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1. Introduction

Minimal surfaces – critical points of the area functional with respect to local deforma-
tions – are fundamental objects in Riemannian geometry, and attracted the attention of
many mathematicians. In this note, we establish a boundary maximum principle for the
generalized minimal hypersurfaces in any Riemannian manifolds, having constant contact
angle θ0 with the boundary.
In all follows, let (N∗, g) be a smooth, connected, compact (n + 1)-dimensional

Riemannian manifold with non-empty boundary ∂N∗. With a slight abuse of notation,
we also use 〈·, ·〉 to denote the Riemannian metric of N∗ and denote by ∇ the Levi-Civita
connection of N∗. Let νN∗ denote its unit normal along ∂N∗, pointing into N∗. For any
smooth, compact, properly embedded hypersurface S ⊂ N∗ whose boundary lies in ∂N∗,
fix an orientation given by the unit normal vector field νS, and let Ω be the closure of
the enclosed region of S with ∂N∗ such that νS points inside Ω, set T = ∂Ω ∩ ∂N∗.
See Figure 1 for illustration, where µ, µ̄ denote the inwards pointing unit conormals of
S ∩ T in S and T respectively.
Let AS denote the shape operator of S in N∗ with respect to νS, i.e. A

S(u) = −∇uνS
for any u ∈ Γ(TS). We say that S is strongly mean convex at a point p ∈ S, if
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Boundary maximum principle 317

Figure 1. Hypersurface S having constant contact angle θ0 with the boundary ∂N∗.

κ1 + . . .+ κn > 0,

where κ1 ≤ . . . ≤ κn are the principal curvatures of AS at p.
Our main result is the following boundary maximum principle, established in the con-

text of varifolds with fixed contact angle, we refer to §2 for the precise definition and
statement.

1.1. Main result

Theorem 1.1. Given θ0 ∈ (0, π/2), let S be a smooth, compact, properly embedded
hypersurface, meeting ∂N∗ with a constant angle θ0, that is, 〈νS , νN∗〉 = − cos θ0 along
∂N∗ ∩ S. Suppose that S is strongly mean convex at a point p ∈ ∂S.
Then, for any fine θ0-stationary pair (V,W ) ∈ Vn(N∗)×Vn(∂N∗), p is not contained

in the support of ||V ||, if one of the following cases happens1:

i. ||V || is supported in Ω, ||W || is supported in T, and ||V ||(∂N∗) = 0;
ii. ||V || is supported in Ω, ||W || is supported in T, and ∂N∗ is mean convex in N∗.

1 As pointed out to us by a referee, the following two conditions are sufficient also if they are locally
true at p.
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Figure 2. Local orthogonal foliations and orthonormal frame.

The maximum principle for minimal submanifolds has been proved in various con-
texts. The interior maximum principle for C 2-hypersurfaces is a direct consequence of
the well-known Hopf’s boundary point lemma [6, Lemma 3.4]. It is then generalized to
arbitrary codimension by Jorge-Tomi [8]. In the non-smooth case, White [15] established
the interior maximum principle in the context of minimal varieties, in any codimension.
Recently, Li-Zhou generalized the main result of [15] to the free boundary setting, they
established a boundary maximum principle for free boundary minimal varieties (free
boundary stationary varifolds), in arbitrary codimension [11, Theorem 1.2].
As argued in [11], in the smooth, codimension-1 case, the boundary maximum principle

for free boundary hypersurface amounts to be a simple application of Hopf’s lemma.
Meanwhile, one can also derive a boundary maximum principle for a generic contact
angle θ0 ∈ (0, π) by virtue of Hopf’s lemma, see e.g. [10, Lemma 1.13]. Therefore our
main result Theorem 1.1 serves as a generalization of this classical result and of course
as an extension of [11, Theorem 1.2] from θ0 = π/2 to θ0 ∈ (0, π/2).
Our strategy of proof follows largely from [11]. In the free boundary case (S meets ∂N∗

orthogonally), Li-Zhou managed to prove their main result by a contradiction argument.
Precisely, they constructed a test vector field X, which strictly decreases the first variation
of the free boundary stationary varifold. To construct such X, they first constructed local
orthogonal foliations near p [11, Lemma 2.1]. By virtue of such foliations, they found a
local orthonormal frame e1, . . . , en+1 of N∗ near p, see [11, Figure 2] also Figure 2 for
illustration. The key point is that, locally near the free boundary, for any q ∈ ∂N∗, there
holds en+1(q) ∈ Tq∂N

∗, which motivates their choice of test vector field X. In our case,
intuitively we would like to seek some tangential variation X to test the first variation
for θ-stationary pair of varifolds (as in Definition 2.1). However, we only managed to
prove a weaker boundary maximum principle in a preliminary version of this manuscript
[17, Theorem 1.1]. In fact, the strong maximum principle does not hold for a general
stationary pair of varifolds (see Examples 2.6, A.1). Motivated by this, we introduce a
new class of pairs of varifolds, called fine θ-stationary pair (defined in Definition 2.3),
which allows us to test not only the tangential (with respect to ∂N∗) variation but also
the normal one (with respect to S ), as what Li-Zhou have done in [11]. Testing the
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stationarity of the fine pair (V,W ) with normal variation, we find: the strictly mean
convexity of S at p forces X to increase the normal variation of V, which violates the
stationarity of the fine pair (V,W ).

1.2. Organization of the paper

In § 2, we briefly recall some definitions from geometric measure theory and give a
precise definition of the fine θ-stationary pair of varifolds. In § 3, we prove our main
result Theorem 1.1.

2. Varifolds with fixed contact angle

Let us begin by recalling some basic concepts of varifolds, we refer to [1, 13, 14, Chapter 8]
for detailed accounts.

2.1. Varifolds

The space of n-varifolds in RL, denoted by Vn(R
L), is the set of all positive Radon

measures on the Grassmannian RL × G(L, n) equipped with the weak topology. The
weight and mass of a varifolds V ∈ Vn(R

L) is denoted respectively by ||V || and M(V ) :=
||V ||(RL). For any Borel set A ⊂ RL, we denote by V xA the restriction of V to A ×
G(L, n). The support of V, spt||V ||, is the smallest closed subset B ⊂ RL such that
V x(RL \ B) = 0. For any C 1 map f : RL → RL, the continuous pushforward map
f# : Vn(R

L) → Vn(R
L) is defined as in [13, 2.1(18)(h)]. We denote by RVn(R

L) the
set of rectifiable n-varifolds in RL, see [13, 2.1(18)(d)].
Let us proceed and define varifolds in N∗, by virtue of the Nash embedding theorem,

we can assume that N∗ is isometrically embedded as a closed subset of some RL. Here
we follow the notations in [13] (which is slightly different from [1], see also [12, Section
2.2]). Since N∗ is a submanifold of class 1 of RL, we define the Grassmann bundle by
Gn(N

∗) = (N∗ ×G(L, n)) ∩ {(x, P ) : P ⊂ TxN
∗}; Gn(∂N∗) is understood in the same

way, and since ∂N∗ is n-dimensional, we have Gn(∂N
∗) = {(x, Tx∂N∗) : x ∈ ∂N∗}.

In this note, we mainly work with the following spaces of vector fields,

X(RL) := {the space of C1-vector fields on RL},
X(N∗) := {X ∈ X(RL) : X(p) ∈ TpN

∗ for all p ∈ N∗},
Xt(N

∗) := {X ∈ X(N∗) : X(p) ∈ Tp(∂N
∗) for all p ∈ ∂N∗}.

Notice that at any p ∈ ∂N∗, TpN
∗ is exactly the n-dimensional half-space in RL with

boundary Tp(∂N
∗).

We define the space of rectifiable n-varifolds in N∗, denoted by RVn(N∗), to be the
set of all rectifiable n-varifiolds in RL with spt||V || ⊂ N∗. Moreover, Vn(N∗) is defined
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to be the closure, in the weak topology, of RVn(N∗). Note that in general, Vn(N∗) is a
proper subset of Vn(R

L) ∩ {V : spt||V || ⊂ N∗}, and in fact, if V ∈ Vn(N∗), then one
has (see [13, 2.1(18)(g)]):

V (Gn(R
L) \Gn(N∗)) = 0.

Similar property holds for those W ∈ Vn(∂N∗).
Let V ∈ Vn(N∗), if X ∈ X(N) generates a one-parameter family of diffeomorphisms

φt of R
L with φt(N

∗) ⊂ N∗ (at a point p on ∂N∗, one considers the tangent space TpN
∗

as the half (n + 1)-space obtained by the blow-up of N∗ at p), then (φt)#V ∈ Vn(N∗)
and one can consider its first variation along X [1, (4.2), (4.4)]:

δV [X] :=
d

dt
|t=0 M((φt)#V ) =

∫
Gn(N∗)

divPX(x)dV (x, P ),

here divPX(x) = Dei
X · ei, where {e1, . . . , en} ⊂ P is any orthonormal basis. In

particular, for W ∈ Vn(∂N∗), we have:

δW [X] =

∫
Gn(∂N∗)

divPX(x)dW (x, P ) =

∫
∂N∗

div∂N∗X(x)d||W ||(x). (2.1)

2.2. Contact angle condition for varifolds

Let us first introduce the contact angle condition for varifolds, which, to the author’s
knowledge, was brought up in [9] formally, and then extended to a weaker form in [5].

Definition 2.1. (Contact angle condition, [5, Definition 3.1]). Given θ ∈ (0, π),
we say that the pair (V,W ) ∈ Vn(N∗)×Vn(∂N∗) satisfies the contact angle condition θ,
if there exists a ||V ||-measurable vector field H ∈ L1(N∗, ||V ||) with H(x) ∈ Tx∂N

∗ for
‖V ‖-a.e. x ∈ ∂N∗, such that for every X ∈ Xt(N

∗), it holds2:

δFθ (V,W )[X] :=

∫
Gn(N∗)

divPX(x)dV (x, P )− cos θ

∫
Gn(∂N∗)

divPX(x)dW (x, P )

=−
∫
N∗

〈X(x),H(x)〉d||V ||(x).

In particular, we say that (V,W) is a θ-stationary pair if in addition, H = 0 for a.e.
x ∈ spt||V ||.

2 We note that our definitions of varifolds are different from that of [3, 5], where a k -varifold on
A ⊂ RL is defined to be a positive Radon measure on A×G(L, k). Here, we can rewrite the second term
by virute of (2.1).
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An important proposition3 for the pair of varifolds with fixed contact angle is that
they have bounded first variation and satisfies the following first variation formula.

Proposition 2.2. ([5, Proposition 3.1]). Given θ ∈ [π/2, π), let (V,W ) ∈ Vn(N∗)×
Vn(∂N∗) have fixed contact angle θ. Then V − cos θW has bounded first variation. More
precisely, there exists a positive Radon measure σV on ∂N∗ and a continuous vector field
H̃, such that:

∫
Gn(N∗)

divPX(x)dV (x, P )− cos θ

∫
Gn(∂N∗)

divPX(x)dW (x, P ) = −
∫
N∗

〈X,H〉d||V ||

−
∫
∂N∗

〈
X, H̃

〉
d (||V || − cos θ||W ||) +

∫
∂N∗

〈X,−νN∗〉dσV , ∀X ∈ X(N∗),

(2.2)

where H is as in Definition 2.1; H̃ is the mean curvature of ∂N∗ in N∗, given by:

H̃(x) = νN∗(x)div∂N∗(−νN∗(x)), for every x ∈ ∂N∗,

and we denote by H̃(x) = div∂N∗(−νN∗(x)) so that H̃(x) = H̃(x)νN∗(x).

If V is a C 2-hypersurface in N∗ (similar with the hypersurface S considered in the
introduction), we denote by Ω the enclosed region of V and ∂N∗, T := ∂Ω ∩ ∂N∗ is the
wetting hypersurface with respect to V and µ̄ is the inwards pointing unit conormal of
V ∩T in T, then the first variation of V with respect to the direction X ∈ X(N∗) is just

δV (X) :=
d

dt
|t=0 Area(ψt(V )) =

∫
V

divVXdHn

= −
∫
V

〈X,H〉dHn −
∫
∂V

〈X,µ〉 dHn−1,

where ψt is the flow of X at the time t, H is the inwards pointing mean curvature vector of
V and µ is the inwards pointing unit conormal of ∂V in V. If V meets ∂N∗ with constant
contact angle θ, notice that along ∂N∗, we have µ = cos θµ̄+sin θνN∗ (see Figure 1), we
thus obtain,

∫
∂V

〈X,µ〉 dHn−1 =cos θ

∫
∂V

〈X, µ̄〉dHn−1 + sin θ

∫
∂V

〈X, νN∗〉 dHn−1

=− cos θ

(∫
T

div∂N∗XdHn +

∫
T

〈
X, H̃

〉
dHn

)
+ sin θ

∫
∂V

〈X, νN∗〉 dHn−1,

3 As noted before, our definitions of varifolds are different from [5]. However, the proof therein, which
is based on [3, Corollary 4.6] and [4, Proposition 3.17], works finely for our definitions.
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where we used the contact angle condition to derive the first equality and the divergence
theorem for the second equality. In this case, it is clear that the Radon measure σV in
Proposition 2.2 is just sin θHn−1x(∂V ). On the other hand, for X ∈ Xt(N

∗), one has:

∫
T

div∂N∗XdHn =

∫
∂V

〈X,−µ̄〉 dHn−1 =
1

sin θ

∫
∂N∗

〈X,−µ̄〉 dσV .

Moreover, consider the set ∂N∗ \T , it is easy to see that for X ∈ Xt(N
∗), there holds:

∫
∂N∗\T

div∂N∗XdHn = −
∫
∂N∗\T

div∂N∗XdHn.

Enlightened by this simple observation, we introduce the following definition that is
stronger than Definition 2.1.

Definition 2.3. For θ ∈ [π/2, π), let (V,W ) ∈ Vn(N∗)× Vn(∂N∗) have fixed contact
angle θ and let σV ,H, H̃ be as in Proposition 2.2. We say that (V,W) is a fine θ-pair
if there exists µ̃ ∈ L1(∂N∗, σV ) with µ̃(x) ∈ Tx∂N

∗ and |µ̃(x)| = 1 for a.e. x ∈ sptσV ,
such that: for every X ∈ Xt(N

∗), there holds:

∫
Gn(∂N∗)

divPX(x)dW (x, P ) =

∫
∂N∗

div∂N∗Xd||W || = 1

sin θ

∫
∂N∗

〈X, µ̃〉dσV . (2.3)

For θ ∈ (0, π/2), we say that (V,W ) ∈ Vn(N∗) × Vn(∂N∗) is a fine θ-pair if there
exists W̃ ∈ Vn(∂N∗) such that:

(1) (V, W̃ ) is a fine (π − θ)-pair (in this case π − θ ∈ (π/2, π), let σV ,H, H̃, µ̃ be the
resulting notations);

(2) For any X ∈ Xt(N
∗), there holds

∫
∂N∗

div∂N∗Xd||W || = −
∫
∂N∗

div∂N∗Xd||W̃ ||. (2.4)

In particular, we say that (V,W) is a fine θ-stationary pair if in addition, H = 0 for
a.e. x ∈ spt||V ||.

Now we consider the case θ ∈ (0, π/2) and (V,W ) is a fine θ-pair, by definition there
exists W̃ ∈ Vn(∂N∗) such that (V, W̃ ) is a fine (π− θ)-pair, and from (2.3) and (2.4), we
see that for any X ∈ Xt(N

∗),

∫
∂N∗

div∂N∗Xd||W || = −
∫
∂N∗

div∂N∗Xd||W̃ || =− 1

sin(π − θ)

∫
∂N∗

〈X, µ̃〉 dσV

=
1

sin θ

∫
∂N∗

〈X,−µ̃〉dσV . (2.5)
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Since ∂N∗ is a smooth hypersurface in N∗, a standard computation then gives that,
for any X ∈ X(N∗),

∫
∂N∗

div∂N∗Xd||W̃ || =
∫
∂N∗

div∂N∗(XT +X⊥)d||W̃ ||

=
1

sin θ

∫
∂N∗

〈X, µ̃〉dσV −
∫
∂N∗

〈
X, H̃

〉
d||W̃ ||, (2.6)

here the tangential and normal part of X are stated with respect to ∂N∗, to derive the
second equality we have used (2.3) for W̃ (notice that sin(π − θ) = sin θ) and the fact
that µ̃(x) ∈ Tx∂N

∗ for a.e. x ∈ sptσV .
If in addition, the fine θ-pair (V,W ) is stationary, then (2.2) yields:∫

Gn(N∗)
divPX(x)dV (x, P )− cos(π − θ)

∫
∂N∗

div∂N∗Xd||W̃ ||

=−
∫
∂N∗

〈
X, H̃

〉
d
(
||V || − cos(π − θ)||W̃ ||

)
+

∫
∂N∗

〈X,−νN∗〉dσV ,

taking (2.6) into account, this reads:

∫
Gn(N∗)

divPX(x)dV (x, P )

=
cos θ

sin θ

∫
∂N∗

〈X,−µ̃〉dσV −
∫
∂N∗

H̃ 〈X, νN∗〉 d||V ||+
∫
∂N∗

〈X,−νN∗〉 dσV . (2.7)

Remark 2.4. In Definition 2.3, for the case θ ∈ (0, π/2) we require the existence of
W̃ ∈ Vn(∂N∗) with desired properties. Note that these properties clearly hold when W
is the naturally induced rectifiable varifold of a smooth compact domain T ⊂ ∂N∗, since
we can simply take W̃ to be the naturally induced rectifiable varifold of ∂N∗ \ T . The
statement here remains true if T is a Caccioppoli set (set of finite perimeter) in ∂N∗.

Remark 2.5. In Theorem 1.1, we consider the cases when V is supported in Ω and
W is supported in T = ∂Ω ∩ ∂N∗. Thanks to (2.5), we know that as a positive Radon
measure on ∂N∗, σV is supported on T. Therefore when testing the first variation (2.7),
it suffice to consider the behaviour of X on Ω.

We end this section by giving an example of a pair of varifolds that satisfies the contact
angle condition but violates the conclusion of Theorem 1.1, revealing the necessity of
defining fine θ-pair. The construction in the following example is inspired by another
example (Example A.1) shown to the author by Gaoming Wang when a preliminary
version of this manuscript is reviewed and somewhat becomes the major motivation of
this paper and the strong maximum principle for pairs of stationary rectifiable cones
derived in [16, Lemma 2.16].
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Figure 3. Example 2.6.

Example 2.6. Let N∗ be the unit ball in the plane R2 centred at the origin, ∂N∗ is
then the unit sphere. Let p1, p2 be two points on ∂N∗ such that the line segment joining
them, say L, has contact angle π

3 with ∂N∗. Let S be a mean convex curve joining p1 and
p2 in N∗ to enclose a domain Ω so that S has a contact angle θ0 = arccos 1

4 with ∂N∗.
Let V be the naturally induced multiplicity 1 varifold by L, let W be the multiplicity 2
varifold induced by ∂Ω ∩ ∂N∗ (see Figure 3).
Then, (V,W ) is a θ0-stationary pair but not a fine θ0-stationary pair, with ||V ||

supported in Ω.

Proof. A direct computation shows that: for any X ∈ X(N∗),

∫
G1(N

∗)
divPX(x)dV (x, P ) =

∫
L

divLX(x)dH1(x) = 〈X(p1),−µL(p1)〉

+ 〈X(p2),−µL(p2)〉

=
1

2

2∑
i=1

〈X(pi),−µ̄(pi)〉+
√
3

2

2∑
i=1

〈X(pi),−νN∗(pi)〉 , (2.8)

where we have used the fact that −µL(pi) = cos π3 (−µ̄(pi)) + sin π
3 (−νN∗(pi)).

Similarly, one has

∫
G1(∂N

∗)
divPX(x)dW (x, P ) =

∫
∂N∗∩∂Ω

2div∂N∗X(x)dH1(x)

=2
2∑
i=1

〈X(pi),−µ̄(pi)〉 −
∫
∂N∗∩∂Ω

〈
X(x), H̃(x)

〉
d||W ||(x).

(2.9)
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It is then easy to see that for any X ∈ Xt(N
∗) (recall that cos θ0 = 1

4 ),

∫
G1(N

∗)
divPX(x)dV (x, P )− cos θ0

∫
G1(∂N

∗)
divPX(x)dW (x, P ) = 0,

which shows that (V,W ) is a θ0-stationary pair.
To see that (V,W ) is not a fine θ0-stationary pair, let us consider the multiplicity 2

varifold induced by ∂N∗ \ ∂Ω, denoted by W̃ . Clearly for any X ∈ Xt(N
∗), we have:

∫
∂N∗

div∂N∗Xd||W || = −
∫
∂N∗

div∂N∗Xd||W̃ ||, (2.10)

and (V, W̃ ) is a (π − θ0)-stationary pair. It then follows from (2.8), (2.9), (2.10) and

Proposition 2.2 that σV in this case is given by
√
3
2 H0x{p1, p2}. However, notice that for

any X ∈ Xt(N
∗),

∫
G1(∂N

∗)
divPX(x)dW̃ (x, P ) =

∫
∂N∗\∂Ω

2div∂N∗X(x)dH1(x)

=2 (〈X(p1), µ̄(p1)〉+ 〈X(p2), µ̄(p2)〉)

6= 1
√
15
4

∫
∂N∗

〈X, µ̄〉dσV ,

and hence (V,W ) is not a fine θ0-stationary pair. Clearly ||V || is supported in Ω, which
completes the proof. �

3. Proof of Theorem 1.1

As illustrated in § 1, we need the following foliations, see [11, Lemma 2.1] for the free
boundary case. To prove the following lemma, we will exploit the Fermi coordinate sys-
tem at p. For discussions on Fermi coordinate, see for example [7, Section 6] and [12,
Appendix A].

Lemma 3.1. For any properly embedded hypersurface S, having constant contact angle
θ0 ∈ (0, π/2) with ∂N∗, there exists a constant δ > 0; a neighbourhood U ⊂ N∗ contain-
ing p ∈ S ∩ ∂N∗; and foliations {Ss}, {Tt}, with s ∈ (−δ, δ), t ∈ (0, δ), of U, U ∩ Ω,
respectively; such that S0 = S ∩ U , and Ss intersects Tt orthogonally for every s and t.
In addition, each hypersurface Ss meets ∂N∗ with constant contact angle θ0.

Proof. We first extend S locally near p to a foliation {Ss} such that each Ss meets
∂N∗ with constant contact angle θ0. This can be done by a simple modification of
[11, Lemma 2.1].
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Let (x1, . . . , xn+1) be a local Fermi coordinate system of N∗ centered at p, such that
x1 = distN∗(·, ∂N∗). Furthermore, we assume that (x2, . . . , xn+1) is a local Fermi coor-
dinate system of ∂N∗, relative to the hypersurface S ∩ ∂N∗; that is, xn+1 is the signed
distance in ∂N∗ from S ∩ ∂N∗.
In the rest of this paper, we denote by B+

r0
= {x21 + . . . x2n < r20 | x1 ≥ 0, xn+1 = 0}

the n-dimensional half ball in the Fermi coordinate. Since S meets ∂N∗ with a constant
contact angle θ0 ∈ (0, π), we can express S in such local coordinates as the graph xn+1 =
f(x1, . . . , xn) of a function f defined on a half ball B+

r0
, such that f =0 along B+

r0
∩

{x1 = 0}. Moreover, due to the contact angle condition, we can carry out the following
computation, see also [2, Section 7.1] for a detailed computation of minimal graphs on
manifolds.
First we fix some notations. Let gij denote the metric on N∗ in the local Fermi coordi-

nate (x1, . . . , xn+1). Set ēi to be the vector field ∂
∂xi

so that 〈ēi, ēj〉 = gij . For simplicity,

we define a positive smooth function Wf by

W 2
f (x1, . . . , xn) = gn+1,n+1+

n∑
i,j=1

gij(x1, . . . , xn, f(x1 . . . , xn))
∂f

∂xi

∂f

∂xj
−2

n∑
l=1

gl,n+1 ∂f

∂xl
.

(3.1)
Now, let ν denote the outwards pointing unit normal of S, computing as [2, (7.11)], we

obtain:

〈ν, ēi〉 =
1

Wf

∂f

∂xi
, i = 1, . . . , n. (3.2)

In particular, since S meets ∂N∗ with contact angle θ0, we have 〈ν, ē1〉 = cos θ0 along
{x1 = 0}, and hence (3.2) yields:

∂f

∂x1
(0, x2, . . . , xn) = cos θ0Wf (0, x2, . . . , xn) on {x1 = 0} . (3.3)

Note that onN∗ we have g11 = 1, g1k = 0 for k = 2, . . . , n+1 since x1 = distN∗(·, ∂N∗),
and on {x1 = 0} ⊂ ∂N∗ we have gn+1,n+1 = 1, gn+1,l = 0 for l = 2, . . . , n since xn+1 is
the signed distance function in ∂N∗ from S ∩ ∂N∗. Recall also that 0 = f(0, x2, . . . , xn),
(3.1) when restricted to {x1 = 0} thus reads:

W 2
f (0, x2 . . . , xn) = 1 +

(
∂f

∂x1
(0, x2, . . . , xn)

)2

, (3.4)

since the other partial derivatives of f vanish. Combining this with (3.3), we get:
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∂f

∂x1
(0, x2, . . . , xn) = cot θ0, Wf (0, x2, . . . , xn) =

1

sin θ0
.

In view of this, the translated graphs,

xn+1 = f(x1, . . . , xn) + s =: fs(x1, . . . , xn),

then gives a local foliation {Ss} near p, and we can show that each leaf Ss is a hypersurface
in N∗ which meets ∂N∗ with constant contact angle θ0 along its boundary Ss ∩ ∂N∗.
Indeed, a direct computation gives that:

∂fs
∂x1

(0, x2, . . . , xn) =
∂f

∂x1
(0, x2, . . . , xn) = cot θ0.

Since fs = s along {x1 = 0}, we may argue as (3.4) to find that along {x1 = 0},

W 2
fs(0, x2, . . . , xn) = 1 +

(
∂fs
∂x1

(0, x2, . . . , xn)

)2

=
1

sin2 θ0
.

It is then easy to see that along {x1 = 0},

∂fs
∂x1

(0, x2, . . . , xn) = cos θ0Wfs(0, x2, . . . , xn),

which implies that Ss touches ∂N∗ with constant contact angle θ0 according to (3.3).
Next, the construction of {Tt} which is orthogonal to every leaf of {Ss} follows from

[11, Lemma 2.1], we include the details here for readers’ convenience. Let q ∈ N∗ be
a point near p which lies on the leaf Ss. We define ν(q) to be a unit vector normal to
the hypersurface Ss. By a continuous choice of ν it gives a smooth unit vector field in a
neighbourhood of p. Since ν is nowhere vanishing near p, the integral curves of ν gives
a local 1-dimensional foliation of N∗ near p. The desired foliation {Tt} is obtained by
putting together these integral curves. Precisely, let Γt ⊂ S be the parallel hypersurface
in S which is of distance t > 0 away from S ∩ ∂N∗. For t ≥ 0, set Tt to be the union of
all the integral curves of ν which pass through Γt. Then, by zooming in at p, we obtain a
small δ > 0, and a small set U ∩Ω (see Figure 2 for illustration), which is indeed foliated
by {Tt}t∈(0,δ). On the other hand, {Ss}s∈(−δ,δ) apparently foliates U. This completes the
proof. �

The local orthogonal foliation in Lemma 3.1 yields the following orthonormal frame of
Ω near p, which is needed in our proof of Theorem 1.1.

Lemma 3.2. ([11, Lemma 2.2]). Let {e1, . . . , en+1} be a local orthonormal frame
of Ω near p, such that at each q ∈ Ss∩Tt, e1(q) and en+1(q) is normal to Ss∩Tt inside Ss
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and Tt, respectively. In particular, we choose en+1 so that en+1 = νS on S 0; −e1 points
into N∗ along ∂N∗.

Proof of Theorem 1.1. As mentioned in the introduction, we want to construct a
test vector field X, having its support arbitrarily close to p in Ω. This is done in the
following manner.
Step 1. Constructing a hypersurface S ′ in N∗, which touches Ω from outside
up to second order at p.
For every ε> 0 small, we define:

Γ =
{
x ∈ ∂N∗ : dist∂N∗(x, ∂S) = εdist∂N∗(x, p)4

}
,

which is an (n− 1)-dimensional hypersurface in ∂N∗ and is smooth in a neighbourhood
of p. It has been proved in [11, Section 3, Claim 1] that Γ indeed touches ∂S from outside
T up to second order at p.
Now we extend Γ to our desired hypersurface S ′ in N∗. The construction is as follows.

Let (x1, . . . , xn+1) be a Fermi coordinate system centred at p as in Lemma 3.1 so that:

(1) {x1 ≥ 0} ⊂ N∗,
(2) {xn+1 = f(x1, . . . , xn) ≥ 0} ⊂ S,
(3) {xn+1 ≥ f(x1, . . . , xn)} ⊂ Ω,
(4) {x1 = xn+1 = 0} ⊂ Γ.

Then, we do a slight modification of the Fermi coordinate (x1, . . . , xn+1) by further
requiring xn+1 to agree with the signed distance function from Γ in ∂N∗, and denote
this coordinate by (x1, x̃2, . . . , x̃n+1), correspondingly, S is expressed as the local graph
x̃n+1 = f̃(x1, x̃2, . . . , x̃n). The fact that Γ touches ∂S from outside T at p implies:
f̃(0, x̃2, . . . , x̃n) ≥ 0, with equality holds only at the origin.
In this new Fermi coordinate, we can proceed our construction of S ′. Let ~0 denote the

origin of the Fermi coordinate chart centred at p, we denote by g̃ the metric in this new
coordinate, W̃ the counterpart of W (given by (3.1)) in this coordinate. We set S ′ to be
the graph x̃n+1 = u(x1, x̃2, . . . , x̃n) of the smooth function u, defined by:

u(x1, x̃2, . . . , x̃n) = x1 cot θ0 +
x21
2

∂2f

∂x21
(~0) +

x31
6

(
∂3f

∂x31
(~0)− ε

)
.

It is clear that u =0 and ∂u
∂x1

= cot θ0 on {x1 = 0}. Since 0 = u(0, x̃2, . . . , x̃n), as

computed in (3.4), we have,

W̃ 2
u(0, x̃2 . . . , x̃n) = 1 +

(
∂u

∂x1
(0, x̃2, . . . , x̃n)

)2

=
1

sin2 θ0
,
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and it is easy to see that on {x1 = 0},

∂u

∂x1
(0, x̃2, . . . , x̃n) = cos θ0W̃u(0, x̃2, . . . , x̃n).

These facts imply: (1) S ′ is an extension of Γ; (2) S ′ meets ∂N∗ with constant contact
angle θ0, due to (3.3). By [11, Claim 1], we know that all the partial derivatives (with
respect to the coordinates x1, x̃2, . . . , x̃n) of u and f̃ agree up to second-order at ~0, and
for sufficiently small ε, f̃ ≥ u everywhere in a neighbourhood of p with equality holds
only at the origin; that is to say, S ′ touches Ω from outside up to second-order at p.
Step 2. Constructing the test vector field X, which decreases the first variation
of V strictly.
In Step 1, we constructed a hypersurface S ′, meeting ∂N∗ with constant contact angle

θ0, and hence we can use Lemma 3.1 to obtain local foliations {S′
s} and {T ′

t}. We define
smooth functions s, t in a neighbourhood of p, so that s(q) is the unique s such that
q ∈ S′

s. Recall that s ≥ 0 on Ω.
Claim. ∇s = ψen+1 for some smooth function ψ such that ψ ≥ c near p for some

positive constant c. Here {e1, . . . , en+1} is a local orthonormal frame near p, as in
Lemma 3.2. �

Proof of Claim. Since s is a constant on each leaf S′
s, we have that ∇s is normal

to S′
s. It follows from the definition of en+1 that ∇s = ψ1en+1, where ψ1 is smooth in

U ∩ Ω.
By continuity, we find that ψ ≥ ψ(p) := c near p (without loss of generality, we may

assume that c = 1
2 , otherwise we substitute s by ψ(p)

2 s). �

Now we define the test vector field X on N∗ near p by:

X(q) = φ (s(q)) (−en+1(q)), (3.5)

where φ(s) is the cut-off function defined by:

φ(s) =

exp( 1
s−ε ), 0 ≤ s < ε,

0, s ≥ ε.

Note that the construction of X is sufficient for our purpose due to Remark 2.5.
A direction computation then gives, for 0 ≤ s < ε, it holds:

φ′(s)

φ(s)
= − 1

(s− ε)2
≤ −1

ε2
,

and hence for any s ≥ 0, we have,
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φ′(s) ≤ −φ(s)
ε2

. (3.6)

Since S ′ touches Ω from outside, we have s ≥ 0 on Ω, and spt(φ)∩Ω will be close to p
as long as ε is small. Thus, if we choose ε to be small enough, then in Ω, our test vector
field X will have compact support near p. Moreover, since −en+1(q) points into N∗ for
all q ∈ ∂N∗, we have that X ∈ X(N∗). This finishes the construction of our test vector
field X.
Step 3. Testing the first variation by X.
At each q ∈ Ω that is close to p, we consider the bilinear form on TqN

∗ defined by:

Q(u, v) = 〈∇uX, v〉 (q).

Let {e1, . . . , en+1} be a local orthonormal frame near p as in Lemma 3.2. As computed
in [11, (3.1)], the bilinear form Q 4 can be expressed in this frame by the following matrix:

Q =


φA

S′s
11 −φATtn+1,j 0

−φATti,n+1 φA
S′s
ij 0

−φATtn+1,n+1 −φ
〈
∇en+1

en+1, ej

〉
−φ′ψ1

 ,
where i, j = 2, . . . , n, and q ∈ S′

s ∩ Tt.
Using (3.6) and the strictly mean convexity of S at p, one finds as in [11, Lemma 3.2,

Lemma 3.3]: for ε> 0 small enough, there holds: trPQ > 0 for all n-dimensional subspaces
P ⊂ TqN

∗.
Since (V,W ) is a fine θ-stationary pair and V is supported in Ω, W is supported in

T, we can use X to test the first variation formula (2.7) to find:

∫
Gn(N∗)

trPQ(q)dV (q, P ) =
cos θ0
sin θ0

∫
∂N∗

φ(s(q)) 〈−en+1,−µ̃〉 (q)dσV (q)

−
∫
∂N∗

H̃(q)φ(s(q)) 〈−en+1, νN∗〉 (q)d||V ||(q)

+

∫
∂N∗

φ(s(q)) 〈−en+1,−νN∗〉 (q)dσV (q).

Recall that S′
s meets ∂N∗ with constant contact angle θ0, so that at every q ∈ ∂N∗,

there exists a unit vector −µ̄(q) ∈ Tq∂N
∗ such that:

4 Notice that our choice of vector field (3.5) agrees with the one in [11], up to a different sign.
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−en+1(q) = sin θ0(−µ̄(q)) + cos θ0νN∗(q),

which implies

∫
Gn(N∗)

trPQ(q)dV (q, P ) = cos θ0

∫
∂N∗

φ(s(q)) 〈µ̄, µ̃〉 (q)dσV (q)

− cos θ0

∫
∂N∗

φ(s(q))dσV (q)− cos θ0

∫
∂N∗

H̃(q)φ(s(q))d||V ||(q). (3.7)

Conclusion of the proof.
Recall that as we choose ε small enough, in Ω our test vector field X will have compact

support close to p, and hence we see from Step 3 that:

δV [X] =

∫
Gn(N∗)

divPX(x)dV (x, P ) =

∫
Gn(N∗)

trPQ(q)dV (q, P ) > 0, (3.8)

since for any n-dimensional affine subspace P ∈ TqN
∗, divPX(q) = trPQ(q) > 0.

Let us check the sign of the RHS of (3.7). By virtue of the condition θ0 ∈ (0, π/2), the
fact that φ(s(q)) ≥ 0 on {s ≥ 0}, and the fact that 〈µ̄(q), µ̃(q)〉 ≤ 1 locally near p, we
immediately deduce:

∫
Gn(N∗)

trPQ(q)dV (q, P ) ≤ − cos θ0

∫
∂N∗

H̃(q)ϕ(s(q))d||V ||(q).

For both case i and ii of Theorem 1.1, we readily see that
∫
∂N∗ H̃(q)ϕ(s(q))d||V ||(q) ≥

0, and thanks to θ0 ∈ (0, π/2) again,

∫
Gn(N∗)

trPQ(q)dV (q, P ) ≤ 0.

However, this contradicts to (3.8) and completes the proof.
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Appendix 1. Examples of stationary pairs with contact angle condition

In the appendix, we adopt the following convention: for a smooth curve C in R2 and a
positive constant α> 0, we denote by var(C,α) the multiplicity α, 1-varifold induced by
C. The shorthand var(C) is used when α=1.
As mentioned before, the following example is provided by Gaoming Wang, we record

it here for readers’ interest.

Example A.1. Let N∗ be an open subset of an upper half-plane in R2 and let S be
a mean convex curve in N∗ to form a domain Ω such that S has contact angle θ0 = 2π

3 .
Let p = S ∩ ∂N∗, W = var(∂N∗ ∩ ∂Ω). Choose a ray R such that it has contact angle ϕ0

satisfying cosϕ0 = − 1
4 and let V = var(R ∩ Ω, 2). Then (V,W ) is a ϕ0-stationary pair

supported in Ω while the barrier S has contact angle θ0 > ϕ0. See Figure A1.

We end this appendix by introducing a way to construct fine stationary pairs of varifolds
(V,W ), the case that ||V ||(∂N∗) > 0 is included. We may construct as many as possible
examples if we like, but the best situation (in the sense that the barrier has the same
contact angle as the fine stationary pair does) seems to be obtained when ||V ||(∂N∗) = 0.

Example A.2. Let N∗ be the unit ball in the plane R2 centred at the origin, ∂N∗

is then the unit sphere. Let p1, p2 be two points on ∂N∗ such that the line segment
joining them, say L, has contact angle θ0 ∈ (0, π) \ {π2 } with ∂N∗, and the enclosed
domain is denoted by Ω (see Figure A2). For α, β ≥ 0 to be specified latter, define
V = var(L) + var(∂N∗ ∩ ∂Ω, α),W = var(∂N∗ ∩ ∂Ω, β).
Then, for 0 < γ ≤ θ0 and γ 6= π

2 , the relations:

α =− cos θ0 + sin θ0
cos γ

sin γ
,

β =
sin θ0
sin γ

,
(A.1)

define a fine γ-stationary pair (V,W ). Moreover, as γ = θ0, one must have α=0, β=1.

Figure A1. Example A.1.
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Figure A2. Example A.2.

Proof. For any X ∈ X(N∗), a direct computation shows:

δV [X] =

∫
L

divLX(x)dH1(x) + α

∫
∂N∗∩∂Ω

div∂N∗X(x)dH1(x)

=
2∑
i=1

〈X(pi),−µL(pi)〉+ α
2∑
i=1

〈X(pi),−µ̄(pi)〉

− α

∫
∂N∗∩∂Ω

〈
X(x), H̃(x)

〉
dH1(x)

=(α+ cos θ0)
2∑
i=1

〈X(pi),−µ̄(pi)〉+ sin θ0

2∑
i=1

〈X(pi),−νN∗(pi)〉

−
∫
∂N∗

〈
X(x), H̃(x)

〉
d||V ||(x),

where we have used the fact that −µL(pi) = cos θ0(−µ̄(pi)) + sin θ0(−νN∗(pi)).
Similarly, for the same X, one has:

δW [X] = β

∫
∂N∗∩∂Ω

div∂N∗X(x)dH1(x) = β
2∑
i=1

〈X(pi),−µ̄(pi)〉
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−
∫
∂N∗

〈
X(x), H̃(x)

〉
d||W ||(x),

it follows that:

δV [X]− cos γδW [X]

=(α+ cos θ0 − β cos γ)
2∑
i=1

〈X(pi),−µ̄(pi)〉+ sin θ0

2∑
i=1

〈X(pi),−νN∗(pi)〉

−
∫
∂N∗

〈
X(x), H̃(x)

〉
d (||V || − cos γ||W ||) (x),

thus to make (V,W ) a γ-stationary pair, we have to require that:

α+ cos θ0 − β cos γ = 0, (A.2)

in which case (compared to Proposition 2.2) σV is given by sin θ0H0x{p1, p2}. As shown
above, for any X ∈ Xt(N

∗), we have,

δW [X] = β
2∑
i=1

〈X(pi),−µ̄(pi)〉 ,

and hence to make (V,W ) a fine γ-stationary pair, we have to further require that:

β =
sin θ0
sin γ

.

This, together with (A.2), yields (A.1).
From (A.1), we observe that α ≥ 0 is in fact equivalent to sin(θ0 − γ) ≥ 0, that is,

0 < γ ≤ θ0 < π, and the equality occurs if and only if α = 0, β = 1, which completes the
proof. �

As a specific choice, if we choose θ0 = π
3 , γ = π

6 , α = 1, β =
√
3, then we obtain a fine

π
6 -stationary pair (V,W ), with ||V ||(∂N∗) > 0.
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