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Orbits and Stabilizers
for Solvable Linear Groups

Jeffrey M. Riedl

Abstract. We extend a result of Noritzsch, which describes the orbit sizes in the action of a Frobenius

group G on a finite vector space V under certain conditions, to a more general class of finite solvable

groups G. This result has applications in computing irreducible character degrees of finite groups. An-

other application, proved here, is a result concerning the structure of certain groups with few complex

irreducible character degrees.

1 Introduction

In studying connections between the structure of a finite solvable group G and the

set cd(G) consisting of the degrees of its ordinary irreducible characters, it is often

useful to be able to describe the set of orbit sizes in the action of some relatively small

quotient of G on an elementary abelian p-group. (Typically, this p-group is the group

of linear characters of some chief factor of G.) A result of this type that has proved to

be valuable is the following [4, Lemma 1.10], due to Noritzsch.

Theorem 1.1 (Noritzsch) Let G be a Frobenius group with abelian Frobenius kernel

G ′. Suppose that G acts on an elementary abelian p-group V (for some prime p) and

that the action of G ′ on V is Frobenius. Let S be the set of sizes of the G-orbits on the

nonidentity elements of V . Then S ∪ {|G|} is the set of all numbers of the form |G|/k,

where k runs over the divisors of |G : G ′|.

Noritzsch’s argument in [4] actually proves more, namely, that if K > 1 is any

subgroup of G such that K ∩ G ′
= 1, then K is the stabilizer in G of some element

of V .

The conclusion of Noritzsch’s theorem is stated in a way that avoids the question

of whether or not S contains |G|. Examples show that both alternatives are possible.

The condition that G is a Frobenius group with abelian kernel G ′ is, of course, very

restrictive, and there are situations where it would be convenient to be able to relax

this condition somewhat. We will say that G is a (∗)-group if G ′ is abelian and the

action of G/G ′Z(G) on G ′ is Frobenius. In particular, if G is a nontrivial (∗)-group

and Z(G) = 1, then G is a Frobenius group with kernel G ′, as in Noritzsch’s theorem.

Before stating our first theorem, which describes the stabilizer subgroups and orbit

sizes for certain actions of (∗)-groups on elementary abelian p-groups, we need the

following lemma:
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Lemma 1.2 Let G be a (∗)-group and write F = G ′Z(G). Then there is a unique

subgroup M that contains F and is maximal with the property that M splits over F.

Note that in the case of Noritzsch’s theorem, where F = G ′, we have M = G.

Theorem 1.3 Let G be a (∗)-group and let F and M be as in Lemma 1.2. Suppose that

G acts on an elementary abelian p-group V and that the action of F on V is Frobenius.

Let S be the set of sizes of the G-orbits on the nonidentity elements of V . Then

(i) a nonidentity subgroup K of G is the stabilizer of some nonidentity element of V

if and only if K ∩ F = 1, and

(ii) S ∪ {|G|} is the set of numbers |G|/k, where k runs over the divisors of |M :F|.

The conclusion of Theorem 1.3 is the same as that of Theorem 1.1, but for our

more general hypothesis. In Theorem 1.3(i), the necessity of the condition K ∩F = 1

for K to be a stabilizer subgroup is immediate from the fact that the action of F on V

is Frobenius. The fact that this same condition is sufficent, however, is less obvious.

We now present an example that illustrates not only that the generality of Theo-

rem 1.3 is actually needed in certain cases, but also the inherent obstacle to proving

Theorem 1.3 by simply applying Theorem 1.1 to some carefully-chosen Frobenius

subgroup of G.

Example Let A = 〈σ〉 be the Galois group of the extension GF(7) ⊆ GF(712) of

finite fields, where σ : x 7→ x7 for all x ∈ GF(712). The semi-linear group GF(712)× ⋊
A acts on the additive group V = GF(712). We now construct a subgroup G to act

on V .

Fix a generator y for the cyclic subgroup of order 9 in the multiplicative group

GF(73)×. Write w = σ4 y and S = 〈w〉. By [5, Lemma 6], w3
= ym, where m =

(712 − 1)/(74 − 1) has 3-part equal to 3, and so the element w has order 9. Also,

C = 〈ym〉 is the subgroup of order 3 in GF(7)×. The group B = 〈σ3〉 of order 4

centralizes S.

Let P and Q be the subgroups of orders 13 and 2, respectively, in GF(712)×. As

13 divides neither 76 − 1 nor 74 − 1, the action of SB/C on P is Frobenius. Let

G = PQSB, and note that G ′
= P and Z(G) = QC . The action of F = G ′Z(G)

on V is Frobenius, since F ⊆ GF(712)×. As F ∩ B = 1, the group FB splits over F.

Note that |G : FB| = 3, while |FB : F| = 4. Since Sylow 3-subgroups of G are cyclic

of order 9, no subgroup of G having order divisible by 9 splits over F. Thus, in the

notation of Lemma 1.2, M = FB. We may apply Theorem 1.3, with |M :F| = 4, to

deduce S ∪ {|G|} = {|G|, |G|/2, |G|/4}.

Now suppose we want to show that the subgroup K = 〈σ6〉 of order 2 in B is the

stabilizer in G of some nonidentity element of V . There is a cyclic subgroup L of

order 4, distinct from B, such that K < L ⊆ B ×̇Q. The distinct groups G ′B and

G ′L are maximal as Frobenius subgroups of G. Applying Theroem 1.1 to the action

of G ′B on V yields that K = CG ′B(v) for some nonidentity element v ∈ V . But since

K = G ′B ∩ L, one cannot rule out the possibility here that CG(v) includes the entire

subgroup L.
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Corollary 1.4 In the situation of Theorem 1.3, the action of G on V is Frobenius if

and only if M = F.

Corollary 1.4 follows immediately from Theorem 1.3. For a wealth of examples

in which the action of G on V actually is Frobenius, we refer the reader to [5, Theo-

rem 11].

If G is a finite solvable group, we denote its Fitting subgroup by F(G) and its Fitting

series (see [5] for definition) by 1 = F0(G) < F1(G) < · · · < Fh−1(G) < Fh(G) = G,

where h = h(G) is the Fitting height of G, a number which in some sense measures

how far the group G is from being nilpotent. We use Theorem 1.3 to prove the fol-

lowing result, which gives structural information about certain solvable groups with

few character degrees.

Theorem 1.5 Let G be a solvable group and write Fi = Fi(G) for i ∈ {1, 2}. Suppose

that h(G) = 3 and |cd(G/F1)| = 2 and |cd(G)| ≤ 4. Then there exists a chief factor

F1/M of G such that G/CG(F1/M) is nonnilpotent while |F1 :M| is relatively prime to

|F2 :F1|.

Theorem 1.5 plays a crucial role in the proof of the main result of [6], which says

that if G is any solvable group such that |G : F(G)| is odd and |cd(G)| ≤ 5, then

h(G) ≤ 3.

Finally, to show the hypothesis |cd(G)| ≤ 4 in Theorem 1.5 is truly needed, we

present examples of a solvable groups G satisfying h(G) = 3, |cd(G/F1)| = 2, and

|cd(G)| = 5, but having no chief factor of the form F1/M for which |F1 : M| is rela-

tively prime to |F2 :F1|.

2 Proofs

Before proving Lemma 1.2, we need the following.

Lemma 2.1 Let K ⊆ N be normal subgroups of a group G, and suppose that |K| is

relatively prime to |G : N|. If G/K splits over N/K, then G splits over N.

Proof Let H/K be a complement for N/K in G/K. By the Schur–Zassenhaus theo-

rem, there is a complement L for K in H. Observe that L is a complement for N in G.

Proof of Lemma 1.2 Write π to denote the set of all prime divisors of |G : F|. For

each prime p ∈ π, choose a p-subgroup Lp of G, of maximal order with the property

that Lp ∩ F = 1. Since G ′ ⊆ F, we have Lp ∩ G ′
= 1. Let L/G ′ be the direct product

of the subgroups LpG ′/G ′ (for p ∈ π) of G/G ′. Let M = FL, and note that L/G ′ is a

complement for F/G ′ in M/G ′. As the action of G/F on G ′ is Frobenius, we see that

|M :F| and |G ′| are relatively prime. Now Lemma 2.1 implies that M splits over F.

Let H be any subgroup of G that contains F. If H ⊆ M, then H clearly splits

over F. Now assume instead that H splits over F. Because G/F is cyclic, showing that

|H/F| divides |M/F| is sufficient for proving that H ⊆ M. For p ∈ π, let Sp be a
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Sylow p-subgroup of any complement for F in H. Using the maximality of Lp, we

deduce that |H/F|p = |Sp| ≤ |Lp| = |M/F|p, and so H ⊆ M.

Our proof of Theorem 1.3 is a careful adaptation of Noritzsch’s proof of Theo-

rem 1.1. For this we need the following elementary number-theoretic lemmas.

Lemma 2.2 Let q > 1 and p > 1 and k > 1 be integers. Then both qk and q2 are

smaller than (pkq − 1)/(pk − 1).

Proof Write m = 2k + · · ·+2(q−1)k, and note that (pkq −1)/(pk −1) = 1 + pk + · · ·+
p(q−1)k > m. We now show that qk ≤ m and q2 ≤ m. Since k ≥ 2, we have 2k ≤ 2k.

As q ≥ 2, we have q ≤ 2(q− 1). Combining these, qk ≤ (q− 1)2k ≤ (q− 1)2k ≤ m.

Since k ≥ 2, we have 4q−1 ≤ 2(q−1)k ≤ m. The reader may verify that q2 ≤ 4q−1 for

q ≥ 2.

Lemma 2.3 Let p > 1 be an integer and let q1 < q2 < · · · < qt be primes. Write

f = q1 · · · qt and write fi = f /qi for 1 ≤ i ≤ t. Then

t
∑

i=1

qi(p fi − 1) < p f − 1.

Proof The case t = 1 is clear, since q < 1 + p + · · · + pq−1
= (pq − 1)/(p − 1).

Now suppose t > 1. It suffices to show that each of the t summands is smaller

than (p f − 1)/t , or equivalently, that qit is smaller than n = (p fi qi − 1)/(p fi − 1).

Since t ≤ qt , it is enough to prove that qiqt < n. In case i < t , then qt divides fi , and

Lemma 2.2 implies that n > qi fi ≥ qiqt , as desired. In case i = t , Lemma 2.2 yields

n > qi
2
= qiqt .

Proof of Theorem 1.3 (i) Let C be a (cyclic) complement for F in M, and let π be

the set of all prime divisors of |M :F|. Note that M = G ′C ×̇Z(G), while G ′C is a

Frobenius group. Write Zπ = Oπ(Z(M)). The Hall π-subgroups of M are all of the

form Cx ×̇Zπ for x ∈ G ′. The intersection of any two distinct Hall π-subgroups of

M is Zπ.

Let K > 1 be any subgroup of G such that K ∩ F = 1. We want to show K is

the stabilizer in G of some nonidentity element in V . Since K is a cyclic π-subgroup

of M, there exists a Hall π-subgroup H of M that contains K, and we may assume

H = C ×̇Zπ. Since K * Zπ , indeed H is the unique Hall π-subgroup of M that

contains K.

Let C(K) denote the family of all subgroups L ⊆ G such that L∩F = 1 and K < L

with |L : K| being prime. If L ∈ C(K), then L is a π-subgroup of M, and so |L : K| ∈ π,

and indeed L ⊆ H. For each prime q ∈ π, let Cq(K) be the set of all subgroups

L ∈ C(K) satisfying |L : K| = q. Note that C(K) =
⋃

Cq(K), where this union runs

over q ∈ π.

Now fix any prime q ∈ π, and note that the groups Cq ∈ Sylq(C) and Zq ∈
Sylq(Zπ) are both cyclic. Thus the Sylow q-subgroup of the abelian group H =
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C ×̇Zπ is Cq ×̇Zq, which has rank at most 2. As K is cyclic, write K = Q ×̇D where Q

is a q-group and D is a q ′-group. Since K ⊆ H, we have Q ⊆ Cq ×̇Zq with Q∩Zq = 1.

Every member of Cq(K) is a subgroup of H, and so Cq(K) consists of all subgroups

of the form Q1 ×̇D, where Q1 satisfies Q < Q1 ⊆ Cq ×̇Zq and |Q1 :Q| = q and

Q1 ∩ Zq = 1. But there are at most only q distinct subgroups Q1 that satisfy these

properties. Therefore |Cq(K)| ≤ q.

Assuming that K is not equal to the stabilizer in G of any element of V #
= V −{0},

for each v ∈ CV # (K) we have CG(v) ⊇ L for some subgroup L ∈ C(K). Write

π = {q1, . . . , qt}. For convenience, write Di to denote the set Cq(K) for q = qi . We

then have

CV # (K) ⊆
t

⋃

i=1

(

⋃

L∈Di

CV # (L)
)

.

Write |V | = pn and f = q1 · · · qt and k = n/(|K| f ). Now [2, Theorem 15.16],

implies that |CV # (K)| = pk f − 1. For 1 ≤ i ≤ t , write fi = f /qi , and note that each

subgroup L ∈ Di satisfies |CV # (L)| = pk fi − 1, again by [2, Theorem 15.16]. Now

using the fact that |Di | ≤ qi for 1 ≤ i ≤ t , we obtain

pk f − 1 = |CV # (K)| ≤
t

∑

i=1

(

∑

L∈Di

|CV # (L)|
)

≤
t

∑

i=1

qi(pk fi − 1),

which contradicts Lemma 2.3. Therefore K = CG(v) for some element v ∈ V #.

(ii) The set S consists of the numbers |G|/|CG(v)| for all nonidentity elements v ∈ V .

As FCG(v) clearly splits over F, we have FCG(v) ⊆ M, and so |CG(v)| divides |M :F|.
This proves that S ∪ {|G|} ⊆ {|G|/k | k divides |M :F|}. For the reverse inclusion,

let C be a complement for F in M. For any divisor k > 1 of |M :F|, let K be the

subgroup of order k in the cyclic group C . As K ∩ F = 1, statement (i) above implies

that K = CG(v) for some nonidentity element v ∈ V . The G-orbit containing v has

size |G|/k.

Following standard notation, we denote by Irr(G) the set of ordinary irreducible

characters of a group G. Our proof of Theorem 1.5 uses the following result [4,

Lemma 1.6].

Lemma 2.4 If G is a nonnilpotent group with cd(G) = {1, a}, then the following

hold.

(i) F(G) is abelian, and G/F(G) is cyclic of order a.

(ii) There exists N ⊳ G such that G/N is a Frobenius group whose kernel is F(G)/N,

an elementary abelian q-group for some prime q.

(iii) If all Sylow subgroups of G are abelian, then F(G) = G ′ ×̇Z(G), and the action of

G/F(G) on G ′ is Frobenius.

(iv) If a Sylow p-subgroup of G is nonabelian, then a = p.
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If N is a normal subgroup of a group G and ϕ ∈ Irr(N) is an irreducible character,

we write IG(ϕ) to denote the inertia subgroup of ϕ in G, which is the stabilizer of ϕ
in the natural action of G on the set Irr(N). Let Φ(G) denote the Frattini subgroup

of G.

Proof of Theorem 1.5 Let G be a minimal counterexample and write cd(G/F1) =

{1, a}. As G/F1 is nonnilpotent, Lemma 2.4 implies that F2/F1 is abelian, G/F2 is

cyclic of order a, and there exists N/F1 ⊳ G/F1 such that G/N is a Frobenius group

whose kernel is F2/N , an elementary abelian q-group for some prime q. Thus F2 is

a group whose Fitting factor group F2/F1 is abelian, and so [1, Lemma 1.1] yields

|F2 :F1| ∈ cd(F2). Hence |F2 :F1| divides some degree b ∈ cd(G). The prime q divides

b but does not divide a, and so b 6= a.

If S ⊳ G is any normal subgroup such that F(G/S) = F1/S, then G/S inherits

our hypotheses on G. If S > 1, then by minimality we obtain a chief factor F1/K

of G (with S ⊆ K) having all the properties stated in the conclusion, which would

contradict that G is a counterexample. Hence S = 1 in this situation.

The preceding paragraph implies that Φ(G) = 1 and Z(F2) = 1. By [1, III.4.5],

we may write F1 = M1 ×̇ · · · ×̇Mn where each Mi is an elementary abelian minimal

normal subgroup of G. By [1, III.4.4], each subgroup Mi has a complement in G, and

it follows by a routine argument that each character λ ∈ Irr(Mi) extends to its inertia

subgroup IG(λ).

For 1 ≤ i ≤ n, let ri be the unique prime divisor of |Mi|, and write Ci = CG(Mi).

Since Z(F2) = 1, we have |F2 :Ci ∩ F2| > 1. Note that F1 ⊆ Ci , and so F1 ⊆ Ci ∩
F2 ⊆ F2, which says F2/(Ci ∩ F2) is abelian. As Mi is a faithful, completely reducible

F2/(Ci∩F2)-module in characteristic ri , the prime ri cannot divide |F2 :Ci∩F2|. Thus

the faithful action of F2/(Ci ∩F2) on Irr(Mi) has a regular orbit, by coprimeness, and

so there exists λ ∈ Irr(Mi) such that IF2
(λ) = Ci ∩ F2. By the preceding paragraph, λ

has an extension µ ∈ Irr(Ci ∩ F2). Thus µF2 ∈ Irr(F2), and so in particular |F2 :Ci ∩
F2| ∈ cd(F2).

For some integer m with 0 ≤ m ≤ n, we may assume that G/Ci is nonnilpotent if

and only if i ≤ m. Since each Mi is G-isomorphic to a chief factor of G of the form

F1/K, the fact that G is a counterexample implies that ri divides |F2 :F1| in case i ≤ m.

Let D =
⋂

Ci for i > m. Note that F1 ⊆ D ⊆ G and that G/D is nilpotent. In view

of the Frobenius group G/N mentioned in the first paragraph, we see that q divides

|D : F1|. Since F1 = CG(F1) =
⋂n

i=1 Ci , we have m ≥ 1, and we may assume that

G/C1 is nonnilpotent and has order divisible by q. Since q does not divide |G : F2|, the

prime q divides |F2 :C1|. It follows that r1 divides |F2 : F1|.

Step 1: Every prime divisor of |F2 : F1| divides |F2 :Ci ∩ F2| for some 1 ≤ i ≤ n.

This follows from the fact that F1 =
⋂n

1 Ci .

Step 2: If i ∈ {1, . . . , n} and H is a subgroup with F2 ⊆ H ⊆ G, then H does not

have a normal ri-complement, and ri fails to divide at least one member of cd(H) −
{1}.

If H has a normal ri-complement, then F2 has a normal ri-complement L. The

normal subgroups L and Mi of relatively prime orders must centralize each other,
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and so L ⊆ Ci ∩ F2 ⊆ F2. But recall that ri fails to divide |F2 :F2 ∩ Ci| > 1. Since

|F2 :L| is a power of ri , this is a contradiction. Now apply [2, Corollary 12.2] for the

remainder of the statement.

Step 3:

(i) Each irreducible character of G of degree a restricts to the subgroup F2 as a sum

of linear characters.

(ii) None of the primes r1, . . . , rn divides every degree in cd(G) − {1, a}.

We show first that q divides every member of cd(F2) − {1}. Suppose instead that

q fails to divide some degree m ∈ cd(F2)−{1}. Using the Frobenius group G/N and

[2, Theorem 12.4], we deduce am = |G : F2|·m ∈ cd(G). Thus cd(G) = {1, a, am, b},

and so b is the only member of cd(G) divisible by q. Write c = |F2 : F2∩C1|, and recall

that q divides c ∈ cd(F2). Hence each character in Irr(G) lying over any character of

degree c in Irr(F2) has degree b. By [2, Corollary 11.29], we know that b/c divides

|G : F2| = a, and it follows that b divides ac. Recall that r1 divides |F2 :F1|, which

divides b. Hence r1 divides b = ac, but we know that r1 does not divide |F2 :F2∩C1| =

c. Thus r1 divides a, and so r1 divides every member of {a, am, b} = cd(G) − {1},

thereby contradicting Step 2.

(i) Since q does not divide a, this follows from the preceding paragraph.

(ii) Suppose ri divides every degree in cd(G) −{1, a}. By Step 2, we see that ri does

not divide a = |G : F2|. Let θ ∈ Irr(F2) with θ(1) > 1, and choose ψ ∈ Irr(G|θ).

By part (i) we have ψ(1) ∈ cd(G) − {1, a}, and so ri divides ψ(1). By [2,

Corollary 11.29], ψ(1)/θ(1) divides |G : F2| = a. As ri does not divide a, it must

divide θ(1). Hence ri divides every member of cd(F2)−{1}, and this contradicts

Step 2, now with H = F2.

Step 4: For 1 ≤ i ≤ n, if |F2 :Ci ∩ F2| and |F1| are not relatively prime, then

(i) F1 ⊆ Ci ⊆ F2 and F(G/Ci) = F2/Ci and cd(G/Ci) = {1, a}, and

(ii) the ri-part of b is nontrivial and divides a, and ri divides |F2 :F1|.

(i) Write c = |F2 :Ci ∩ F2|, and let r be a prime dividing both c and |F1|. Since c

divides |F2 :F1|, which divides b, indeed r divides b. Thus, since |cd(G)| ≤ 4, Step 3(ii)

implies that b is the only member of cd(G) − {1, a} divisible by r. As r divides c ∈
cd(F2), Step 3(i) implies that every character in Irr(G) lying over some character of

degree c in Irr(F2) must have degree b. Now by [2, Corollary 11.29] we know that b/c

divides |G : F2| = a, and it follows that b divides ac.

Since the full q-part of |F2 : F1| divides b, while q does not divide a, we now see

that the full q-part of |F2 : F1| actually divides c = |F2 :Ci ∩ F2|. This forces F2 ∩
Ci ⊆ N ⊆ G, and so in particular G/Ci is nonnilpotent. As F1 ⊆ Ci ⊆ G and

cd(G/F1) = {1, a}, we deduce that cd(G/Ci) = {1, a}. Now [1, Lemma 1.1] yields

1 < |G/Ci : F(G/Ci)| ∈ cd(G/Ci) = {1, a}. Since CiF2/Ci ⊆ F(G/Ci), it follows

that F(G/Ci) = F2/Ci .

(ii) As G/Ci is nonnilpotent and G is a counterexample, ri must divide |F2 :F1|,
which divides b. Recall that b divides ac, while ri does not divide |F2 :F2 ∩Ci| = c.
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Step 5: The contradiction.

As r1 divides |F2 :F1|, Step 1 asserts that r1 divides |F2 :Ci ∩ F2| for some index i.

Clearly i 6= 1. By Step 4(i), G/Ci is nonnilpotent. Hence i ≤ m and we may assume

i = 2. By Step 4(ii), the r2-part of b is nontrivial and divides a, and r2 divides |F2 :F1|.

By Step 1 now, r2 divides |F2 :C j ∩F2| for some index j. Clearly j 6= 2. For brevity,

write r = r j and C = C j and M = M j . Write X = G/C . By Step 4 we see that

F(X) = F2/C and cd(X) = {1, a}, while r divides a. Since r2 and r are distinct prime

divisors of a, Lemma 2.4(iv) asserts that all Sylow subgroups of X are abelian. Now

the rest of Lemma 2.4 implies that F(X) = X ′ ×̇Z(X) is abelian, and that the action

of X/F(X) on X ′ is Frobenius. In particular, X is a (∗)-group.

Since r2 divides the order a of the Frobenius complement X/F(X), we know r2

does not divide the order of the Frobenius kernel X ′. From the preceding paragraph,

we know that r2 divides |F2 :C|, which is the order of F(X). Hence r2 divides the order

of Z(X), and so in particular Z(X) > 1. The action of X on V = Irr(M) is faithful

and irreducible. It follows that the action of Z(X) on V is Frobenius, and hence Z(X)

is cyclic.

We claim that the action of F(X) on V is Frobenius. Since V is irreducible as

an X-module, it suffices to show that F(X) is cyclic. Let p be any prime dividing

the order of X ′. It suffices to show that the abelian group Op(X) is cyclic. Write

P/C = Op(X) and suppose P/C is noncyclic. By [5, Lemma 2.6], there are characters

λ1, λ2 ∈ V such that C ⊆ IP(λ1) < IP(λ2) < P. Since λ1 and λ2 extend to their

inertia subgroups and since the action of Z(X) on V is Frobenius, we get degrees c1

and c2 in cd(F2) having distinct nontrivial p-parts and which are divisible by |Z(X)|,
and hence by r2. Since p does not divide |G : F2|, there are degrees d1 and d2 in cd(G),

lying over c1 and c2 respectively, whose p-parts equal those of c1 and c2. It follows

that cd(G) − {1, a} = {d1, d2}. But r2 divides d1 and d2, contradicting Step 3(ii).

Hence the action of F(X) on V is Frobenius.

Recall that r does not divide the order of F2/C = F(X) but does divide a =

|X : F(X)|. Thus X has a nontrivial Sylow r-subgroup whose intersection with F(X)

is trivial. By Theorem 1.3 (taking k = r), there is a character λ ∈ V such that

|G : IG(λ)| = |G :C|/r. Since λ extends to its inertia subgroup, we obtain the degree

d = |G :C|/r in cd(G). We mentioned earlier that the r2-part of the degree b is

nontrivial and divides a = |G : F2|. Since r2 also divides |F2 :C| however, the r2-part

of |G :C|/r = d is larger than the r2-part of b. In particular, d 6= b. To see that d 6= a,

pick any prime divisor p of the order of X ′, and note that p divides |G :C|/r = d

but does not divide a. Therefore cd(G) − {1, a} = {b, d}, which again contradicts

Step 3(ii). The proof of Theorem 1.5 is now complete.

3 Examples

As promised at the end of the introduction, we now present a family of examples of

finite solvable groups G such that if we let F1 and F2 denote the first two members of

its Fitting series, G satisfies h(G) = 3, |cd(G/F1)| = 2 and |cd(G)| = 5, and yet G

has no chief factor of the form F1/M for which |F1 : M| is relatively prime to |F2 :F1|.
This will show that the hypothesis |cd(G)| ≤ 4 in Theorem 1.5 is truly needed.
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If N is a normal subgroup of a group G, we denote by cd(G|N) the set of degrees

of the characters in the set Irr(G|N) = {χ ∈ Irr(G) | N * ker(χ)}. Note that

Irr(G) = Irr(G/N)∪Irr(G|N) is a disjoint union, while cd(G) = cd(G/N)∪cd(G|N)

is not necessarily disjoint. For any given character θ ∈ Irr(N), we denote by cd(G|θ)

the set of degrees of the characters in the set Irr(G|θ) = {ψ ∈ Irr(G) | [ψN , θ] 6= 0}.

For any given prime q and any positive integer n, it is standard terminology to say

that a prime p is a Zsigmondy prime for qn − 1 in case p divides qn − 1 while p fails

to divide qm − 1 for every integer 1 ≤ m < n. For any given pair of distinct primes

q and p, we introduce the notation f (q, p) to denote the multiplicative order of the

element q in the ring Z/pZ. Thus f = f (q, p) is the smallest positive integer such

that p divides q f −1. In particular, f (q, p) is a divisor of p−1, and p is a Zsigmondy

prime for q f − 1.

We shall say that (p, r, s) is a (∗)-triple if p, r, and s are distinct primes such that

f (r, p)/r is an integer divisible by f (r, s), while f (s, p)/r is an integer divisible by

f (s, r). Below we shall construct a finite solvable group corresponding to any given

(∗)-triple.

In a (∗)-triple, r divides f (r, p), which divides p − 1, and so we deduce that r

divides p − 1. Further, since f (r, s) divides m = f (r, p)/r, we see that s divides

rm − 1. These observations clearly suggest a method which, for any given prime p,

generates all possible candidates for the primes r and s in a (∗)-triple. Using this

method, we find that the only (∗)-triples for which p ≤ 17 are (5, 2, 3), (13, 2, 7),

(13, 3, 2), (17, 2, 3), (17, 2, 5).

Construction Let (p, r, s) be a (∗)-triple and write q = r f (r,p)/r . Choose any positive

integer h that divides qr − 1 and that is divisible by both c = (qr − 1)/(q − 1) and s.

We construct a finite solvable group G that has the following properties.

(i) h(G) = 3 and cd(G/F(G)) = {1, r} and cd(G) = {1, r, r2 p, h, r2h}.

(ii) F(G) = W × V where W and V are minimal normal subgroups of G, having

orders r f (r,p) and s f (s,p) respectively. Furthermore, |G : F(G)| = hr2.

(iii) The primes r and s both divide |F2(G) : F(G)|.
(iv) The groups G/CG(W ) and G/CG(V ) are both nonnilpotent.

Note that c is always odd. (If r = 2, then q is a power of 2, so c = q + 1 is odd. If r

is odd, then q is odd, so c = 1 + q + · · ·+ qr−1 is odd.) Thus, if p, r, s are all odd, as in

the case of the (∗)-triple (41, 5, 13), then choosing h = cs produces a group G of odd

order.

We give the construction for G. For m = f (r, p)/r and n = f (s, p)/r, the defi-

nition of (∗)-triple implies that s divides rm − 1 and that r divides sn − 1. Because

mr = f (r, p) and nr = f (s, p), we see that p is a Zsigmondy prime for both rmr − 1

and snr − 1.

Let C be the subgroup of order c in the cyclic multiplicative group GF(rmr)× of

order rmr − 1, and note that GF(rmr)× = C ×̇GF(rm)×. Let σ be the field auto-

morphism that raises every element of GF(rmr) to the power rm, and note that σ has

order r. The centralizer of σ in GF(rmr)× is GF(rm)×, which has a subgroup of or-

der s, because s divides rm − 1. The action of 〈σ〉 on C is Frobenius. As p divides
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rmr − 1 but not rm − 1, we see that C contains a subgroup of order p, and it follows

that r divides p − 1.

Let H be the subgroup of order h in GF(rmr)×. Let R be a cyclic group of order r2,

acting on H in such a way that A = CR(P) has order r, while the action of R/A on

H is equivalent to the natural action of 〈σ〉 on H. For the corresponding semidirect

product group RH, note that F(RH) = A × H is cyclic of order rh, and so cd(RH) =

{1, r}.

We let RH act on the additive group W = GF(rmr) such that CRH(W ) = A, and

the action of the the nonnilpotent group RH/A on W is equivalent to the natural

action of H〈σ〉 on W . Since c divides h = |H|, we see that H has a subgroup of

order p. Viewed as a GF(r)[RH]-module, W is irreducible because p is a Zsigmondy

prime for rmr − 1. For each nonprincipal character λ ∈ Irr(W ), note that IRH(λ) is

cyclic of order r2.

We now show that if r = 2, then sn + 1 is not a power of 2. Assuming this is false,

recall that p is a Zsigmondy prime for snr − 1 = s2n − 1 = (sn − 1)(sn + 1). Thus p

divides the 2-power sn + 1, forcing p = 2 = r, which contradicts our assumption that

p 6= r.

Let L be the subgroup of index p in H. Thus RH/L has order r2h. By the preceding

paragraph, the fact that r divides sn − 1, and [3, Theorem 10], the group RH acts on

the additive group V = GF(snr) in such a way that CRH(V ) = L, and the action

of the nonnilpotent group RH/L on V is Frobenius. As a GF(s)[RH]-module, V

is irreducible because p is a Zsigmondy prime for snr − 1. Let G be the semidirect

product corresponding to the action of RH on the direct product W × V . Indeed

CRH(W × V ) = CRH(W ) ∩ CRH(V ) = A ∩ L = 1. Hence F(G) = W × V , and so

h(G) = 3. Write F1 = F(G).

Finally we determine cd(G|F1). Each nonprincipal character ϕ ∈ Irr(F1) has the

form ϕ = λ × µ, with at least one of λ ∈ Irr(W ) and µ ∈ Irr(V ) being nonprin-

cipal, and of course IRH(ϕ) = IRH(λ) ∩ IRH(µ). If λ is principal, then IRH(ϕ) =

IRH(µ) = L has order h/p, and so, because |RH| = r2h, we have cd(G|ϕ) = {r2 p},

by [2, Corollary 11.22, Theorem 6.11]. If µ is principal, then IRH(ϕ) = IRH(λ)

is cyclic of order r2, and so cd(G|ϕ) = {h}. If both λ and µ are nonprincipal,

then IRH(ϕ) = IRH(λ) ∩ IRH(µ) = 1, and so cd(G|ϕ) = {r2h}. It follows that

cd(G|F1) = {r2 p, h, r2h}, and so cd(G) = cd(G/F1) ∪ cd(G|F1) = {1, r, r2 p, h, r2h},

as claimed.
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