume $q(X) \geq 3$.
If $X \cong C_{1} \times C_{2}$ for some smooth curves C_{1} and C_{2}, then $K_{X} C \geq 2 q(X)-4>$ $(3 / 2) q(X)-3$. So we may assume $X \neq C_{1} \times C_{2}$. Let $x \in \mathbb{Q}$ with $x \geq 1$. We put $m_{x}=g(x C)-q(X)$.

CLAIM 1.7.1. If $2 m_{x}+2 \geq(2 / 3)(q(X)-2)+1$, then $(x C)^{2} \leq 2 m_{x}+2$.
Proof. Assume that $(x C)^{2}>2 m_{x}+2$. Then $(x C)^{2}>(2 / 3)(q(X)-2)+1$.
Hence

$$
\begin{aligned}
\left(K_{X}\right)^{2}(x C)^{2} & >(6(q(X)-2)-1)\left(\frac{2}{3}(q(X)-2)+1\right) \\
& =4(q(X)-2)^{2}+6(q(X)-2)-\frac{2}{3}(q(X)-2)-1 \\
& =4(q(X)-2)^{2}+\frac{16}{3}(q(X)-2)-1
\end{aligned}
$$

by Lemma 1.6.
By Hodge index Theorem, we get $\left(x C K_{X}\right)^{2} \geq(x C)^{2}\left(K_{X}\right)^{2}>4(q(X)-2)^{2}$ and we have $x C K_{X}>2(q(X)-2)$. Therefore

$$
\begin{aligned}
g(x C) & >1+\frac{1}{2}\left(2(q(X)-2)+2 m_{x}+2\right) \\
& =q(X)+m_{x}
\end{aligned}
$$

and this is a contradiction.
This completes the proof of Claim 1.7.1.
We continue the proof of Proposition 1.7.
We have

$$
\begin{aligned}
q(X)+m_{x} & =g(x C)=g(C)+(x-1) g(C)+\frac{x-1}{2}\left(x C^{2}-2\right) \\
& \geq q(X)+(x-1) q(X)+\frac{x-1}{2}\left(x C^{2}-2\right)
\end{aligned}
$$

since $g(C) \geq q(X)$.
Hence $m_{x} \geq(x-1) q(X)+((x-1) / 2)\left(x C^{2}-2\right)$. Here we put $x=(4 / 3)$. Then $m_{x} \geq(1 / 3) q(X)-(1 / 9)>(1 / 3) q(X)-(7 / 6)$. Therefore by Claim 1.7.1, we have

$$
\left(\frac{4}{3} C\right)^{2} \leq 2 m_{x}+2
$$

In particular, $(4 / 3) C K_{X} \geq 2 q(X)-4$. Therefore $K_{X} C \geq(3 / 2) q(X)-3$. This completes the proof of Proposition 1.7.

LEMMA 1.8. Let X be a minimal smooth surface of general type. Then there are only finitely many irreducible curves C on X up to numerical equivalence such that $K_{X} C$ is bounded.

Moreover there are only finitely many irreducible curves C on X such that $K_{X} C$ is bounded and $C^{2}<0$.

Proof. See Proposition 3 in [Bo].

DEFINITION 1.9 (SEE e.g. [BABE], [BEFS], AND [BES]). Let X be a projective variety over \mathbb{C} and let Z be a 0 -dimensional subscheme of X. A 0 -dimensional subscheme Z_{1} of X is called a subcycle of Z if $I_{Z} \subset I_{Z_{1}}$, where I_{Z} (resp. $I_{Z_{1}}$) is the ideal sheaf which defines Z (resp. Z_{1}). Let L be a Cartier divisor on X. Let W be a subspace of $H^{0}(L)$ and k a nonnegative integer. Then W is called k-very ample if the restriction map $W \rightarrow H^{0}\left(L \otimes O_{Z}\right)$ is surjective for any 0 -dimensional subscheme Z with length $\leq k+1$. If $W=H^{0}(L)$, then L is said to be k-very ample. (We remark that L is 0 -very ample if and only if L is spanned and L is 1 -very ample if and only if L is very ample.)
2. The case in which $\kappa(X)=0$ or 1 . In this section, we will prove conjecture 1^{\prime} for the case in which $\kappa(X)=0$ or 1 .

THEOREM 2.1. Let (X, L) be a quasi-polarized surface with $\kappa(X)=0$ or 1 . Then $K_{X} L \geq 2 q(X)-4$.

If this equality holds and (X, L) is L-minimal, then (X, L) is one of the following;
(1) $\kappa(X)=0$ case. X is an Abelian surface and L is any nef and big divisor.
(2) $\kappa(X)=1$ case. $X \cong F \times C$ and $L \equiv C+(m+1) F$, where F and C are smooth curves with $g(C) \geq 2$ and $g(F)=1$, and $m=g(L)-q(X)$.
Proof. (1) The case in which $\kappa(X)=0$. Then $q(X) \leq 2$ by the classification theory of surfaces. Hence $K_{X} L \geq 0 \geq 2 q(X)-4$.

If $K_{X} L=2 q(X)-4$, then $q(X)=2$ and $K_{X} L=0$. Since (X, L) is L-minimal, we get that X is minimal, in particular, X is an Abelian surface. Conversely, let (X, L) be any quasi-polarized surface which is L-minimal, and let X be an Abelian surface. Then $K_{X} L=0=2 q(X)-4$.
(2) The case in which $\kappa(X)=1$. Let $f: X \rightarrow C$ be an elliptic fibration, $\mu: X \rightarrow X^{\prime}$ the relatively minimal model of X, and let $f^{\prime}: X^{\prime} \rightarrow C$ be the relatively minimal elliptic fibration such that $f=f^{\prime} \circ \mu$. Let $L^{\prime}=\mu_{*} L$. Then L^{\prime} is nef and big, and $K_{X} L \geq K_{X^{\prime}} L^{\prime}$.

By the canonical bundle formula for elliptic fibrations, we have

$$
K_{X^{\prime}} \equiv\left(2 g(C)-2+\chi\left(O_{X^{\prime}}\right)\right) F^{\prime}+\sum_{i}\left(m_{i}-1\right) F_{i}
$$

where F^{\prime} is a general fiber of f^{\prime} and $m_{i} F_{i}$ is a multiple fiber of f^{\prime} for any i.
Hence

$$
\begin{aligned}
K_{X^{\prime}} L^{\prime} & \geq\left(2 g(C)-2+\chi\left(O_{X^{\prime}}\right)\right) \geq 2 g(C)-2 \\
& =2(g(C)+1)-4 \\
& \geq 2 q(X)-4 .
\end{aligned}
$$

Therefore $K_{X} L \geq K_{X^{\prime}} L^{\prime} \geq 2 q(X)-4$.
Assume that $K_{X} L=2 q(X)-4$.
Since $\kappa(X)=1$, we get $K_{X} L>0$. Hence $q(X) \geq 3$ and $g(C) \geq 2$. By the above argument, we obtain $K_{X} L=K_{X^{\prime}} L^{\prime}=2 q(X)-4$. Since (X, L) is L-minimal, we obtain that X is minimal. Because $K_{X} L=2 q(X)-4$ and $2 g(C)-2+\chi\left(O_{X^{\prime}}\right)>0$, we obtain the following.
(2-1) f has no multiple fibers.
(2-2) $\chi\left(O_{X}\right)=0$.
(2-3) $q(X)=g(C)+1$.
(2-4) $L F=1$.
By (2-3), (2-4), and Lemma 1.4, we obtain $X \cong F \times C$ and $f: X \rightarrow C$ is the natural projection. Because of $\kappa(X)=1$, we have $g(C) \geq 2$. Then $f^{*} \circ f_{*}(O(L)) \rightarrow O(L-Z)$ is surjective, where Z is a section of f. Let $\left.L\right|_{F_{t}} \sim p_{t}$, where $F_{t}=f^{-1}(t)$ and $t \in C$. Let (y, t) be a point of $F \times C$ and $\left(y\left(p_{t}\right), t\right)$ the point $p_{t} \in F \times C$. Then the morphism $h: F \times C \rightarrow F \times C ; h(y, t)=\left(y-y\left(p_{t}\right), t\right)$ is an isomorphism. Hence $L=h^{*}(\{0\} \times C)+f^{*} D$. Therefore $L=C+f^{*} D$ via h, where $D \in \operatorname{Pic}(C)$. But $L^{2}=2 m+2$ for $m=g(L)-q(X)$. Hence $L \equiv C+(m+1) F$. This completes the proof of Theorem 2.1.
3. The case in which $\kappa(X)=2$ and $h^{0}(L) \geq 2$.

THEOREM 3.1. \quad Let (X, L) be a quasi-polarized surface with $\kappa(X)=2$ and $h^{0}(L) \geq 2$. Then $K_{X} L \geq 2 q(X)-2$.

If this equality holds and (X, L) is L-minimal, then (X, L) is the following; $X \cong F \times C$ and $L \equiv C+2 F$, where F and C are smooth curves with $g(F)=2$ and $g(C) \geq 2$.

Proof. (A) The case in which X is minimal. Then we use Theorem 1.3.
(A-1) The case in which $g(L) \geq 2 q(X)-1$. Then $q(X)+m=g(L) \geq 2 q(X)-1$. So we obtain $m \geq q(X)-1$.
(A-1-1) The case where $q(X) \geq 1$. Then by Lemma 1.2, we obtain $K_{X}^{2} \geq 2 p_{g}(X) \geq$ $2 q(X)$. If $L^{2} \geq 2 m$, then

$$
\begin{aligned}
\left(K_{X} L\right)^{2} & \geq K_{X}^{2} L^{2} \geq(2 q(X))(2 m) \\
& \geq 4 q(X)(q(X)-1)
\end{aligned}
$$

Hence $K_{X} L>2(q(X)-1)$. But this is impossible because

$$
\begin{aligned}
q(X)+m & =g(L)>1+\frac{1}{2}(2 q(X)-2+2 m) \\
& =q(X)+m
\end{aligned}
$$

Therefore $L^{2} \leq 2 m-1$, that is, $K_{X} L \geq 2 q(X)-1$.
(A-1-2) The case where $q(X)=0$. Then $K_{X} L>0>2 q(X)-2$.
(A-2) The case in which $g(L)<2 q(X)-1$. Then by Theorem 1.3, there is a fiber space $f: X \rightarrow C$ such that C is a smooth curve with $g(C) \geq 2, L F=1$, and $L-a F$ is numerically equivalent to an effective divisor, where F is a general fiber of f and $a \geq 2$. So there exists a section C^{\prime} of f such that C^{\prime} is an irreducible component of L, and we obtain that $L-a F \equiv C^{\prime}+D^{\prime}$, where D^{\prime} is an effective divisor such that $f\left(D^{\prime}\right)$ are points.

Since f is relatively minimal, the relative canonical divisor $K_{X / C}=K_{X}-f^{*} K_{C}$ is nef by Arakelov's Theorem. So we have $K_{X / C} L \geq 2 K_{X / C} F$. Hence

$$
\begin{aligned}
g(L) & =g(C)+\frac{1}{2}\left(K_{X / C} L\right)+\frac{1}{2} L^{2} \\
& \geq g(C)+K_{X / C} F+\frac{1}{2} L^{2} \\
& =g(C)+2 g(F)-2+\frac{1}{2} L^{2} \\
& =g(C)+g(F)+g(F)-2+\frac{1}{2} L^{2} \\
& \geq q(X)+\frac{1}{2} L^{2}
\end{aligned}
$$

because $g(F) \geq 2$ and $g(C)+g(F) \geq q(X)$.
Since $q(X)+m=g(L)$, we obtain $L^{2} \leq 2 m$. Namely $K_{X} L \geq 2 q(X)-2$.
Next we assume $K_{X} L=2 q(X)-2$.
Then $g(L)<2 q(X)-1$ by the above argument. Moreover the following are satisfied by the above argument of (A-2);
(a) $K_{X / C} C^{\prime}=0, K_{X / C} D^{\prime}=0$.
(b) $a=2$.
(c) $g(F)=2$.
(d) $q(X)=g(C)+g(F)$.

Since X is minimal, we obtain $X \cong F \times C$ by (d) and Lemma 1.5. Moreover $f: X \rightarrow C$ is the natural projection. Since D^{\prime} is contained in fibers of f and $K_{X / C} D^{\prime}=0$, we obtain $D^{\prime}=0$. Since $K_{X / C} \equiv(2 g(F)-2) C$ and $K_{X / C} C^{\prime}=0$, we have $C C^{\prime}=0$. Hence C^{\prime} is a fiber of $F \times C \rightarrow F$. Therefore $L \equiv C+2 F$ by (b).
(B) The case in which X is not minimal.

Let $X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow X_{n}$ be the minimalization of X, where $\mu_{i}: X_{i} \rightarrow X_{i+1}$ is the blowing down of (-1)-curve E_{i}. Let $L_{i}=\left(\mu_{i-1}\right)_{*}\left(L_{i-1}\right), L_{0}=L$, and $L_{i-1}=\left(\mu_{i-1}\right)^{*} L_{i}-m_{i-1} E_{i-1}$, where $m_{i-1} \geq 0$. We remark that $h^{0}\left(L_{i}\right)=h^{0}\left(\left(\mu_{i-1}\right)^{*} L_{i}\right) \geq$ $h^{0}\left(L_{i-1}\right)$. Then $L^{2}=\left(L_{n}\right)^{2}-\sum_{i=0}^{n-1} m_{i}^{2}$ and $K_{X} L=K_{X_{n}} L_{n}+\sum_{i=0}^{n-1} m_{i}$. By the case (A), we have $K_{X_{n}} L_{n} \geq 2 q(X)-2$. Hence $K_{X} L \geq 2 q(X)-2+\sum_{i=0}^{n-1} m_{i} \geq 2 q(X)-2$.

Next we consider (X, L) such that $K_{X} L=2 q(X)-2$ and (X, L) is L-minimal, Then $\sum_{i=0}^{n-1} m_{i}=0$ since $K_{X} L=2 q(X)-2$ and so we have $m_{i}=0$ for any i. But then X is minimal because (X, L) is L-minimal. This is a contradiction. This completes the proof of Theorem 3.1.
4. The case in which $\kappa(X)=2$ and $h^{0}(L)=1$. In this section, we consider the case in which $\kappa(X)=2$ and $h^{0}(L)=1$. We put $m=g(L)-q(X)$.

LEmMA 4.1. If $g(L) \geq 2 q(X)$, then $K_{X} L \geq 2 q(X)-1$.
Proof. Then $q(X)+m=g(L) \geq 2 q(X)$. Hence $m \geq q(X)$. Assume that $L^{2} \geq 2 m$. So we obtain $L^{2} \geq 2 q(X)$. Let $\mu: X \rightarrow X^{\prime}$ be the minimalization of X and $L^{\prime}=\mu_{*} L$.

Then $K_{X} L \geq K_{X^{\prime}} L^{\prime}$ and $\left(L^{\prime}\right)^{2} \geq L^{2} \geq 2 q(X)$. Since $K_{X^{\prime}}^{2} \geq 2 q(X)$ by Lemma 1.2, we have $\left(K_{X^{\prime}} L^{\prime}\right)^{2} \geq\left(K_{X^{\prime}}\right)^{2}\left(L^{\prime}\right)^{2} \geq(2 q(X))^{2}$ by Hodge index Theorem. So we obtain $K_{X^{\prime}} L^{\prime} \geq$ $2 q(X)$. But this is impossible because

$$
q(X)+m=g(L) \geq 1+q(X)+m
$$

Hence $L^{2}<2 m$, that is, $K_{X} L \geq 2 q(X)-1$. This completes the proof of Lemma 4.1.
LEMMA 4.2. If for any minimal quasi-polarized surfaces (X, L) with $\kappa(X)=2$ and $h^{0}(L) \geq 1$ we can prove that $K_{X} L \geq 2 q(X)-4$, then this inequality holds for any quasipolarized surface (Y, A) with $\kappa(Y)=2$ and $h^{0}(A) \geq 1$.

Proof. It is easy.
By Lemma 4.2, it is sufficient to prove Conjecture 1 (or Conjecture 1^{\prime}) under the following assumption (4-1);
(4-1) X is minimal.
Here we consider Conjecture 1 (or Conjecture 1^{\prime}) for the following divisors.
DEFINITION 4.3. Let X be a smooth projective surface and let D be an effective divisor on X. Then D is called a CNNS-divisor if the following conditions hold:
(1) D is connected.
(2) the intersection matrix $\left\|\left(C_{i}, C_{j}\right)\right\|_{i, j}$ of $D=\sum_{i} r_{i} C_{i}$ is not negative semidefinite.

REMARK 4.4. If L is an effective nef and big divisor, then L is a CNNS-divisor.
Let D be a CNNS-divisor on a minimal smooth projective surface X with $\kappa(X)=2$, and $D=\sum_{i} r_{i} C_{i}$ its prime decomposition.

We divide three cases:
(α) $\sum_{i \in S} r_{i} \geq 2$;
(β) $\sum_{i \in S} r_{i}=1$;
(γ) $\sum_{i \in S} r_{i}=0$,
where $S=\left\{i \mid C_{i}^{2}>0\right\}$.
First we consider the case (α).
THEOREM 4.5. Let D be a CNNS-divisor on a minimal smooth surface X with $\kappa(X)=2$, and let $D=\sum_{i} r_{i} C_{i}$ be its prime decomposition. If $\sum_{i \in S} r_{i} \geq 2$, then $K_{X} D \geq$ $2 q(X)-1$.

Proof. Let $A=\sum_{i \in S} r_{i} C_{i}$ and $B=D-A$. Then A is nef and big. We remark that $K_{X} D \geq K_{X} A$ since X is minimal with $\kappa(X)=2$. So it is sufficient to prove that $g(A) \geq 2 q(X)$ by Lemma 4.1. By assumption here, there are curves C_{1} and C_{2} (possibly $C_{1}=C_{2}$) such that $C_{1}^{2}>0$ and $C_{2}^{2}>0$ and $A-C_{1}-C_{2}$ is effective. Let $A_{12}=A-C_{1}-C_{2}$. Then

$$
g(A)=g\left(C_{1}+C_{2}\right)+\frac{1}{2}\left(K_{X}+A+C_{1}+C_{2}\right) A_{12}
$$

Since $K_{X}+A$ is nef and A is 1-connected, we have $\left(K_{X}+A\right) A_{12} \geq 0$ and $\left(C_{1}+C_{2}\right) A_{12} \geq 0$. Hence $g(A) \geq g\left(C_{1}+C_{2}\right)$. On the other hand, $g\left(C_{1}+C_{2}\right)=g\left(C_{1}\right)+g\left(C_{2}\right)+C_{1} C_{2}-1$.

Because $C_{1}^{2}>0$ and $C_{2}^{2}>0$, we obtain $C_{1} C_{2}>0$. Hence $g\left(C_{1}+C_{2}\right) \geq g\left(C_{1}\right)+g\left(C_{2}\right) \geq$ $2 q(X)$. Therefore by Lemma 4.1, we obtain $K_{X}\left(C_{1}+C_{2}\right) \geq 2 q(X)-1$. So we have $K_{X} D \geq K_{X}\left(C_{1}+C_{2}\right) \geq 2 q(X)-1$. This completes the proof of Theorem 4.5.

Next we consider the case (γ).

THEOREM 4.6. Let D be a CNNS-divisor on a minimal smooth projective surface X with $\kappa(X)=2$ and let $D=\sum_{i} r_{i} C_{i}$ be its prime decomposition. If $\sum_{i \in S} r_{i}=0$ and there exists a curve C_{i} such that $C_{i}^{2}=0$, then $K_{X} D \geq 2 q(X)-4$.

Proof. Assume that $C_{1}^{2}=0$. We may assume that $q(X) \geq 1$. Since D is a CNNSdivisor, D has at least two irreducible components. Let C_{2} be another irreducible component of D such that $C_{1} \cap C_{2} \neq \phi$. Then

$$
g(D)=g\left(C_{1}+C_{2}\right)+\frac{1}{2}\left(K_{X}+D+C_{1}+C_{2}\right) D_{12}
$$

where $D_{12}=D-\left(C_{1}+C_{2}\right)$.
We put $l=g\left(C_{1}+C_{2}\right)-q(X)$ and $m=g(D)-q(X)$. Since $K_{X} D_{12} \geq 0$, we have $2 m-2 l \geq\left(D+C_{1}+C_{2}\right) D_{12}$. Let $X_{0}=X, C_{1,0}=C_{1}, C_{2,0}=C_{2}$, and $\mu_{i}: X_{i} \rightarrow X_{i-1}$ blowing up at a point of $C_{1, i-1} \cap C_{2, i-1}$, where $C_{1, i}$ (resp. $C_{2, i}$) is the strict transform of $C_{1, i-1}$ (resp. $C_{2, i-1}$), and let E_{i} be an exceptional divisor such that $\mu_{i}\left(E_{i}\right)$ is a point. We put $\mu=\mu_{1} \circ \cdots \circ \mu_{n}$, where n is the natural number such that $C_{1, n-1} \cap C_{2, n-1} \neq \phi$ and $C_{1, n} \cap C_{2, n}=\phi$. Let $C_{1, i}=\mu_{i}^{*} C_{1, i-1}-b_{i} E_{i}, C_{2, i}=\mu_{i}^{*} C_{2, i-1}-d_{i} E_{i}$, and $a_{i}=$ $b_{i}+d_{i}$. We remark that $b_{i} \geq 1$ and $d_{i} \geq 1$. Let $X_{0}^{\prime}=X_{n}, C_{1,0}^{\prime}=C_{1, n}, C_{2,0}^{\prime}=C_{2, n}$, $E_{0,0}^{\prime}=E_{n}$, and $\mu_{i}^{\prime}: X_{i}^{\prime} \rightarrow X_{i-1}^{\prime}$ blowing up at a point $x \in\left(\operatorname{Sing}\left(C_{1, i-1}^{\prime}\right) \cup \operatorname{Sing}\left(C_{2, i-1}^{\prime}\right)\right) \backslash$ $\left(\left(C_{1, i-1}^{\prime} \cap E_{0, i-1}^{\prime}\right) \cup\left(C_{2, i-1}^{\prime} \cap E_{0, i-1}^{\prime}\right)\right)$, where $C_{1, i}^{\prime}$ (resp. $\left.C_{2, i}^{\prime}, E_{0, i}^{\prime}\right)$ is the strict transform of $C_{1, i-1}^{\prime}$ (resp. $C_{2, i-1}^{\prime}, E_{0, i-1}^{\prime}$), and let E_{i}^{\prime} be an exceptional divisor on X_{i}^{\prime} such that $\mu_{i}^{\prime}\left(E_{i}^{\prime}\right)$ is a point. Let $C_{1, i}^{\prime}+C_{2, i}^{\prime}=\left(\mu_{i}^{\prime}\right)^{*}\left(C_{1, i-1}^{\prime}+C_{2, i-1}^{\prime}\right)-a_{i}^{\prime} E_{i}^{\prime}$. We assume that $\left(\operatorname{Sing}\left(C_{1, t}^{\prime}\right) \cup \operatorname{Sing}\left(C_{2, t}^{\prime}\right)\right) \backslash\left(\left(C_{1, t}^{\prime} \cap E_{0, t}^{\prime}\right) \cup\left(C_{2, t}^{\prime} \cap E_{0, t}^{\prime}\right)\right)=\phi$.

CLAIM 4.7. $\quad g\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right) \geq q\left(X_{t}^{\prime}\right)$.
Proof. Let $\alpha\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right)=\operatorname{dim} \operatorname{Ker}\left(H^{1}\left(O_{X_{t}^{\prime}}\right) \rightarrow H^{1}\left(O_{C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}}\right)\right)$. By Lemma 3.1 in [Fk4], it is sufficient to prove $\alpha\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right)=0$ since $C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}$ is 1 -connected. Assume that $\alpha\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right) \neq 0$. Since $q(X) \geq 1$, there is a morphism $f: X_{t}^{\prime} \rightarrow G$ such that $f(X)$ is not a point and $f\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right)$ is a point, where G is an Abelian variety. On the other hand, a ($\mu_{1} \circ \cdots \circ \mu_{n} \circ \mu_{1}^{\prime} \cdots \circ \mu_{t}^{\prime}$)-exceptional divisor is contracted by f because G is an Abelian variety. Therefore $\left(\mu^{\prime}\right)^{*}\left(C_{1}+C_{2}\right)$ is contracted by f. But $\left(e_{1} C_{1}+C_{2}\right)^{2}>0$ for sufficient large e_{1}. This is impossible. Hence $\alpha\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right)=0$. This completes the proof of Claim 4.7.

Hence

$$
\begin{aligned}
g\left(C_{1, n}+C_{2, n}+E_{n}\right) & =g\left(C_{1, t}^{\prime}+C_{2, t}^{\prime}+E_{0, t}^{\prime}\right)+\sum_{i=1}^{t} \frac{1}{2} a_{i}^{\prime}\left(a_{i}^{\prime}-1\right) \\
& \geq q\left(X_{t}^{\prime}\right)+\sum_{i=1}^{t} \frac{1}{2} a_{i}^{\prime}\left(a_{i}^{\prime}-1\right) \\
& =q(X)+\sum_{i=1}^{t} \frac{1}{2} a_{i}^{\prime}\left(a_{i}^{\prime}-1\right) .
\end{aligned}
$$

On the other hand,

$$
g\left(C_{1}+C_{2}\right)=g\left(C_{1, n}+C_{2, n}+E_{n}\right)+\sum_{i=1}^{n-1} \frac{1}{2} a_{i}\left(a_{i}-1\right)+\frac{1}{2}\left(a_{n}-1\right)\left(a_{n}-2\right) .
$$

Therefore

$$
g\left(C_{1}+C_{2}\right) \geq q(X)+\sum_{i=1}^{n-1} \frac{1}{2} a_{i}\left(a_{i}-1\right)+\frac{1}{2}\left(a_{n}-1\right)\left(a_{n}-2\right)+\sum_{k=1}^{t} \frac{1}{2} a_{k}^{\prime}\left(a_{k}^{\prime}-1\right) .
$$

Since $l=g\left(C_{1}+C_{2}\right)-q(X)$, we obtain

$$
2 l \geq \sum_{i=1}^{n-1} a_{i}\left(a_{i}-1\right)+\left(a_{n}-1\right)\left(a_{n}-2\right)+\sum_{k=1}^{t} a_{k}^{\prime}\left(a_{k}^{\prime}-1\right)
$$

Let $C_{1} C_{2}=x$. Then $x=\sum_{i=1}^{n} b_{i} d_{i}$ and $\left(C_{1}+C_{2}\right)^{2} \leq 2 x$ by hypothesis.
Claim 4.8.

$$
2 x-\sum_{i=1}^{n-1} a_{i}\left(a_{i}-1\right)-\left(a_{n}-1\right)\left(a_{n}-2\right) \leq 2
$$

Proof.

$$
\begin{aligned}
& 2 x-\sum_{i=1}^{n-1} a_{i}\left(a_{i}-1\right)-\left(a_{n}-1\right)\left(a_{n}-2\right) \\
& \quad=2 \sum_{i=1}^{n} b_{i} d_{i}-\sum_{i=1}^{n-1}\left(b_{i}+d_{i}\right)\left(b_{i}+d_{i}-1\right)-\left(b_{n}+d_{n}-1\right)\left(b_{n}+d_{n}-2\right)
\end{aligned}
$$

For each $i(\neq n)$,

$$
\begin{aligned}
2 b_{i} d_{i}-\left(b_{i}+d_{i}\right)\left(b_{i}+d_{i}-1\right) & =-b_{i}^{2}-d_{i}^{2}+b_{i}+d_{i} \\
& =b_{i}\left(1-b_{i}\right)+d_{i}\left(1-d_{i}\right) \leq 0
\end{aligned}
$$

and for $i=n$,

$$
\begin{aligned}
2 b_{n} d_{n}-\left(b_{n}+d_{n}-1\right)\left(b_{n}+d_{n}-2\right) & =-b_{n}^{2}-d_{n}^{2}+3 b_{n}+3 d_{n}-2 \\
& =b_{n}\left(3-b_{n}\right)+d_{n}\left(3-d_{n}\right)-2 \leq 2
\end{aligned}
$$

Therefore we obtain Claim 4.8.

By Claim 4.8, we obtain

$$
\begin{aligned}
D^{2} & =\left(C_{1}+C_{2}\right)^{2}+\left(D+C_{1}+C_{2}\right) D_{12} \\
& \leq 2 x+2 m-2 l \\
& \leq 2 x+2 m-\sum_{i=1}^{n-1} a_{i}\left(a_{i}-1\right)-\left(a_{n}-1\right)\left(a_{n}-2\right)-\sum_{k=1}^{t} a_{k}^{\prime}\left(a_{k}^{\prime}-1\right) \\
& \leq 2 m+2-\sum_{k=1}^{t} a_{k}^{\prime}\left(a_{k}^{\prime}-1\right) \\
& \leq 2 m+2 .
\end{aligned}
$$

Therefore $K_{X} D \geq 2 q(X)-4$. This completes the proof of Theorem 4.6.
Next we consider the case in which the equality in Theorem 4.6 holds.
Theorem 4.9. Let D be a CNNS-divisor on a minimal smooth surface X with $\kappa(X)=2$, and let $D=\sum_{i} r_{i} C_{i}$ be its prime decomposition. Assume that $\sum_{i \in S} r_{i}=0$, there exists a curve C_{i} such that $C_{i}^{2}=0$, and $K_{X} D=2 q(X)-4$. Then there are two irreducible curves C_{1} and C_{2} such that $D=C_{1}+C_{2}$ with $C_{1}^{2}=C_{2}^{2}=0$.

Moreover if C_{1} or C_{2} is not smooth, then $g(D)-q(X)=1$ or 3 , and $\sharp\left(C_{1} \cap C_{2}\right)=1$.
(1) If $g(D)-q(X)=1$, then C_{i} is smooth but C_{j} is not smooth only at $x \in C_{1} \cap C_{2}$ and $\operatorname{mult}_{x}\left(C_{j}\right)=2$ for $i \neq j$ and $\{i, j\}=\{1,2\}$, where $\operatorname{mult}_{x}\left(C_{j}\right)$ is the multiplicity of C_{j} at x.
(2) If $g(D)-q(X)=3$, then C_{1} and C_{2} are not smooth only at $x \in C_{1} \cap C_{2}$ and $\operatorname{mult}_{x}\left(C_{i}\right)=2$ for $i=1,2$.

Proof. Let $D=C_{1}+C_{2}+D_{12}$, where $C_{1}^{2}=0$ and C_{2} is an irreducible curve such that $C_{1} C_{2}>0$. By the proof of Theorem 4.6, we have $K_{X} D_{12}=0$. If $D_{12} \neq 0$, then $K_{X} C=0$ for any irreducible curve C of D_{12} because K_{X} is nef.

CLAIM 4.10. $\quad C^{2}=0$ for any irreducible curve C of D.
Proof. By hypothesis, there is an irreducible curve B of D such that $B^{2}=0$. Let B^{\prime} be any irreducible curve of D such that $B \neq B^{\prime}$ and $B B^{\prime}>0$. By the proof of Theorem 4.6 and the assumption that $K_{X} D=2 q(X)-4$, we have $\left(B^{\prime}\right)^{2}=0$. By repeating this argument, this completes the proof because D is connected.

By this Claim, $C^{2}=0$ for any irreducible curve C of D_{12}. So $C \equiv 0$ by Hodge index Theorem. But this is a contradiction.

Therefore $D_{12}=0$ and so we have $D=C_{1}+C_{2}$ with $C_{1}^{2}=C_{2}^{2}=0$. Next we consider the singularity of C_{1} and C_{2}.

We remark that C_{1} (resp. C_{2}) is smooth on $C_{1} \backslash\left\{C_{1} \cap C_{2}\right\}$ (resp. $C_{2} \backslash\left\{C_{1} \cap C_{2}\right\}$) since $K_{X} D=2 q(X)-4$ and $\sum_{k=1}^{t} a_{k}^{\prime}\left(a_{k}^{\prime}-1\right)=0$ (here we use the notation in Theorem 4.6).

We assume that $\sharp C_{1} \cap C_{2} \geq 2$. Then the number n of blowing up $\mu=\mu_{1} \circ \cdots \circ \mu_{n}$ is greater than 1 . Since $K_{X} D=2 q(X)-4$, we obtain $b_{1}=d_{1}=1$. By interchanging the point of the first blowing up, we obtain that C_{1} and C_{2} are smooth on $C_{1} \cap C_{2}$.

We assume $\sharp C_{1} \cap C_{2}=1$. If the number n of blowing up μ is greater than 1 , then $b_{1}=d_{1}=1$ by the proof of Theorem 4.6. So C_{1} and C_{2} are smooth at $x \in C_{1} \cap C_{2}$. Hence we assume that the number of blowing up is one. Then $C_{1} C_{2}=b_{1} d_{1}$. By the proof of Theorem 4.6, $b_{1}\left(3-b_{1}\right)+d_{1}\left(3-d_{1}\right)=4$. Hence $\left(b_{1}, d_{1}\right)=(1,1),(1,2),(2,1)$, or $(2,2)$.

If $\left(b_{1}, d_{1}\right)=(1,1)$, then C_{1} and C_{2} are smooth at x.
If $\left(b_{1}, d_{1}\right)=(1,2)$ or $(2,1)$, then C_{i} is smooth at x and C_{j} is not smooth at x for $i \neq j$ and $\{i, j\}=\{1,2\}$, and $\operatorname{mult}_{x}\left(C_{j}\right)=2$, where $\operatorname{mult}_{x}\left(C_{j}\right)$ is the multiplicity of C_{j} at x. In this case, $C_{1} C_{2}=2$ and $g(D)-q(X)=1$.

If $\left(b_{1}, d_{1}\right)=(2,2)$, then C_{1} and C_{2} are not smooth at x, and $\operatorname{mult}_{x}\left(C_{i}\right)=2$ for $i=1,2$. In this case, $C_{1} C_{2}=4$ and $g(D)-q(X)=3$. This completes the proof of Theorem 4.9.■

Next we consider the following case ($*$):
Let D be a CNNS-divisor on a minimal surface of general type, and let $D=\sum_{i} r_{i} C_{i}$ be its prime decomposition. Then we assume $C_{i}^{2}<0$ for any i.

Theorem 4.11. Let (X, D) be $(*)$. Then $K_{X} D \geq 2 q(X)-3$.
Before we prove this theorem, we state some definitions and notations which is used in the proof of Theorem 4.11.

DEFINITION 4.12. Let D be an effective divisor on X. Then the dual graph $G(D)$ of D is defined as follows.
(1) The vertices of $G(D)$ corresponds to irreducible components of D.
(2) For any two vertices v_{1} and v_{2} of $G(D)$, the number of edges joining v_{1} and v_{2} equal $\sharp\left\{B_{1} \cap B_{2}\right\}$, where B_{i} is the component of D corresponding to v_{i} for $i=1,2$.

REMARK 4.12.1. Let $G(D)$ be the dual graph of an effective divisor D. We reject one edge e of $G(D)$ and $G=G(D)-\{e\}$. Let v_{1} and v_{2} be vertices of $G(D)$ which are terminal points of the edge e. Let C_{1} and C_{2} be the irreducible curve of D corresponding v_{1} and v_{2} respectively. Then G is the dual graph of the effective divisor which is the strict transform of D by the blowing up at a point x corresponding to e if $i\left(C_{1}, C_{2} ; x\right)=1$, where $i\left(C_{i}, C_{j} ; x\right)$ is the intersection number of C_{i} and C_{j} at x.

NOTATION 4.13. Let (X, D) be $(*)$. We take a birational morphism $\mu^{\prime}: X^{\prime} \rightarrow X$ such that $C_{i}^{\prime} \cap C_{j}^{\prime} \cap C_{k}^{\prime}=\phi$ for any distinct $C_{i}^{\prime}, C_{j}^{\prime}$, and C_{k}^{\prime}, and if $C_{i}^{\prime} \cap C_{j}^{\prime} \neq \phi$, then $i\left(C_{i}^{\prime}, C_{j}^{\prime} ; x\right)=1$ for $x \in C_{i}^{\prime} \cap C_{j}^{\prime}$, where $D^{\prime}=\left(\mu^{\prime}\right)^{*}(D)=\sum_{i} r_{i}^{\prime} C_{i}^{\prime}$. Let $\mu_{i}: X_{i} \rightarrow X_{i-1}$ be one point blowing up such that $\mu^{\prime}=\mu_{1} \circ \cdots \circ \mu_{t}, X_{0}=X$ and $X_{t}=X^{\prime}$. Let $D_{i}=\mu_{i}^{*} D_{i-1}$ and $D_{0}=D$. Let b_{i} be an integer such that $\left(\mu_{i}\right)^{*}\left(\left(D_{i-1}\right)_{\text {red }}\right)-b_{i} E_{i}=\left(D_{i}\right)_{\text {red }}$, where E_{i} is a μ_{i}-exceptional curve.

REMARK 4.14. (a) No two $\left(\mu_{1} \circ \cdots \circ \mu_{i}\right)$-exceptional curves on X_{i} which are not (-1) curve intersect at a point on (-1)-curve on X_{i} contracted by some $\mu_{j}(j \leq i)$.
(b) The point x which is a center of blowing up $\mu_{i}: X_{i} \rightarrow X_{i-1}$ is contained in one of the following types;
(1) the strict transform of the irreducible components of D;
(2) the intersection of the strict transform of the irreducible components of D and one (-1)-curve on X_{i} contracted by some $\mu_{j}(j \leq i)$;
(3) the intersection of the strict transform of the irreducible components of D and one ($\mu_{1} \circ \cdots \circ \mu_{i}$)-exceptional curve on X_{i} which is not (-1)-curve and one (-1)-curve on X_{i} contracted by some $\mu_{j}(j \leq i)$.
We assume that (X, D) satisfies $(*)$ and we use Notation 4.13 unless specifically stated otherwise.

DEFINITION 4.15. (1) Let $\pi: \tilde{X} \rightarrow X$ be a birational morphism, and let \tilde{X} and X be smooth surfaces. Let $\pi=\pi_{1} \circ \cdots \circ \pi_{n}, X_{0}=X$, and $X_{n}=\tilde{X}$, where $\pi_{i}: X_{i} \rightarrow X_{i-1}$ is one point blowing up. Let E_{i} be the exceptional divisor of π_{i}. Let D be an effective divisor on X and we put $D_{0}=D$. Let $D_{i}=\pi^{*}\left(D_{i-1}\right)$. Then the multiplicity of E_{i} in D_{i} is called the E_{i}-multiplicity of D.
(2) We use Notation 4.13. Let $x_{i}=\mu_{i}\left(E_{i}\right)$. If x_{i} is the type (3) in Remark 4.14(b), then the $\left(\mu_{1} \circ \cdots \circ \mu_{i}\right)$-exceptional curve which is not (-1)-curve is said to be an e-curve, and x_{i} is said to be an e-point.

We remark that there is at most one e-curve throughout x_{i}.
REMARK 4.16. We consider Notation 4.13. Let E an e-curve on X_{i} and let x_{i} be the e point associated with E. Then we must be blowing up at x_{i} by considering Notation 4.13. Let \tilde{E} be a strict transform of E by blowing up $\mu_{i+1}: X_{i+1} \rightarrow X_{i}$ at x_{i}. Then $(\tilde{E})^{2}=E^{2}-1 \leq$ -3 and $K_{X_{i+1}} \tilde{E}=K_{X_{i}} E+1 \geq 1$.

DEFINITION 4.17. Let $\delta: \tilde{X} \rightarrow X$ be any birational morphism, \tilde{E} a union of δ-exceptional curve, and let D be an effective divisor on X. We put $B=\delta(\tilde{E})=\left\{y_{1}, \ldots, y_{s}\right\}$. Then we can describe δ as $\delta=\delta_{s} \circ \cdots \circ \delta_{1}$, where δ_{i} is the map whose image of a union of δ_{i}-exceptional curves is y_{i}. For each $y_{k} \in B$, we define a new graph $G=G\left(y_{k}, D\right)$ which is called the river of the birational map δ_{k} and D.
(STEP 1). Let $E_{0,0}$ be a (-1)-curve obtained by blowing up at y_{k}. Let $v_{0,0}$ be a vertex of the graph G which corresponds to $E_{0,0}$. We define the weight $u(0,0 ; G)$ of $v_{0,0}$ as follows:

$$
u(0,0 ; G)=\text { the } E_{0,0} \text {-multiplicity of } D
$$

(STEP 2). Let $E_{1,1}, \ldots, E_{1, t}$ be (-1)-curves obtained by blowing up at distinct points $\left\{x_{1,1}, \ldots, x_{1, t}\right\}$ on $E_{0,0}$. Let $v_{1,1}, \ldots, v_{1, t}$ be vertices of the graph G which correspond to $E_{1,1}, \ldots, E_{1, t}$ respectively. We join $v_{1, j}$ and $v_{0,0}$ by directed line which goes from $v_{1, j}$ to $v_{0,0}$. For $j=1, \ldots, t$, we define the weight $u(1, j ; G)$ of $v_{1, j}$ as follows:

$$
u(1, j ; G)=e_{1, j}-u(0,0 ; G)
$$

where $e_{1, j}=$ the $E_{1, j}$-multiplicity of D.
(STEP 3). In general, let $E_{i, 1}, \ldots, E_{i, t_{i}}$ be disjoint (-1)-curves obtained by blowing up at distinct points $\left\{x_{i, 1}, \ldots, x_{i, t_{i}}\right\}$ on $\bigcup_{k} E_{i-1, k}$. Let $v_{i, 1}, \ldots, v_{i, t_{i}}$ be vertices of the graph
G which correspond to $E_{i, 1}, \ldots, E_{i, t_{i}}$ respectively. We join $v_{i, j}$ and $v_{i-1, k}$ by directed line which goes from $v_{i, j}$ to $v_{i-1, k}$ if $E_{i, j}$ is contracted in $E_{i-1, k}$. Let $e_{i, j}=$ the $E_{i, j}$-multiplicity of D for $j=1, \ldots, t_{i}$. Then we define the weight $u(i, j ; G)$ of $v_{i, j}$ as follows:

$$
u(i, j ; G)=e_{i, j}-\sum_{v_{p, q} \in S P(i, j ; G)} u(p, q ; G)
$$

where $P(i, j ; G)$ denotes the path between $v_{0,0}$ and $v_{i, j}$, and $S P(i, j ; G)=P(i, j ; G)-\left\{v_{i, j}\right\}$.
By the above steps, we obtain the graph G for each y_{k}.
NOTATION 4.18.

$$
w(i, j ; G)=\left\{\begin{array}{l}
\operatorname{deg}\left(v_{i, j}\right)-1, \quad \text { if } v_{i, j} \neq v_{0,0} \\
\operatorname{deg}\left(v_{0,0}\right)
\end{array}\right.
$$

Lemma 4.19. Let $\mu: Y \rightarrow X$ be a birational morphism between smooth surfaces X and Y, and let D be an effective divisor on X. Let $D^{\prime}=\mu^{*} D$, and E a union of all μ-exceptional curves.

Let $B=\mu(E)$ and $M\left(D^{\prime}\right)=$ sum of the multiplicity of (-1)-curves on Y in D^{\prime}. Then

$$
\begin{aligned}
M\left(D^{\prime}\right)=\sum_{y \in B} & {\left[\sum_{v_{i, j} \in G(y)}\left\{\sum_{v_{p, q} \in P(i, j ; G(y))} u(p, q ; G(y))\right\} \theta(i, j ; G(y))\right] } \\
& +\sum_{y \in B}\left\{\sum_{v_{i, j} \in G(y)} u(i, j ; G(y))\right\},
\end{aligned}
$$

where $G(y)=G(y, D)$ and

$$
\theta(i, j ; G(y))= \begin{cases}w(i, j ; G(y))-1 & \text { if } w(i, j ; G(y)) \geq 1 \\ 0 & \text { if } w(i, j ; G(y))=0\end{cases}
$$

Proof. We may assume that $B=\{y\}$. Let $G=G(y, D)$. Let $A=\left\{v_{i, j} \in G \mid\right.$ $\left.\operatorname{deg}\left(v_{i, j}\right)=1, v_{i, j} \neq v_{0,0}\right\}$ and $\rho=\sharp A-\operatorname{deg}\left(v_{0,0}\right)$.

If $A=\phi$, then $M\left(D^{\prime}\right)=u(0,0 ; G)$.
So we assume $A \neq \phi$. We prove this lemma by induction on the value of ρ. We remark that by construction the following fact holds;

FACT. For any $v_{s, t} \in A$, the multiplicity of the (-1)-curve corresponding to $v_{s, t}$ is equal to $\sum_{v_{i, j} \in P(s, t ; G)} u(i, j ; G)$.
(1) The case in which $\rho=0$.

Then $\operatorname{deg} v=2$ for any $v \notin A$ and $v \neq v_{0,0}$. Hence

$$
\begin{aligned}
M\left(D^{\prime}\right) & =\sum_{v_{i, j} \in G} u(i, j ; G)+u(0,0 ; G)\left(\operatorname{deg}\left(v_{0,0}\right)-1\right) \\
& =\sum_{v_{i j} \in G} u(i, j ; G)+\sum_{v_{i, j} \in G}\left\{\sum_{v_{p, q} \in P(i, j ; G)} u(p, q ; G)\right\} \theta(i, j ; G)
\end{aligned}
$$

(2) The case in which $\rho=k>0$.

We assume that this lemma is true for $\rho \leq k-1$. We take a vertex $v_{s, t} \in A$ such that there is no edge whose terminal points are $v_{0,0}$ and $v_{s, t}$. Let $G^{\vee}=G-\left\{v_{s, t}\right\}$. Let $\mu^{-}: Y \rightarrow X^{-}$be blowing down of (-1)-curves corresponding to $v_{s, t}$ and $\mu=\mu^{+} \circ \mu^{-}$. Let $D^{\vee}=\left(\mu^{+}\right)^{*}(D)$. Then we remark that G^{\vee} is the river of μ^{+}and D.

Then by induction hypothesis

$$
M\left(D^{\vee}\right)=\sum_{v_{i, j} \in G^{\vee}} u\left(i, j ; G^{\vee}\right)+\sum_{v_{i, j} \in G^{\vee}}\left\{\sum_{v_{p, q} \in P\left(i, j ; G^{\vee}\right)} u\left(p, q ; G^{\vee}\right)\right\} \theta\left(i, j ; G^{\vee}\right) .
$$

Next we consider $M\left(D^{\prime}\right)$. Let $v_{s-1, l}$ be a vertex such that there is an edge between $v_{s-1, l}$ and $v_{s, t}$.
(2-1) The case in which $w(s-1, l ; G)=1$.
Then $M\left(D^{\prime}\right)=M\left(D^{\vee}\right)+u(s, t ; G)$. Hence

$$
\begin{aligned}
M\left(D^{\prime}\right) & =\sum_{v_{i, j} \in G^{\vee}} u\left(i, j ; G^{\vee}\right)+u(s, t ; G)+\sum_{v_{i, j} \in G^{\vee}}\left\{\sum_{v_{p, q} \in P\left(i, j ; G^{\vee}\right)} u\left(p, q ; G^{\vee}\right)\right\} \theta\left(i, j ; G^{\vee}\right) \\
& =\sum_{v_{i, j} \in G} u(i, j ; G)+\sum_{v_{i, j} \in G}\left\{\sum_{v_{p, q} \in P(i, j ; G)} u(p, q ; G)\right\} \theta(i, j ; G),
\end{aligned}
$$

because $\theta(s-1, l ; G)=\theta(s, t ; G)=0$ and we have $u(i, j ; G)=u\left(i, j ; G^{\vee}\right), w(i, j ; G)=$ $w\left(i, j ; G^{\vee}\right)$, and $\theta(i, j ; G)=\theta\left(i, j ; G^{\vee}\right)$ for $v_{i, j} \neq v_{s, t}$.
(2-2) The case in which $w(s-1, l ; G) \geq 2$.
Then

$$
M\left(D^{\prime}\right)=M\left(D^{\vee}\right)+\sum_{v_{p, q} \in S P(s, t ; G)} u(p, q ; G)+u(s, t ; G)
$$

Hence

$$
\begin{aligned}
M\left(D^{\prime}\right)= & \sum_{v_{i, j} \in G^{\vee}} u\left(i, j ; G^{\vee}\right)+u(s, t ; G)+\sum_{v_{i, j} \in G^{\vee}}\left\{\sum_{v_{p, q} \in P\left(i, j ; G^{\vee}\right)} u\left(p, q ; G^{\vee}\right)\right\} \theta\left(i, j ; G^{\vee}\right) \\
& +\sum_{v_{p, q} \in S P(s, t ; G)} u(p, q ; G) \\
= & \sum_{v_{i, j} \in G} u(i, j ; G)+\sum_{v_{i, j} \in G}\left\{\sum_{v_{p, q} \in P(i, j ; G)} u(p, q ; G)\right\} \theta(i, j ; G),
\end{aligned}
$$

because $\theta(s, t ; G)=0$ and $\theta(s-1, l ; G)=\theta\left(s-1, l ; G^{\vee}\right)+1$ and because we have $u(i, j ; G)=u\left(i, j ; G^{\vee}\right), w(i, j ; G)=w\left(i, j ; G^{\vee}\right)$, and $\theta(i, j ; G)=\theta\left(i, j ; G^{\vee}\right)$ for $(i, j) \neq$ $(s, t),(s-1, l)$. This completes the proof of Lemma 4.19.

Lemma 4.20. Let D be a CNNS-divisor on X and we use Notation 4.13. Then

$$
\left(D_{\mathrm{red}}^{\prime}\right)^{2} \leq 2 l-2-\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right)+\sum_{j}\left(\left(C_{j}^{\prime}\right)^{2}+2\right)
$$

where $l=g\left(D_{\text {red }}\right)-q(X)$.
Proof. First we prove the following Claim.

Claim 4.21.

$$
e\left(D^{\prime}\right)-o\left(D^{\prime}\right)+1+\sum_{i=1}^{t} \frac{1}{2} b_{i}\left(b_{i}-1\right) \leq l
$$

Proof. We have $g\left(D_{\text {red }}^{\prime}\right)=g\left(D_{\text {red }}\right)-\sum_{i=1}^{t} \frac{1}{2} b_{i}\left(b_{i}-1\right)$ by definition. There exists $m=e\left(D^{\prime}\right)-o\left(D^{\prime}\right)+1$ edges e_{1}, \ldots, e_{m} of $G\left(D_{\text {red }}\right)$ such that $G-\left\{e_{1}, \ldots, e_{m}\right\}$ is a tree. Therefore by Remark 4.12.1, there exists a connected effective divisor A on $X^{\prime \prime}$ which is obtained by finite number of blowing ups of X^{\prime} such that $g\left(D_{\text {red }}^{\prime}\right)=g(A)+e\left(D^{\prime}\right)-o\left(D^{\prime}\right)+1$. Let $\mu^{\prime \prime}: X^{\prime \prime} \rightarrow X^{\prime}$ be its birational morphism and A the strict transform of $D_{\text {red }}^{\prime}$ by $\mu^{\prime \prime}$. Let $\alpha(A)=\operatorname{dim} \operatorname{Ker}\left(H^{1}\left(O_{X^{\prime \prime}}\right) \rightarrow H^{1}\left(O_{A}\right)\right)$. Then we calculate $\alpha(A)$.

If $\alpha(A) \neq 0$, then there exist an Abelian variety T, a surjective morphism $f^{\prime \prime}: X^{\prime \prime} \rightarrow T$ such that $f^{\prime \prime}\left(X^{\prime \prime}\right)$ is not a point and $f^{\prime \prime}(A)$ is a point. Then any $\mu^{\prime \prime}$-exceptional curve is contracted by $f^{\prime \prime}$ because T is an Abelian variety. Hence $f^{\prime \prime}\left(\left(\mu^{\prime \prime}\right)^{*} D_{\text {red }}^{\prime}\right)$ is a point. But $\left(\mu^{\prime \prime}\right)^{*} D_{\text {red }}^{\prime}$ is not negative semidefinite. Therefore $\alpha(A)=0$. Since A is reduced and connected, A is 1-connected. Hence $g(A)=h^{1}\left(O_{A}\right)$. So we obtain $g(A)=h^{1}\left(O_{A}\right) \geq$ $q\left(X^{\prime \prime}\right)=q(X)$.

By the above argument,

$$
\begin{aligned}
g\left(D_{\mathrm{red}}\right) & =g\left(D_{\mathrm{red}}^{\prime}\right)+\sum_{i=1}^{t} \frac{1}{2} b_{i}\left(b_{i}-1\right) \\
& =g(A)+e\left(D^{\prime}\right)-o\left(D^{\prime}\right)+1+\sum_{i=1}^{t} \frac{1}{2} b_{i}\left(b_{i}-1\right) \\
& \geq q(X)+e\left(D^{\prime}\right)-o\left(D^{\prime}\right)+1+\sum_{i=1}^{t} \frac{1}{2} b_{i}\left(b_{i}-1\right) .
\end{aligned}
$$

Therefore

$$
e\left(D^{\prime}\right)-o\left(D^{\prime}\right)+1+\sum_{i=1}^{t} \frac{1}{2} b_{i}\left(b_{i}-1\right) \leq l .
$$

This completes the proof of Claim 4.21.
We continue the proof of Lemma 4.20. By construction, we obtain

$$
\begin{aligned}
\left(D_{\mathrm{red}}^{\prime}\right)^{2} & =\sum_{j}\left(C_{j}^{\prime}\right)^{2}+2 e\left(D^{\prime}\right) \\
& =\sum_{j}\left(C_{j}^{\prime}\right)^{2}+2\left(o\left(D^{\prime}\right)+e\left(D^{\prime}\right)-o\left(D^{\prime}\right)\right) \\
& =\sum_{j}\left(\left(C_{j}^{\prime}\right)^{2}+2\right)+2\left(e\left(D^{\prime}\right)-o\left(D^{\prime}\right)\right)
\end{aligned}
$$

By Claim 4.21, we have

$$
\left(D_{\mathrm{red}}^{\prime}\right)^{2} \leq 2 l-2-\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right)+\sum_{j}\left(\left(C_{j}^{\prime}\right)^{2}+2\right)
$$

This completes the proof of Lemma 4.20.

THEOREM 4.22. Let X be a minimal smooth projective surface with $\kappa(X) \geq 0$ and D a CNNS-divisor on X. Let $D=\sum_{j} r_{j} D_{j}$ be its prime decomposition and $m=g(D)-q(X)$, where $m \in \mathbb{Z}$.

Then $D^{2} \leq 2 m-2+N(D)$, where

$$
N(D)=\sum_{\beta \in \mathbb{Z}} \beta \cdot \sharp\left\{\text { irreducible curves } C_{j} \text { of } D \text { such that } C_{j}^{2}=-2+\beta\right\} .
$$

Proof. We use Notation 4.13 and the notions which is defined above. We may assume that $B=\{y\}$. Let $G=G(y, D), u(i, j)=u(i, j ; G), \theta(i, j)=\theta(i, j ; G), w(i, j)=$ $w(i, j ; G), P(i, j)=P(i, j ; G)$, and $S P(i, j)=S P(i, j ; G)$. Let $D^{\prime}=\left(\mu^{\prime}\right)^{*} D$ and $D_{n r}^{\prime}=$ $D^{\prime}-D_{\text {red }}^{\prime}$. Let $D_{n r}^{\prime}=D_{n e}^{\prime}+D_{\mathrm{e}}^{\prime}+D_{-1}^{\prime}$, where $D_{n e}^{\prime}$ is the effective divisor which consists of not μ^{\prime}-exceptional curves, D_{e}^{\prime} is the effective divisor which consists of curves which are μ^{\prime}-exceptional curves but not (-1)-curves, and D_{-1}^{\prime} is the effective divisor which consists of (-1)-curves.

Then

$$
K_{X^{\prime}} D_{\mathrm{e}}^{\prime}=\sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j)+\sum_{v_{i, j} \in G} \varepsilon(i, j)(m(i, j)-1)
$$

where $m(i, j)$ is the multiplicity of e-curve through $x_{i, j}$ in the total transform of $D, x_{i, j}$ is the blowing up point and its (-1)-curve corresponds to $v_{i, j}, \varepsilon(i, j)=1$ if there exists the e-curve through $x_{i, j}$ and $\varepsilon(i, j)=0$ if there does not exist the e-curve through $x_{i, j}$.

On the other hand,

$$
-\sum_{\alpha}\left(E_{\alpha}^{2}+2\right)=\sum_{v_{i, j} \in G-W}(w(i, j)-1)+\sum_{v_{i, j} \in G} \varepsilon(i, j),
$$

where E_{α} is a μ^{\prime}-exceptional curve on X^{\prime} and not (-1)-curve, and $W=\left\{v_{i, j} \in G \mid\right.$ $w(i, j)=0\}$.

Hence

$$
\begin{align*}
K_{X^{\prime}} D_{\mathrm{e}}^{\prime}-\sum_{\alpha}\left(E_{\alpha}^{2}+2\right)= & \sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \tag{4.22.1}\\
& +\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)+\sum_{v_{i, j} \in G-W}(w(i, j)-1) .
\end{align*}
$$

Let

$$
\beta_{n r}=\text { sum of multiplicity of } \mu^{\prime} \text {-exceptional (}-1 \text {)-curves in } D_{n r}^{\prime} \text {. }
$$

Then

$$
\begin{equation*}
-\beta_{n r}=K_{X^{\prime}} D_{-1}^{\prime} \tag{4.22.2}
\end{equation*}
$$

Let $C_{i, j}$ be a strict transform of $C_{i, j-1}$ by μ_{j} and $C_{i, 0}=C_{i}$. Let $C_{i, j}=\mu_{j}^{*}\left(C_{i, j-1}\right)-e(i)_{j} E_{j}$, where E_{j} is the (-1)-curve of μ_{j}. We remark that $e(i)_{j} \geq 1$ for any i, j.

Then

$$
K_{X^{\prime}}\left(\left(r_{i}-1\right) C_{i, t}\right) \geq \sum_{j=1}^{t}\left(r_{i}-1\right) e(i)_{j}
$$

because X is minimal.
Hence

$$
K_{X^{\prime}}\left(D_{n e}^{\prime}\right) \geq \sum_{i}\left\{\sum_{j=1}^{t}\left(r_{i}-1\right) e(i)_{j}\right\}
$$

On the other hand

$$
\sum_{i}\left(C_{i, t}^{2}+2\right)=N(D)-\sum_{i} \sum_{j=1}^{t} e(i)_{j}^{2}
$$

because $C_{i, t}^{2}=C_{i}^{2}-\sum_{j=1}^{t} e(i)_{j}^{2}$.
Hence

$$
\begin{equation*}
K_{X^{\prime}}\left(D_{n e}^{\prime}\right)-\sum_{i}\left(C_{i, t}^{2}+2\right) \geq \sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)-N(D) \tag{4.22.3}
\end{equation*}
$$

since $\sum_{j=1}^{t} e(i)_{j}^{2} \geq \sum_{j=1}^{t} e(i)_{j}$.
By (4.22.1), (4.22.2), and (4.22.3), we obtain
(4.22.4)

$$
\begin{aligned}
& K_{X^{\prime}} D_{n r}^{\prime}-\sum_{i}\left(C_{i, t}^{2}+2\right)-\sum_{\alpha}\left(E_{\alpha}^{2}+2\right) \\
& \geq-\beta_{n r}+\sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \\
&+\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)+\sum_{v_{i, j} \in G-W}(w(i, j)-1)+\sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)-N(D)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
q(X)+m & =g(D)=g\left(D^{\prime}\right) \\
& =g\left(D_{\mathrm{red}}^{\prime}\right)+\frac{1}{2}\left(K_{X^{\prime}}+D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime} \\
& =g\left(D_{\mathrm{red}}\right)-\frac{1}{2} \sum_{i=1}^{t} b_{i}\left(b_{i}-1\right)+\frac{1}{2}\left(K_{X^{\prime}}+D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime} \\
& =q(X)+l-\frac{1}{2} \sum_{i=1}^{t} b_{i}\left(b_{i}-1\right)+\frac{1}{2}\left(K_{X^{\prime}}+D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime}
\end{aligned}
$$

where $l=g\left(D_{\text {red }}\right)-q(X)$.

Hence by (4.22.4), we obtain

$$
\begin{aligned}
& 2 m-2 l=\left(K_{X^{\prime}}+D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime}-\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right) \\
& \geq \sum_{i}\left(C_{i, t}^{2}+2\right)+\sum_{\alpha}\left(E_{\alpha}^{2}+2\right)-\beta_{n r} \\
&+\sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \\
&+\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)+\sum_{v_{i, j} \in G-W}(w(i, j)-1) \\
&+\sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)-N(D)+\left(D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime}-\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right),
\end{aligned}
$$

and so we have

$$
\begin{aligned}
\left(D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime} \leq- & \sum_{i}\left(C_{i, t}^{2}+2\right)-\sum_{\alpha}\left(E_{\alpha}^{2}+2\right)+\beta_{n r} \\
& -\sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \\
& -\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)-\sum_{v_{i, j} \in G-W}(w(i, j)-1) \\
& -\sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)+N(D)+\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right)+2 m-2 l .
\end{aligned}
$$

Therefore by Lemma 4.20, we obtain

$$
\begin{aligned}
&\left(D^{\prime}\right)^{2}=\left(D_{\mathrm{red}}^{\prime}\right)^{2}+\left(D^{\prime}+D_{\mathrm{red}}^{\prime}\right) D_{n r}^{\prime} \\
& \leq(2 m-2 l)+(2 l-2)+\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right)-\sum_{i=1}^{t} b_{i}\left(b_{i}-1\right) \\
&+\sum_{i}\left(\left(C_{i}^{\prime}\right)^{2}+2\right)-\sum_{i}\left(C_{i, t}^{2}+2\right)-\sum_{\alpha}\left(E_{\alpha}^{2}+2\right)+\beta_{n r} \\
&-\sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \\
&-\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)-\sum_{v_{i, j} \in G-W}(w(i, j)-1) \\
&-\sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)+N(D) \\
&=(2 m-2)+M\left(D^{\prime}\right) \\
&-\sum_{v_{i, j} \in G}\left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \\
&-\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)-\sum_{v_{i, j} \in G-W}(w(i, j)-1) \\
&-\sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)+N(D),
\end{aligned}
$$

where $M\left(D^{\prime}\right)$ is the sum of the multiplicity of (-1)-curves in D^{\prime}.
On the other hand by Lemma 4.19, we have

$$
\begin{aligned}
M\left(D^{\prime}\right)-\sum_{v_{i, j} \in G} & \left\{\left(\sum_{v_{p, q} \in P(i, j)} u(p, q)\right)-1\right\} \theta(i, j) \\
& =M\left(D^{\prime}\right)-\sum_{v_{i, j} \in G}\left\{\sum_{v_{p, q} \in P(i, j)} u(p, q)\right\} \theta(i, j)+\sum_{v_{i, j} \in G-W}(w(i, j)-1) \\
& =\sum_{v_{p, q} \in G} u(p, q)+\sum_{v_{i, j} \in G-W}(w(i, j)-1) .
\end{aligned}
$$

Therefore

$$
\left.\left.\begin{array}{rl}
\left(D^{\prime}\right)^{2} \leq & 2 m
\end{array}\right)-2+\sum_{v_{p, q} \in G} u(p, q)+\sum_{v_{i, j} \in G-W}(w(i, j)-1)\right)
$$

because we have

$$
\sum_{v_{i, j} \in G} \varepsilon(i, j) m(i, j)+\sum_{i} \sum_{j=1}^{t}\left(r_{i} e(i)_{j}\right)=\sum_{v_{p, q} \in G} u(p, q)
$$

by considering the definition of $u(p, q)$. This completes the proof of Theorem 4.22.
Theorem 4.11 is obtained by Theorem 4.22.
PROOF OF THEOREM 4.11. It is sufficient to prove $D^{2} \leq 2 m+1$ if $g(D)-q(X)=m$. We consider the following decomposition $(* *)$ of D :
$D=D_{1}+D_{2}$, and D_{1} and D_{2} have no common component, where D_{1} and D_{2} are non zero effective connected divisors.

CLAIM 4.23. If $\left(\left(D_{1}\right)_{\text {red }}\right)^{2} \leq 0$ and $\left(\left(D_{2}\right)_{\text {red }}\right)^{2} \leq 0$, then $N(D) \leq 4$.
If $\left(\left(D_{1}\right)_{\text {red }}\right)^{2}<0$ or $\left(\left(D_{2}\right)_{\text {red }}\right)^{2}<0$, then $N(D) \leq 3$.
Proof. Let $\left(D_{i}\right)_{\text {red }}=\sum_{j} B_{i, j}$. Then $\sum_{j}\left(B_{i, j}\right)^{2}=N\left(D_{i}\right)-2 o\left(D_{i}\right)$ and $\sum_{j \neq k} B_{i, j} B_{i, k} \geq$ $e\left(D_{i}\right)$. Hence $\left(\left(D_{i}\right)_{\text {red }}\right)^{2} \geq 2 e\left(D_{i}\right)-2 o\left(D_{i}\right)+N\left(D_{i}\right)$ for $i=1,2$. By hypothesis, we have $0 \geq 2 e\left(D_{i}\right)-2 o\left(D_{i}\right)+N\left(D_{i}\right)$ for $i=1,2$. Since the dual graph $G\left(D_{i}\right)$ of D_{i} is connected, we have $e\left(D_{i}\right)-o\left(D_{i}\right)+1 \geq 0$. Hence $2 e\left(D_{i}\right)-2 o\left(D_{i}\right) \geq-2$ and so we have $N\left(D_{i}\right) \leq 2$.

On the other hand, $N(D)=N\left(D_{1}\right)+N\left(D_{2}\right)$ since $D=D_{1}+D_{2}$. Therefore $N(D) \leq 4$.
The last part of Claim 4.23 can be proved by the above argument. This completes the proof of Claim 4.23.

Let $S(D)$ be a set of an effective connected reduced divisor \tilde{D} contained in D such that \tilde{D} has a minimum component which satisfies the property that the intersection matrix of \tilde{D} is not negative semidefinite.

Then $S(D) \neq \phi$ by hypothesis. Let $\bar{D}=\sum_{i \in J} C_{i} \in S(D)$ and let r_{i} be the multiplicity of C_{i} in D. Let $D_{\alpha}=\sum_{i \in J} r_{i} C_{i}$ and $D_{\beta}=D-D_{\alpha}$. We remark that possibly $D_{\beta}=0$. Then D_{α} has at least two components since $C_{i}^{2}<0$ for any i. Let $D_{\alpha}=D_{\alpha, 1}+D_{\alpha, 2}$ be the decomposition as ($* *$).

Claim 4.24. We can take this decomposition which satisfies $\left(D_{\alpha, 1}\right)^{2}<0$.
Proof. We consider the dual graph $G\left(D_{\alpha}\right)$ of D_{α}. Then $G\left(D_{\alpha}\right)$ is connected. In Graph Theory, there is the following standard Theorem;

THEOREM 4.25. Let G be a connected graph which is not one point. Then there are at least two points which are not cutpoints. (Here a vertex v of a graph is called a cutpoint if removal of v increases the number of components.)

Proof. See Theorem 3.4 in [H].
We continue the proof of Claim 4.24. By Theorem 4.25, it is sufficient to take $\left(D_{\alpha, 1}\right)_{\text {red }}$ as an irreducible curve corresponding to a vertex of $G\left(D_{\alpha}\right)$ which is not a cutpoint. This completes the proof of Claim 4.24.

We continue the proof of Theorem 4.11.
We have $\left(\left(D_{\alpha, 1}\right)_{\text {red }}\right)^{2}<0$ and $\left(\left(D_{\alpha, 2}\right)_{\text {red }}\right)^{2} \leq 0$ by the choice of D_{α}. Therefore $N\left(D_{\alpha}\right) \leq 3$ by Claim 4.23.

On the other hand, we have

$$
q(X)+m=g(D)=g\left(D_{\alpha}\right)+\frac{1}{2}\left(K_{X}+D+D_{\alpha}\right) D_{\beta}
$$

Let $g\left(D_{\alpha}\right)=q(X)+m_{\alpha}$. Then by Theorem $4.22, D_{\alpha}^{2} \leq 2 m_{\alpha}-2+N\left(D_{\alpha}\right) \leq 2 m_{\alpha}+1$ since D_{α} is a CNNS-divisor.

On the other hand, $\left(K_{X}+D+D_{\alpha}\right) D_{\beta}=2\left(m-m_{\alpha}\right)$ and $K_{X} D_{\beta} \geq 0$. Hence $\left(D+D_{\alpha}\right) D_{\beta} \leq$ $2\left(m-m_{\alpha}\right)$. Therefore

$$
\begin{aligned}
D^{2} & =D_{\alpha}^{2}+\left(D+D_{\alpha}\right) D_{\beta} \\
& \leq 2 m_{\alpha}+1+2 m-2 m_{\alpha} \\
& =2 m+1
\end{aligned}
$$

This completes the proof of Theorem 4.11.
REMARK 4.26. Let $D=\sum_{i} r_{i} C_{i}$ be an effective divisor on a minimal smooth surface of general type with $C_{i}^{2}<0$ for any i. If the intersection matrix $\left\|\left(C_{i} \cdot C_{j}\right)\right\|$ is not negative semidefinite, then $K_{X} D \geq 2 q(X)-3$.

Indeed, let D_{1}, \ldots, D_{t} be the connected component of D. Then for some D_{k}, the intersection matrix of the components of D is not negative semidefinite. By Theorem 4.11, we have $K_{X} D_{k} \geq 2 q(X)-3$. Since K_{X} is nef, we obtain $K_{X} D \geq 2 q(X)-3$.

COROLLARY 4.27. Let X be a minimal smooth surface of general type and let D be a nef-big effective divisor with $h^{0}(D)=1$ on X. If D is not the following type (\star), then $K_{X} D \geq 2 q(X)-4$;
(*) $D=C_{1}+\sum_{j \geq 2} r_{j} C_{j} ; C_{1}^{2}>0$ and the intersection matrix $\left\|\left(C_{j}, C_{k}\right)\right\|_{j \geq 2, k \geq 2}$ of $\sum_{j \geq 2} r_{j} C_{j}$ is negative semidefinite.

Proof. By Theorem 4.5, Theorem 4.6, Theorem 4.11, and Remark 4.26, we obtain Corollary 4.27.
5. The case in which $\kappa(X)=2$ and L is an irreducible reduced curve.

Notation 5.1. Let X be a smooth projective surface over the complex number field \mathbb{C} and let C be a curve on X with $C^{2}>0$. Let $N(k ; C)$ be the set of a 0 -dimensional subscheme \tilde{Z} with length $\tilde{Z}=k+1$ and $\operatorname{Supp} \tilde{Z} \subset C$ such that the restriction map $\Gamma\left(O\left(K_{X}+C\right)\right) \rightarrow \Gamma\left(O\left(K_{X}+C\right) \otimes O_{\tilde{Z}}\right)$ is not surjective. Let $S(\tilde{Z} ; C)$ be the set of a subcycle Z of $\tilde{Z} \in N(k ; C)$ with length $Z \leq$ length \tilde{Z} such that $\Gamma\left(O\left(K_{X}+C\right)\right) \rightarrow \Gamma\left(O\left(K_{X}+C\right) \otimes O_{Z}\right)$ is not surjective but for any subcycle Z^{\prime} of Z with length $Z^{\prime}<$ length $Z, \Gamma\left(O\left(K_{X}+C\right)\right) \rightarrow$ $\Gamma\left(O\left(K_{X}+C\right) \otimes O_{Z^{\prime}}\right)$ is surjective.

First we prove the following Theorem.
THEOREM 5.2. Let X be a minimal smooth projective surface with $\kappa(X)=2$, and let C be an irreducible reduced curve on X with $C^{2}>0$. We put $g(C)=q(X)+m$. We assume that $K_{X}+C$ is not k-very ample for some integer $k \geq(1 / 2)(m-1)$, and also assume that

$$
\sharp \bigcup_{\tilde{Z} \in N(k: C)}\left(\bigcup_{Z \in S(\tilde{Z} ; C)} \operatorname{Supp} Z\right)=\infty .
$$

Then $C^{2} \leq 4(k+1)$.
PROOF. We remark that C is nef and big. Assume that $C^{2}>4(k+1)$. Then we remark that $C^{2} \geq 2 m+3$ by hypothesis.

If $q(X) \leq 2$, then $K_{X} C \geq 0 \geq 2 q(X)-4$ and so we have $C^{2} \leq 2 m+2$ and this is a contradiction. Hence we have $q(X) \geq 3$.

Then by Corollary 2.3 in [BeS], for any $Z \in \bigcup_{\tilde{Z} \in N(k ; C)} S(\tilde{Z} ; C)$ there exists an effective divisor D_{Z} on X such that $\operatorname{Supp}(Z) \subset D_{Z}$ and $C-2 D_{Z}$ is a \mathbb{Q}-effective divisor. Let $A=\left\{D_{Z} \mid Z \in \bigcup_{\tilde{Z} \in N(k ; C)} S(\tilde{Z} ; C)\right.$ and D_{Z} as above $\}$.

Claim 5.3. Let D be an effective divisor on X and let $D=\sum_{i} r_{i} C_{i}$ be its prime decomposition. If there exists an irreducible component C_{i} with $C_{i}^{2}>0$, and $C-2 D$ is \mathbb{Q}-effective, then $C^{2} \leq 2 m$ if $g(C)=q(X)+m$.

Proof. By Proposition 1.7, we have

$$
\begin{aligned}
K_{X} D & \geq K_{X} C_{i} \\
& \geq \frac{3}{2} q(X)-3 \\
& =q(X)+\frac{1}{2} q(X)-3 .
\end{aligned}
$$

Since $q(X) \geq 3$, we obtain that $K_{X} D \geq q(X)-(3 / 2)$. Hence $K_{X} D \geq q(X)-1$ because $K_{X} D$ is an integer. Because K_{X} is nef and $C-2 D$ is \mathbb{Q}-effective, we obtain

$$
\begin{aligned}
g(C) & =1+\frac{1}{2}\left(K_{X}+C\right) C \\
& \geq 1+\frac{1}{2}\left(K_{X}\right)(2 D)+\frac{1}{2} C^{2} \\
& =1+K_{X} D+\frac{1}{2} C^{2} \\
& \geq q(X)+\frac{1}{2} C^{2} .
\end{aligned}
$$

Therefore $C^{2} \leq 2 m$. This completes the proof of Claim 5.3.
We continue the proof of Theorem 5.2.
By Claim 5.3, any $D_{Z} \in A$ satisfies $C_{i}^{2} \leq 0$ for any irreducible component C_{i} of D_{Z}.
So $C \not \subset D_{Z}$ for any $D_{Z} \in A$ since $C^{2}>0$. Hence by hypothesis, we obtain

$$
\operatorname{dim} \bigcup_{D_{Z} \in A}\left(\bigcup_{C_{Z, i} \in V\left(D_{Z}\right)} \operatorname{Supp} C_{Z, i}\right)=2
$$

where $V\left(D_{Z}\right)=$ the set of irreducible components of D_{Z}.
Let

$$
\bigcup_{D_{Z} \in A} V\left(D_{Z}\right)=B_{1} \cup B_{2},
$$

where B_{1} is the set of irreducible curves C_{1} with $C_{1}^{2}<0$ and B_{2} is the set of irreducible curves C_{2} with $C_{2}^{2}=0$.
(1) The case in which $\sharp B_{1}=\infty$.

If $C_{1} \in B_{1}$ with $K_{X} C_{1} \geq q(X)-1$, then $K_{X} D_{Z} \geq q(X)-1$ and so we have $C^{2} \leq 2 m$ by the same argument as Claim 5.3. So we have $K_{X} C_{1} \leq q(X)-2$ for any $C_{1} \in B_{1}$. Then the number of such a curve C_{1} is at most finite by Lemma 1.8. But this is a contradiction by hypothesis.
(2) The case in which $\sharp B_{2}=\infty$.

If $C_{2} \in B_{2}$ with $K_{X} C_{2} \geq q(X)-1$, then we have $C^{2} \leq 2 m$ by the same argument as above. So we have $K_{X} C_{2} \leq q(X)-2$ for any $C_{2} \in B_{2}$. Then there is a subset $B_{3} \subset B_{2}$ such that $\sharp B_{3}=\infty$ and $C_{s} \equiv C_{t}$ for any distinct $C_{s}, C_{t} \in B_{3}$ by Lemma 1.8. We take a $C_{k} \in B_{3}$. Let $\alpha\left(C_{k}\right)=\operatorname{dim} \operatorname{Ker}\left(H^{1}\left(O_{X}\right) \rightarrow H^{1}\left(O_{C_{k}}\right)\right)$.
(2-1) The case in which $\alpha\left(C_{k}\right) \neq 0$.
Then by Lemma 1.3 in [Fk4], there exist an Abelian variety G and a morphism $f: X \rightarrow$ G such that $f(X)$ is not a point and $f\left(C_{k}\right)$ is a point. Since $C_{k}^{2}=0$, we obtain $f(X)$ is a curve. By taking Stein factorization, if necessary, there is a smooth curve B, a surjective morphism $h: X \rightarrow B$ with connected fibers, and a finite morphism $\delta: B \rightarrow f(X)$ such that $f=\delta \circ h$. On the other hand, for any $C_{n} \in B_{3}$ and $C_{n} \neq C_{k}$, we have $C_{n} C_{k}=C_{k}^{2}=0$. Hence any element C_{n} of B_{3} is contained in a fiber of h and $C_{n}^{2}=0$. Therefore for a general fiber F_{h} of h, we may assume $F_{h} \in B_{3}$. On the other hand, we have $C-2 D_{Z} \leq$ $C-2 F_{h}$. So we obtain that $C-2 F_{h}$ is a \mathbb{Q}-effective divisor.

Hence we have

$$
\begin{aligned}
g(C) & =g(B)+\frac{1}{2}\left(K_{X / B}+C\right) C+\left(C F_{h}-1\right)(g(B)-1) \\
& \geq g(B)+\frac{1}{2}\left(K_{X / B}\right)\left(2 F_{h}\right)+\frac{1}{2} C^{2} \\
& =g(B)+2 g\left(F_{h}\right)-2+\frac{1}{2} C^{2} \\
& =g(B)+g\left(F_{h}\right)+\frac{1}{2} C^{2}+g\left(F_{h}\right)-2 \\
& \geq q(X)+\frac{1}{2} C^{2}
\end{aligned}
$$

because $K_{X / B}$ is nef, $g(B) \geq 1$ and $g\left(F_{h}\right) \geq 2$.
Hence $C^{2} \leq 2 m$. But this is a contradiction because we assume that $C^{2} \geq 2 m+3$.
(2-2) The case in which $\alpha\left(C_{k}\right)=0$.
Then $q(X) \leq h^{1}\left(O_{C_{k}}\right)=g\left(C_{k}\right)$. On the other hand, since K_{X} is nef, $C_{k}^{2}=0, C-2 C_{k} \geq$ $C-2 D_{Z}$, and $C-2 D_{Z}$ is \mathbb{Q}-effective, we obtain

$$
\begin{aligned}
g(C) & =1+\frac{1}{2}\left(K_{X}+C\right) C \\
& \geq 1+\frac{1}{2}\left(K_{X}\right)\left(2 C_{k}\right)+\frac{1}{2} C^{2} \\
& =1+K_{X} C_{k}+\frac{1}{2} C^{2} \\
& =1+2 g\left(C_{k}\right)-2+\frac{1}{2} C^{2} \\
& \geq 2 q(X)-1+\frac{1}{2} C^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
C^{2} & \leq 2 m+2(1-q(X)) \\
& \leq 2 m-4
\end{aligned}
$$

since $q(X) \geq 3$.
But this is a contradiction by hypothesis. Therefore $C^{2} \leq 4(k+1)$. This completes the proof of Theorem 5.2.

COROLLARY 5.4. Let X be a minimal smooth projective surface with $\kappa(X)=2$ and let C be an irreducible reduced curve with $C^{2}>0$. Then $C^{2} \leq 4 m+4$ if $m=g(C)-q(X)$.

Proof. We use Notation 5.1. By Theorem 5.2, it is sufficient to prove that $K_{X}+C$ is not m-very ample and

$$
\# \bigcup_{\tilde{Z} \in N(m ; C)}\left(\bigcup_{Z \in S(\tilde{Z} ; C)} \operatorname{Supp} Z\right)=\infty .
$$

Let $W=\operatorname{Im}\left(H^{0}\left(K_{X}+C\right) \rightarrow H^{0}\left(\omega_{C}\right)\right)$, where ω_{C} is a dualizing sheaf of C. We remark that ω_{C} is a Cartier divisor. Let α be the map $H^{0}\left(K_{X}+C\right) \longrightarrow W$. Then $\operatorname{dim} W=h^{0}\left(K_{X}+C\right)-$
$h^{0}\left(K_{X}\right)=m$ by Riemann-Roch Theorem and Kawamata-Viehweg Vanishing Theorem. Let P_{1}, \ldots, P_{m+1} be any $m+1$ distinct points on $C \backslash \operatorname{Sing} C$, where Sing C denotes the singular locus of C. Let Z be a 0 -dimensional subscheme such that
(1) $I_{Z} O_{X, y}=O_{X, y}$ if $y \notin\left\{P_{1}, \ldots, P_{m+1}\right\}$;
(2) $I_{Z} O_{X, y}=\left(x_{i}, y_{i}\right)$ if $y=P_{i}$,
where I_{Z} is the ideal sheaf of Z and $\left(x_{i}, y_{i}\right)$ is a local coordinate of X at P_{i} such that C is defined by $\left(x_{i}\right)$ at P_{i}. Let β be the restriction map $W \rightarrow H^{0}\left(\left(K_{X}+C\right) \otimes O_{Z}\right)$. If $K_{X}+C$ is m-very ample at Z, then the restriction $\gamma: H^{0}\left(K_{X}+C\right) \rightarrow H^{0}\left(\left(K_{X}+C\right) \otimes O_{Z}\right)$ is surjective. But we have $\operatorname{dim} W=m$ and $\operatorname{dim} H^{0}\left(\left(K_{X}+C\right) \otimes O_{Z}\right)=m+1$. This is a contradiction since $\gamma=\beta \circ \alpha$. Hence $K_{X}+C$ is not m-very ample for any 0 -dimensional subscheme with length $m+1$ which consists of distinct $m+1$ points of $C \backslash \operatorname{Sing}(C)$. This implies

$$
\# \bigcup_{\tilde{Z} \in N(m ; C)}\left(\bigcup_{Z \in S(\tilde{Z} ; C)} \operatorname{Supp} Z\right)=\infty .
$$

This completes the proof of Corollary 5.4.
By Corollary 4.27, in order to solve Conjecture 1 (or Conjecture 1^{\prime}), it is sufficient to consider the case in which D is the following type (\star):

$$
D=C_{1}+\sum_{j \geq 2} r_{j} C_{j} ; C_{1}^{2}>0 \text { and the intersection matrix }\left\|C_{j}, C_{k}\right\|_{j \geq 2, k \geq 2} \text { of }
$$ $\sum_{j \geq 2} r_{j} C_{j}$ is negative semidefinite.

COROLLARY 5.5. Let X be a minimal smooth projective surface with $\kappa(X)=2$ and let D be a nef-big effective divisor on X such that D is the type (\star). Then $D^{2} \leq 4 m+4$ if $m=g(D)-q(X)$.

Proof. First we obtain

$$
g\left(C_{1}\right)=q(X)+m-\frac{1}{2}\left(K_{X}+D+C_{1}\right)\left(\sum_{j \geq 2} r_{j} C_{j}\right)
$$

By Corollary 5.4, we have

$$
\begin{aligned}
C_{1}^{2} & \leq 4 m+4-2\left(K_{X}+D+C_{1}\right)\left(\sum_{j \geq 2} r_{j} C_{j}\right) \\
& \leq 4 m+4-2\left(D+C_{1}\right)\left(\sum_{j \geq 2} r_{j} C_{j}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
D^{2} & =C_{1}^{2}+\left(D+C_{1}\right)\left(\sum_{j \geq 2} r_{j} C_{j}\right) \\
& \leq 4 m+4-\left(D+C_{1}\right)\left(\sum_{j \geq 2} r_{j} C_{j}\right) .
\end{aligned}
$$

On the other hand $D+C_{1}$ is nef. Hence $\left(D+C_{1}\right)\left(\sum_{j \geq 2} r_{j} C_{j}\right) \geq 0$ and so we obtain $D^{2} \leq 4 m+4$. This completes the proof of Corollary 5.5.
6. Higher dimensional case and conjecture. In this section we consider the case in which $n=\operatorname{dim} X \geq 3$ and $\kappa(X) \geq 0$.

THEOREM 6.1. Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X=n \geq 3$ and $\kappa(X)=0$ or 1 . Then $K_{X} L^{n-1} \geq 2(q(X)-n)$.

Proof. (1) The case in which $\kappa(X)=0$.
Then $q(X) \leq n$ by [Ka1]. Hence $K_{X} L^{n-1} \geq 0 \geq 2(q(X)-n)$.
(2) The case in which $\kappa(X)=1$.

By Iitaka Theory ([Ii]), there exist a smooth projective variety X_{1}, a birational morphism $\mu_{1}: X_{1} \rightarrow X$, a smooth curve C, and a fiber space $f_{1}: X_{1} \rightarrow C$ such that $\kappa\left(F_{1}\right)=0$, where F_{1} is a general fiber of f_{1}. Let $L_{1}=\mu_{1}^{*} L$.
(2-1) The case in which $g(C) \geq 1$.
By Lemma 1.3.1 and Remark 1.3.2 in [Fk2] and the semipositivity of $\left(f_{1}\right)_{*}\left(m K_{X_{1} / C}\right)$ for $m \in \mathbb{N}([\mathrm{Fj} 1],[\mathrm{Ka} 2])$, we have $K_{X_{1} / C} L_{1}^{n-1} \geq 0$. Therefore

$$
\begin{aligned}
K_{X} L^{n-1} & =K_{X_{1}} L_{1}^{n-1} \\
& =K_{X_{1} / C} L_{1}^{n-1}+(2 g(C)-2) L_{1}^{n-1} F_{1} \\
& \geq 2 g(C)-2
\end{aligned}
$$

On the other hand, $q(X) \leq g(C)+(n-1)$ since $q\left(F_{1}\right) \leq n-1$ by [Ka1]. Hence

$$
\begin{aligned}
K_{X} L^{n-1} & \geq 2(g(C)-1) \\
& \geq 2(q(X)-n) .
\end{aligned}
$$

(2-2) The case in which $g(C)=0$.
Then $q(X) \leq n-1$ since $q\left(F_{1}\right) \leq n-1$. Therefore $K_{X} L^{n-1} \geq 0>2(q(X)-n)$.
This completes the proof of Theorem 6.1.

By considering the above theorem, we propose the following conjecture which is a generalization of Conjecture 1^{\prime}.

CONJECTURE 6.2. Let (X, L) be a quasi-polarized manifold with $n=\operatorname{dim} X \geq 3$ and $\kappa(X) \geq 0$. Then $K_{X} L^{n-1} \geq 2(q(X)-n)$.

By Theorem 6.1, this conjecture is true if $\kappa(X)=0$ or 1 . We will study Conjecture 6.2 in a future paper.

ACKNOWLEDGMENT. The author would like to express his hearty gratitude to Professor Takao Fujita for giving some useful advice and comments.

REFERENCES

[BaBe] E. Ballico and M. C. Beltrametti, On the k-spannedness of the adjoint line bundle. Manuscripta Math. 76(1992), 407-420.
[BaS] E. Ballico and A. J. Sommese, Projective surfaces with k-very ample line bundle of degree $\leq 4 k+4$. Nagoya Math. J. 136(1994), 57-79.
[Be] A. Beauville, L'inégalité $p_{g} \geq 2 q-4$ pour les surfaces de type général. Bull. Soc. Math. France 110(1982), 343-346.
[BeFS] M. C. Beltrametti, P. Fania and A. J. Sommese, On Reider's method and higher order embeddings. Duke Math. J. 58(1989), 425-439.
[BeS] M. C. Beltrametti and A. J. Sommese, Zero cycles and k-th order embeddings of smooth projective surfaces. In: Problems in the Theory of Surfaces and their Classification, Cortona, Italy, 1988, (eds. F. Catanese and C. Ciliberto), Sympos. Math. 32, 1992, 33-48.
[Bo] E. Bombieri, Canonical models of surfaces of general type. Inst. Hautes. Études. Sci. Publ. Math. 42 (1973), 171-219.
[D] O. Debarre, Inégalités numériques pour les surfaces de type général. Bull. Soc. Math. France 110(1982), 319-346; Addendum Bull. Soc. Math. France 111(1983), 301-302.
[DP] M. A. De Cataldo and M. Palleschi, Polarized surfaces of positive Kodaira dimension with canonical bundle of small degree. Forum Math. 4(1992), 217-229.
[Fj1] T. Fujita, On Kähler fiber spaces over curves. J. Math. Soc. Japan 30(1978), 779-794.
[Fj2] \qquad , Classification Theories of Polarized Varieties. London Math. Soc. Lecture Note Series 155 (1990).
[Fj3]_, On certain polarized elliptic surfaces. Geometry of Complex projective varieties, Seminars and Conferences 9, Mediterranean Press, 1993, 153-163.
[Fk1] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces. Geom. Dedicata 64 (1997), 229-251.
[Fk2] __ A lower bound for sectional genus of quasi-polarized manifolds. J. Math. Soc. Japan 49(1997), 339-362.
[Fk3] On sectional genus of quasi-polarized manifolds with non-negative Kodaira dimension. Math. Nachr. 180(1996), 75-84.
[Fk4] \qquad , On polarized surfaces (X, L) with $h^{0}(L)>0, \kappa(X)=2$, and $g(L)=q(X)$. Trans. Amer. Math. Soc. 348(1996), 4185-4197.
[H] F. Harary, Graph theory. Addison-Wesley, 1969.
[Ii] S. Iitaka, On D-dimension of algebraic varieties. J. Math. Soc. Japan 23(1971), 356-373.
[Ka1] Y. Kawamata, Characterization of Abelian varieties. Compositio Math. 43(1981), 253-276.
[Ka2] _, Kodaira dimension of algebraic fiber spaces over curves. Invent. Math. 66(1982), 57-71.
[Ra] C. P. Ramanujam, Remarks on the Kodaira vanishing theorem. J. Indian Math. Soc. 36(1972), 41-51.
[S] F. Serrano, The Picard group of a quasi-bundle. Manuscripta Math. 73(1991), 63-82.
[X] G. Xiao, Fibered algebraic surfaces with low slope. Math. Ann. 276(1987), 449-466.

Department of Mathematics
Faculty of Science
Tokyo Institute of Technology
Oh-okayama, Meguro-ku
Tokyo 152-8551
Japan
e-mail: fukuma@math.titech.ac.jp

Current address:
Department of Mathematics
College of Education
Naruto University of Education
Takashima, Naruto-cho
Naruto-shi 772-8502
Japan
e-mail: fukuma@ naruto-u.ac.jp

[^0]: Received by the editors January 22, 1998.
 Research Fellow of the Japan Society for the Promotion of Science.
 AMS subject classification: 14C20.
 Key words and phrases: Quasi-polarized surface, sectional genus.
 (c) Canadian Mathematical Society 1998.

