Orbits and Stabilizers for Solvable Linear Groups

Jeffrey M. Riedl

Abstract

We extend a result of Noritzsch, which describes the orbit sizes in the action of a Frobenius group G on a finite vector space V under certain conditions, to a more general class of finite solvable groups G. This result has applications in computing irreducible character degrees of finite groups. Another application, proved here, is a result concerning the structure of certain groups with few complex irreducible character degrees.

1 Introduction

In studying connections between the structure of a finite solvable group G and the set $\operatorname{cd}(G)$ consisting of the degrees of its ordinary irreducible characters, it is often useful to be able to describe the set of orbit sizes in the action of some relatively small quotient of G on an elementary abelian p-group. (Typically, this p-group is the group of linear characters of some chief factor of G.) A result of this type that has proved to be valuable is the following [4, Lemma 1.10], due to Noritzsch.

Theorem 1.1 (Noritzsch) Let G be a Frobenius group with abelian Frobenius kernel G^{\prime}. Suppose that G acts on an elementary abelian p-group V (for some prime p) and that the action of G^{\prime} on V is Frobenius. Let \mathcal{S} be the set of sizes of the G-orbits on the nonidentity elements of V. Then $\mathcal{S} \cup\{|G|\}$ is the set of all numbers of the form $|G| / k$, where k runs over the divisors of $\left|G: G^{\prime}\right|$.

Noritzsch's argument in [4] actually proves more, namely, that if $K>1$ is any subgroup of G such that $K \cap G^{\prime}=1$, then K is the stabilizer in G of some element of V.

The conclusion of Noritzsch's theorem is stated in a way that avoids the question of whether or not \mathcal{S} contains $|G|$. Examples show that both alternatives are possible.

The condition that G is a Frobenius group with abelian kernel G^{\prime} is, of course, very restrictive, and there are situations where it would be convenient to be able to relax this condition somewhat. We will say that G is a $(*)$-group if G^{\prime} is abelian and the action of $G / G^{\prime} \mathbf{Z}(G)$ on G^{\prime} is Frobenius. In particular, if G is a nontrivial (*)-group and $\mathbf{Z}(G)=1$, then G is a Frobenius group with kernel G^{\prime}, as in Noritzsch's theorem.

Before stating our first theorem, which describes the stabilizer subgroups and orbit sizes for certain actions of $(*)$-groups on elementary abelian p-groups, we need the following lemma:

[^0]Lemma 1.2 Let G be a $(*)$-group and write $F=G^{\prime} \mathbf{Z}(G)$. Then there is a unique subgroup M that contains F and is maximal with the property that M splits over F.

Note that in the case of Noritzsch's theorem, where $F=G^{\prime}$, we have $M=G$.

Theorem 1.3 Let G be $a(*)$-group and let F and M be as in Lemma 1.2. Suppose that G acts on an elementary abelian p-group V and that the action of F on V is Frobenius. Let \mathcal{S} be the set of sizes of the G-orbits on the nonidentity elements of V. Then
(i) a nonidentity subgroup K of G is the stabilizer of some nonidentity element of V if and only if $K \cap F=1$, and
(ii) $\mathcal{S} \cup\{|G|\}$ is the set of numbers $|G| / k$, where k runs over the divisors of $|M: F|$.

The conclusion of Theorem 1.3 is the same as that of Theorem 1.1, but for our more general hypothesis. In Theorem 1.3(i), the necessity of the condition $K \cap F=1$ for K to be a stabilizer subgroup is immediate from the fact that the action of F on V is Frobenius. The fact that this same condition is sufficent, however, is less obvious.

We now present an example that illustrates not only that the generality of Theorem 1.3 is actually needed in certain cases, but also the inherent obstacle to proving Theorem 1.3 by simply applying Theorem 1.1 to some carefully-chosen Frobenius subgroup of G.

Example Let $A=\langle\sigma\rangle$ be the Galois group of the extension $\operatorname{GF}(7) \subseteq \operatorname{GF}\left(7^{12}\right)$ of finite fields, where $\sigma: x \mapsto x^{7}$ for all $x \in \mathrm{GF}\left(7^{12}\right)$. The semi-linear group $\mathrm{GF}\left(7^{12}\right)^{\times} \rtimes$ A acts on the additive group $V=\operatorname{GF}\left(7^{12}\right)$. We now construct a subgroup G to act on V.

Fix a generator y for the cyclic subgroup of order 9 in the multiplicative group $\operatorname{GF}\left(7^{3}\right)^{\times}$. Write $w=\sigma^{4} y$ and $S=\langle w\rangle$. By [5, Lemma 6], $w^{3}=y^{m}$, where $m=$ $\left(7^{12}-1\right) /\left(7^{4}-1\right)$ has 3-part equal to 3 , and so the element w has order 9. Also, $C=\left\langle y^{m}\right\rangle$ is the subgroup of order 3 in $\mathrm{GF}(7)^{\times}$. The group $B=\left\langle\sigma^{3}\right\rangle$ of order 4 centralizes S.

Let P and Q be the subgroups of orders 13 and 2, respectively, in $\operatorname{GF}\left(7^{12}\right)^{\times}$. As 13 divides neither $7^{6}-1$ nor $7^{4}-1$, the action of $S B / C$ on P is Frobenius. Let $G=P Q S B$, and note that $G^{\prime}=P$ and $\mathbf{Z}(G)=Q C$. The action of $F=G^{\prime} \mathbf{Z}(G)$ on V is Frobenius, since $F \subseteq \operatorname{GF}\left(7^{12}\right)^{\times}$. As $F \cap B=1$, the group $F B$ splits over F. Note that $|G: F B|=3$, while $|F B: F|=4$. Since Sylow 3-subgroups of G are cyclic of order 9 , no subgroup of G having order divisible by 9 splits over F. Thus, in the notation of Lemma $1.2, M=F B$. We may apply Theorem 1.3, with $|M: F|=4$, to deduce $\mathcal{S} \cup\{|G|\}=\{|G|,|G| / 2,|G| / 4\}$.

Now suppose we want to show that the subgroup $K=\left\langle\sigma^{6}\right\rangle$ of order 2 in B is the stabilizer in G of some nonidentity element of V. There is a cyclic subgroup L of order 4, distinct from B, such that $K<L \subseteq B \dot{\times} Q$. The distinct groups $G^{\prime} B$ and $G^{\prime} L$ are maximal as Frobenius subgroups of G. Applying Theroem 1.1 to the action of $G^{\prime} B$ on V yields that $K=\mathbf{C}_{G^{\prime} B}(v)$ for some nonidentity element $v \in V$. But since $K=G^{\prime} B \cap L$, one cannot rule out the possibility here that $\mathbf{C}_{G}(v)$ includes the entire subgroup L.

Corollary 1.4 In the situation of Theorem 1.3, the action of G on V is Frobenius if and only if $M=F$.

Corollary 1.4 follows immediately from Theorem 1.3. For a wealth of examples in which the action of G on V actually is Frobenius, we refer the reader to [5, Theorem 11].

If G is a finite solvable group, we denote its Fitting subgroup by $\mathbf{F}(G)$ and its Fitting series (see [5] for definition) by $1=\mathbf{F}_{0}(G)<\mathbf{F}_{1}(G)<\cdots<\mathbf{F}_{h-1}(G)<\mathbf{F}_{h}(G)=G$, where $h=\mathrm{h}(G)$ is the Fitting height of G, a number which in some sense measures how far the group G is from being nilpotent. We use Theorem 1.3 to prove the following result, which gives structural information about certain solvable groups with few character degrees.

Theorem 1.5 Let G be a solvable group and write $F_{i}=\mathbf{F}_{i}(G)$ for $i \in\{1,2\}$. Suppose that $\mathrm{h}(G)=3$ and $\left|\operatorname{cd}\left(G / F_{1}\right)\right|=2$ and $|\operatorname{cd}(G)| \leq 4$. Then there exists a chief factor F_{1} / M of G such that $G / \mathbf{C}_{G}\left(F_{1} / M\right)$ is nonnilpotent while $\left|F_{1}: M\right|$ is relatively prime to $\left|F_{2}: F_{1}\right|$.

Theorem 1.5 plays a crucial role in the proof of the main result of [6], which says that if G is any solvable group such that $|G: \mathbf{F}(G)|$ is odd and $|\operatorname{cd}(G)| \leq 5$, then $\mathrm{h}(G) \leq 3$.

Finally, to show the hypothesis $|\operatorname{cd}(G)| \leq 4$ in Theorem 1.5 is truly needed, we present examples of a solvable groups G satisfying $\mathrm{h}(G)=3,\left|\operatorname{cd}\left(G / F_{1}\right)\right|=2$, and $|\operatorname{cd}(G)|=5$, but having no chief factor of the form F_{1} / M for which $\left|F_{1}: M\right|$ is relatively prime to $\left|F_{2}: F_{1}\right|$.

2 Proofs

Before proving Lemma 1.2, we need the following.
Lemma 2.1 Let $K \subseteq N$ be normal subgroups of a group G, and suppose that $|K|$ is relatively prime to $|G: N|$. If G / K splits over N / K, then G splits over N.

Proof Let H / K be a complement for N / K in G / K. By the Schur-Zassenhaus theorem, there is a complement L for K in H. Observe that L is a complement for N in G.

Proof of Lemma 1.2 Write π to denote the set of all prime divisors of $|G: F|$. For each prime $p \in \pi$, choose a p-subgroup L_{p} of G, of maximal order with the property that $L_{p} \cap F=1$. Since $G^{\prime} \subseteq F$, we have $L_{p} \cap G^{\prime}=1$. Let L / G^{\prime} be the direct product of the subgroups $L_{p} G^{\prime} / G^{\prime}$ (for $p \in \pi$) of G / G^{\prime}. Let $M=F L$, and note that L / G^{\prime} is a complement for F / G^{\prime} in M / G^{\prime}. As the action of G / F on G^{\prime} is Frobenius, we see that $|M: F|$ and $\left|G^{\prime}\right|$ are relatively prime. Now Lemma 2.1 implies that M splits over F.

Let H be any subgroup of G that contains F. If $H \subseteq M$, then H clearly splits over F. Now assume instead that H splits over F. Because G / F is cyclic, showing that $|H / F|$ divides $|M / F|$ is sufficient for proving that $H \subseteq M$. For $p \in \pi$, let S_{p} be a

Sylow p-subgroup of any complement for F in H. Using the maximality of L_{p}, we deduce that $|H / F|_{p}=\left|S_{p}\right| \leq\left|L_{p}\right|=|M / F|_{p}$, and so $H \subseteq M$.

Our proof of Theorem 1.3 is a careful adaptation of Noritzsch's proof of Theorem 1.1. For this we need the following elementary number-theoretic lemmas.

Lemma 2.2 Let $q>1$ and $p>1$ and $k>1$ be integers. Then both $q k$ and q^{2} are smaller than $\left(p^{k q}-1\right) /\left(p^{k}-1\right)$.

Proof Write $m=2^{k}+\cdots+2^{(q-1) k}$, and note that $\left(p^{k q}-1\right) /\left(p^{k}-1\right)=1+p^{k}+\cdots+$ $p^{(q-1) k}>m$. We now show that $q k \leq m$ and $q^{2} \leq m$. Since $k \geq 2$, we have $2 k \leq 2^{k}$. As $q \geq 2$, we have $q \leq 2(q-1)$. Combining these, $q k \leq(q-1) 2 k \leq(q-1) 2^{k} \leq m$. Since $k \geq 2$, we have $4^{q-1} \leq 2^{(q-1) k} \leq m$. The reader may verify that $q^{2} \leq 4^{q-1}$ for $q \geq 2$.

Lemma 2.3 Let $p>1$ be an integer and let $q_{1}<q_{2}<\cdots<q_{t}$ be primes. Write $f=q_{1} \cdots q_{t}$ and write $f_{i}=f / q_{i}$ for $1 \leq i \leq t$. Then

$$
\sum_{i=1}^{t} q_{i}\left(p^{f_{i}}-1\right)<p^{f}-1
$$

Proof The case $t=1$ is clear, since $q<1+p+\cdots+p^{q-1}=\left(p^{q}-1\right) /(p-1)$.
Now suppose $t>1$. It suffices to show that each of the t summands is smaller than $\left(p^{f}-1\right) / t$, or equivalently, that $q_{i} t$ is smaller than $n=\left(p^{f_{i} q_{i}}-1\right) /\left(p^{f_{i}}-1\right)$. Since $t \leq q_{t}$, it is enough to prove that $q_{i} q_{t}<n$. In case $i<t$, then q_{t} divides f_{i}, and Lemma 2.2 implies that $n>q_{i} f_{i} \geq q_{i} q_{t}$, as desired. In case $i=t$, Lemma 2.2 yields $n>q_{i}{ }^{2}=q_{i} q_{t}$.

Proof of Theorem 1.3 (i) Let C be a (cyclic) complement for F in M, and let π be the set of all prime divisors of $|M: F|$. Note that $M=G^{\prime} C \dot{\times} \mathbf{Z}(G)$, while $G^{\prime} C$ is a Frobenius group. Write $Z_{\pi}=\mathbf{O}_{\pi}(\mathbf{Z}(M))$. The Hall π-subgroups of M are all of the form $C^{x} \dot{\times} Z_{\pi}$ for $x \in G^{\prime}$. The intersection of any two distinct Hall π-subgroups of M is Z_{π}.

Let $K>1$ be any subgroup of G such that $K \cap F=1$. We want to show K is the stabilizer in G of some nonidentity element in V. Since K is a cyclic π-subgroup of M, there exists a Hall π-subgroup H of M that contains K, and we may assume $H=C \dot{\times} Z_{\pi}$. Since $K \nsubseteq Z_{\pi}$, indeed H is the unique Hall π-subgroup of M that contains K.

Let $\mathcal{C}(K)$ denote the family of all subgroups $L \subseteq G$ such that $L \cap F=1$ and $K<L$ with $|L: K|$ being prime. If $L \in \mathcal{C}(K)$, then L is a π-subgroup of M, and so $|L: K| \in \pi$, and indeed $L \subseteq H$. For each prime $q \in \pi$, let $\mathcal{C}_{q}(K)$ be the set of all subgroups $L \in \mathcal{C}(K)$ satisfying $|L: K|=q$. Note that $\mathcal{C}(K)=\bigcup \mathcal{C}_{q}(K)$, where this union runs over $q \in \pi$.

Now fix any prime $q \in \pi$, and note that the groups $C_{q} \in \operatorname{Syl}_{q}(C)$ and $Z_{q} \in$ $\operatorname{Syl}_{q}\left(Z_{\pi}\right)$ are both cyclic. Thus the Sylow q-subgroup of the abelian group $H=$
$C \dot{\times} Z_{\pi}$ is $C_{q} \dot{\times} Z_{q}$, which has rank at most 2 . As K is cyclic, write $K=Q \dot{\times} D$ where Q is a q-group and D is a q^{\prime}-group. Since $K \subseteq H$, we have $Q \subseteq C_{q} \dot{\times} Z_{q}$ with $Q \cap Z_{q}=1$. Every member of $\mathcal{C}_{q}(K)$ is a subgroup of H, and so $\mathcal{C}_{q}(K)$ consists of all subgroups of the form $Q_{1} \dot{\times} D$, where Q_{1} satisfies $Q<Q_{1} \subseteq C_{q} \dot{\times} Z_{q}$ and $\left|Q_{1}: Q\right|=q$ and $Q_{1} \cap Z_{q}=1$. But there are at most only q distinct subgroups Q_{1} that satisfy these properties. Therefore $\left|\mathcal{C}_{q}(K)\right| \leq q$.

Assuming that K is not equal to the stabilizer in G of any element of $V^{\#}=V-\{0\}$, for each $v \in \mathbf{C}_{V^{*}}(K)$ we have $\mathbf{C}_{G}(v) \supseteq L$ for some subgroup $L \in \mathcal{C}(K)$. Write $\pi=\left\{q_{1}, \ldots, q_{t}\right\}$. For convenience, write \mathcal{D}_{i} to denote the set $\mathcal{C}_{q}(K)$ for $q=q_{i}$. We then have

$$
\mathbf{C}_{V^{*}}(K) \subseteq \bigcup_{i=1}^{t}\left(\bigcup_{L \in \mathcal{D}_{i}} \mathbf{C}_{V^{*}}(L)\right)
$$

Write $|V|=p^{n}$ and $f=q_{1} \cdots q_{t}$ and $k=n /(|K| f)$. Now [2, Theorem 15.16], implies that $\left|\mathbf{C}_{V^{*}}(K)\right|=p^{k f}-1$. For $1 \leq i \leq t$, write $f_{i}=f / q_{i}$, and note that each subgroup $L \in \mathcal{D}_{i}$ satisfies $\left|\mathbf{C}_{V^{\sharp}}(L)\right|=\overline{p^{k} f_{i}}-1$, again by [2, Theorem 15.16]. Now using the fact that $\left|\mathcal{D}_{i}\right| \leq q_{i}$ for $1 \leq i \leq t$, we obtain

$$
p^{k f}-1=\left|\mathbf{C}_{V^{*}}(K)\right| \leq \sum_{i=1}^{t}\left(\sum_{L \in \mathcal{D}_{i}}\left|\mathbf{C}_{V^{*}}(L)\right|\right) \leq \sum_{i=1}^{t} q_{i}\left(p^{k f_{i}}-1\right)
$$

which contradicts Lemma 2.3. Therefore $K=\mathbf{C}_{G}(v)$ for some element $v \in V^{\#}$.
(ii) The set \mathcal{S} consists of the numbers $|G| /\left|\mathbf{C}_{G}(v)\right|$ for all nonidentity elements $v \in V$. As $F \mathbf{C}_{G}(v)$ clearly splits over F, we have $F \mathbf{C}_{G}(v) \subseteq M$, and so $\left|\mathbf{C}_{G}(v)\right|$ divides $|M: F|$. This proves that $\mathcal{S} \cup\{|G|\} \subseteq\{|G| / k \mid k$ divides $|M: F|\}$. For the reverse inclusion, let C be a complement for F in M. For any divisor $k>1$ of $|M: F|$, let K be the subgroup of order k in the cyclic group C. As $K \cap F=1$, statement (i) above implies that $K=\mathbf{C}_{G}(v)$ for some nonidentity element $v \in V$. The G-orbit containing v has size $|G| / k$.

Following standard notation, we denote by $\operatorname{Irr}(G)$ the set of ordinary irreducible characters of a group G. Our proof of Theorem 1.5 uses the following result [4, Lemma 1.6].

Lemma 2.4 If G is a nonnilpotent group with $\operatorname{cd}(G)=\{1, a\}$, then the following hold.
(i) $\mathbf{F}(G)$ is abelian, and $G / \mathbf{F}(G)$ is cyclic of order a.
(ii) There exists $N \triangleleft G$ such that G / N is a Frobenius group whose kernel is $\mathbf{F}(G) / N$, an elementary abelian q-group for some prime q.
(iii) If all Sylow subgroups of G are abelian, then $\mathbf{F}(G)=G^{\prime} \dot{\times} \mathbf{Z}(G)$, and the action of $G / \mathbf{F}(G)$ on G^{\prime} is Frobenius.
(iv) If a Sylow p-subgroup of G is nonabelian, then $a=p$.

If N is a normal subgroup of a group G and $\varphi \in \operatorname{Irr}(N)$ is an irreducible character, we write $\mathbf{I}_{G}(\varphi)$ to denote the inertia subgroup of φ in G, which is the stabilizer of φ in the natural action of G on the set $\operatorname{Irr}(N)$. Let $\Phi(G)$ denote the Frattini subgroup of G.

Proof of Theorem 1.5 Let G be a minimal counterexample and write $\operatorname{cd}\left(G / F_{1}\right)=$ $\{1, a\}$. As G / F_{1} is nonnilpotent, Lemma 2.4 implies that F_{2} / F_{1} is abelian, G / F_{2} is cyclic of order a, and there exists $N / F_{1} \triangleleft G / F_{1}$ such that G / N is a Frobenius group whose kernel is F_{2} / N, an elementary abelian q-group for some prime q. Thus F_{2} is a group whose Fitting factor group F_{2} / F_{1} is abelian, and so [1, Lemma 1.1] yields $\left|F_{2}: F_{1}\right| \in \operatorname{cd}\left(F_{2}\right)$. Hence $\left|F_{2}: F_{1}\right|$ divides some degree $b \in \operatorname{cd}(G)$. The prime q divides b but does not divide a, and so $b \neq a$.

If $S \triangleleft G$ is any normal subgroup such that $\mathbf{F}(G / S)=F_{1} / S$, then G / S inherits our hypotheses on G. If $S>1$, then by minimality we obtain a chief factor F_{1} / K of G (with $S \subseteq K$) having all the properties stated in the conclusion, which would contradict that G is a counterexample. Hence $S=1$ in this situation.

The preceding paragraph implies that $\Phi(G)=1$ and $\mathbf{Z}\left(F_{2}\right)=1$. By [1, III.4.5], we may write $F_{1}=M_{1} \dot{\times} \cdots \dot{\times} M_{n}$ where each M_{i} is an elementary abelian minimal normal subgroup of G. By [1, III.4.4], each subgroup M_{i} has a complement in G, and it follows by a routine argument that each character $\lambda \in \operatorname{Irr}\left(M_{i}\right)$ extends to its inertia subgroup $\mathbf{I}_{G}(\lambda)$.

For $1 \leq i \leq n$, let r_{i} be the unique prime divisor of $\left|M_{i}\right|$, and write $C_{i}=\mathbf{C}_{G}\left(M_{i}\right)$. Since $\mathbf{Z}\left(F_{2}\right)=1$, we have $\left|F_{2}: C_{i} \cap F_{2}\right|>1$. Note that $F_{1} \subseteq C_{i}$, and so $F_{1} \subseteq C_{i} \cap$ $F_{2} \subseteq F_{2}$, which says $F_{2} /\left(C_{i} \cap F_{2}\right)$ is abelian. As M_{i} is a faithful, completely reducible $F_{2} /\left(C_{i} \cap F_{2}\right)$-module in characteristic r_{i}, the prime r_{i} cannot divide $\left|F_{2}: C_{i} \cap F_{2}\right|$. Thus the faithful action of $F_{2} /\left(C_{i} \cap F_{2}\right)$ on $\operatorname{Irr}\left(M_{i}\right)$ has a regular orbit, by coprimeness, and so there exists $\lambda \in \operatorname{Irr}\left(M_{i}\right)$ such that $\mathbf{I}_{F_{2}}(\lambda)=C_{i} \cap F_{2}$. By the preceding paragraph, λ has an extension $\mu \in \operatorname{Irr}\left(C_{i} \cap F_{2}\right)$. Thus $\mu^{F_{2}} \in \operatorname{Irr}\left(F_{2}\right)$, and so in particular $\mid F_{2}: C_{i} \cap$ $F_{2} \mid \in \operatorname{cd}\left(F_{2}\right)$.

For some integer m with $0 \leq m \leq n$, we may assume that G / C_{i} is nonnilpotent if and only if $i \leq m$. Since each M_{i} is G-isomorphic to a chief factor of G of the form F_{1} / K, the fact that G is a counterexample implies that r_{i} divides $\left|F_{2}: F_{1}\right|$ in case $i \leq m$. Let $D=\bigcap C_{i}$ for $i>m$. Note that $F_{1} \subseteq D \subseteq G$ and that G / D is nilpotent. In view of the Frobenius group G / N mentioned in the first paragraph, we see that q divides $\left|D: F_{1}\right|$. Since $F_{1}=\mathbf{C}_{G}\left(F_{1}\right)=\bigcap_{i=1}^{n} C_{i}$, we have $m \geq 1$, and we may assume that G / C_{1} is nonnilpotent and has order divisible by q. Since q does not divide $\left|G: F_{2}\right|$, the prime q divides $\left|F_{2}: C_{1}\right|$. It follows that r_{1} divides $\left|F_{2}: F_{1}\right|$.
Step 1: Every prime divisor of $\left|F_{2}: F_{1}\right|$ divides $\left|F_{2}: C_{i} \cap F_{2}\right|$ for some $1 \leq i \leq n$.
This follows from the fact that $F_{1}=\bigcap_{1}^{n} C_{i}$.
Step 2: If $i \in\{1, \ldots, n\}$ and H is a subgroup with $F_{2} \subseteq H \subseteq G$, then H does not have a normal r_{i}-complement, and r_{i} fails to divide at least one member of $\operatorname{cd}(H)-$ $\{1\}$.

If H has a normal r_{i}-complement, then F_{2} has a normal r_{i}-complement L. The normal subgroups L and M_{i} of relatively prime orders must centralize each other,
and so $L \subseteq C_{i} \cap F_{2} \subseteq F_{2}$. But recall that r_{i} fails to divide $\left|F_{2}: F_{2} \cap C_{i}\right|>1$. Since $\left|F_{2}: L\right|$ is a power of r_{i}, this is a contradiction. Now apply [2, Corollary 12.2] for the remainder of the statement.

Step 3:
(i) Each irreducible character of G of degree a restricts to the subgroup F_{2} as a sum of linear characters.
(ii) None of the primes r_{1}, \ldots, r_{n} divides every degree in $\operatorname{cd}(G)-\{1, a\}$.

We show first that q divides every member of $\operatorname{cd}\left(F_{2}\right)-\{1\}$. Suppose instead that q fails to divide some degree $m \in \operatorname{cd}\left(F_{2}\right)-\{1\}$. Using the Frobenius group G / N and [2, Theorem 12.4], we deduce $a m=\left|G: F_{2}\right| \cdot m \in \operatorname{cd}(G)$. Thus $\operatorname{cd}(G)=\{1, a, a m, b\}$, and so b is the only member of $\operatorname{cd}(G)$ divisible by q. Write $c=\left|F_{2}: F_{2} \cap C_{1}\right|$, and recall that q divides $c \in \operatorname{cd}\left(F_{2}\right)$. Hence each character in $\operatorname{Irr}(G)$ lying over any character of degree c in $\operatorname{Irr}\left(F_{2}\right)$ has degree b. By [2, Corollary 11.29], we know that b / c divides $\left|G: F_{2}\right|=a$, and it follows that b divides $a c$. Recall that r_{1} divides $\left|F_{2}: F_{1}\right|$, which divides b. Hence r_{1} divides $b=a c$, but we know that r_{1} does not divide $\left|F_{2}: F_{2} \cap C_{1}\right|=$ c. Thus r_{1} divides a, and so r_{1} divides every member of $\{a, a m, b\}=\operatorname{cd}(G)-\{1\}$, thereby contradicting Step 2.
(i) Since q does not divide a, this follows from the preceding paragraph.
(ii) Suppose r_{i} divides every degree in $\operatorname{cd}(G)-\{1, a\}$. By Step 2, we see that r_{i} does not divide $a=\left|G: F_{2}\right|$. Let $\theta \in \operatorname{Irr}\left(F_{2}\right)$ with $\theta(1)>1$, and choose $\psi \in \operatorname{Irr}(G \mid \theta)$. By part (i) we have $\psi(1) \in \operatorname{cd}(G)-\{1, a\}$, and so r_{i} divides $\psi(1)$. By [2, Corollary 11.29], $\psi(1) / \theta(1)$ divides $\left|G: F_{2}\right|=a$. As r_{i} does not divide a, it must divide $\theta(1)$. Hence r_{i} divides every member of $\operatorname{cd}\left(F_{2}\right)-\{1\}$, and this contradicts Step 2, now with $H=F_{2}$.

Step 4: For $1 \leq i \leq n$, if $\left|F_{2}: C_{i} \cap F_{2}\right|$ and $\left|F_{1}\right|$ are not relatively prime, then
(i) $F_{1} \subseteq C_{i} \subseteq F_{2}$ and $\mathbf{F}\left(G / C_{i}\right)=F_{2} / C_{i}$ and $\operatorname{cd}\left(G / C_{i}\right)=\{1, a\}$, and
(ii) the r_{i}-part of b is nontrivial and divides a, and r_{i} divides $\left|F_{2}: F_{1}\right|$.
(i) Write $c=\left|F_{2}: C_{i} \cap F_{2}\right|$, and let r be a prime dividing both c and $\left|F_{1}\right|$. Since c divides $\left|F_{2}: F_{1}\right|$, which divides b, indeed r divides b. Thus, since $|\operatorname{cd}(G)| \leq 4$, Step 3(ii) implies that b is the only member of $\operatorname{cd}(G)-\{1, a\}$ divisible by r. As r divides $c \in$ $\operatorname{cd}\left(F_{2}\right)$, Step 3(i) implies that every character in $\operatorname{Irr}(G)$ lying over some character of degree c in $\operatorname{Irr}\left(F_{2}\right)$ must have degree b. Now by [2, Corollary 11.29] we know that b / c divides $\left|G: F_{2}\right|=a$, and it follows that b divides $a c$.

Since the full q-part of $\left|F_{2}: F_{1}\right|$ divides b, while q does not divide a, we now see that the full q-part of $\left|F_{2}: F_{1}\right|$ actually divides $c=\left|F_{2}: C_{i} \cap F_{2}\right|$. This forces $F_{2} \cap$ $C_{i} \subseteq N \subseteq G$, and so in particular G / C_{i} is nonnilpotent. As $F_{1} \subseteq C_{i} \subseteq G$ and $\operatorname{cd}\left(G / F_{1}\right)=\{1, a\}$, we deduce that $\operatorname{cd}\left(G / C_{i}\right)=\{1, a\}$. Now [1, Lemma 1.1] yields $1<\left|G / C_{i}: \mathbf{F}\left(G / C_{i}\right)\right| \in \operatorname{cd}\left(G / C_{i}\right)=\{1, a\}$. Since $C_{i} F_{2} / C_{i} \subseteq \mathbf{F}\left(G / C_{i}\right)$, it follows that $\mathbf{F}\left(G / C_{i}\right)=F_{2} / C_{i}$.
(ii) As G / C_{i} is nonnilpotent and G is a counterexample, r_{i} must divide $\left|F_{2}: F_{1}\right|$, which divides b. Recall that b divides $a c$, while r_{i} does not divide $\left|F_{2}: F_{2} \cap C_{i}\right|=c$.

Step 5: The contradiction.
As r_{1} divides $\left|F_{2}: F_{1}\right|$, Step 1 asserts that r_{1} divides $\left|F_{2}: C_{i} \cap F_{2}\right|$ for some index i. Clearly $i \neq 1$. By Step 4(i), G / C_{i} is nonnilpotent. Hence $i \leq m$ and we may assume $i=2$. By Step 4(ii), the r_{2}-part of b is nontrivial and divides a, and r_{2} divides $\left|F_{2}: F_{1}\right|$.

By Step 1 now, r_{2} divides $\left|F_{2}: C_{j} \cap F_{2}\right|$ for some index j. Clearly $j \neq 2$. For brevity, write $r=r_{j}$ and $C=C_{j}$ and $M=M_{j}$. Write $X=G / C$. By Step 4 we see that $\mathbf{F}(X)=F_{2} / C$ and $\operatorname{cd}(X)=\{1, a\}$, while r divides a. Since r_{2} and r are distinct prime divisors of a, Lemma 2.4(iv) asserts that all Sylow subgroups of X are abelian. Now the rest of Lemma 2.4 implies that $\mathbf{F}(X)=X^{\prime} \dot{\times} \mathbf{Z}(X)$ is abelian, and that the action of $X / \mathbf{F}(X)$ on X^{\prime} is Frobenius. In particular, X is a $(*)$-group.

Since r_{2} divides the order a of the Frobenius complement $X / \mathbf{F}(X)$, we know r_{2} does not divide the order of the Frobenius kernel X^{\prime}. From the preceding paragraph, we know that r_{2} divides $\left|F_{2}: C\right|$, which is the order of $\mathbf{F}(X)$. Hence r_{2} divides the order of $\mathbf{Z}(X)$, and so in particular $\mathbf{Z}(X)>1$. The action of X on $V=\operatorname{Irr}(M)$ is faithful and irreducible. It follows that the action of $\mathbf{Z}(X)$ on V is Frobenius, and hence $\mathbf{Z}(X)$ is cyclic.

We claim that the action of $\mathbf{F}(X)$ on V is Frobenius. Since V is irreducible as an X-module, it suffices to show that $\mathbf{F}(X)$ is cyclic. Let p be any prime dividing the order of X^{\prime}. It suffices to show that the abelian group $\mathbf{O}_{p}(X)$ is cyclic. Write $P / C=\mathbf{O}_{p}(X)$ and suppose P / C is noncyclic. By [5, Lemma 2.6], there are characters $\lambda_{1}, \lambda_{2} \in V$ such that $C \subseteq \mathbf{I}_{P}\left(\lambda_{1}\right)<\mathbf{I}_{P}\left(\lambda_{2}\right)<P$. Since λ_{1} and λ_{2} extend to their inertia subgroups and since the action of $\mathbf{Z}(X)$ on V is Frobenius, we get degrees c_{1} and c_{2} in $\operatorname{cd}\left(F_{2}\right)$ having distinct nontrivial p-parts and which are divisible by $|\mathbf{Z}(X)|$, and hence by r_{2}. Since p does not divide $\left|G: F_{2}\right|$, there are degrees d_{1} and $d_{2} \operatorname{in} \operatorname{cd}(G)$, lying over c_{1} and c_{2} respectively, whose p-parts equal those of c_{1} and c_{2}. It follows that $\operatorname{cd}(G)-\{1, a\}=\left\{d_{1}, d_{2}\right\}$. But r_{2} divides d_{1} and d_{2}, contradicting Step 3(ii). Hence the action of $\mathbf{F}(X)$ on V is Frobenius.

Recall that r does not divide the order of $F_{2} / C=\mathbf{F}(X)$ but does divide $a=$ $|X: \mathbf{F}(X)|$. Thus X has a nontrivial Sylow r-subgroup whose intersection with $\mathbf{F}(X)$ is trivial. By Theorem 1.3 (taking $k=r$), there is a character $\lambda \in V$ such that $\left|G: \mathbf{I}_{G}(\lambda)\right|=|G: C| / r$. Since λ extends to its inertia subgroup, we obtain the degree $d=|G: C| / r$ in $\operatorname{cd}(G)$. We mentioned earlier that the r_{2}-part of the degree b is nontrivial and divides $a=\left|G: F_{2}\right|$. Since r_{2} also divides $\left|F_{2}: C\right|$ however, the r_{2}-part of $|G: C| / r=d$ is larger than the r_{2}-part of b. In particular, $d \neq b$. To see that $d \neq a$, pick any prime divisor p of the order of X^{\prime}, and note that p divides $|G: C| / r=d$ but does not divide a. Therefore $\operatorname{cd}(G)-\{1, a\}=\{b, d\}$, which again contradicts Step 3(ii). The proof of Theorem 1.5 is now complete.

3 Examples

As promised at the end of the introduction, we now present a family of examples of finite solvable groups G such that if we let F_{1} and F_{2} denote the first two members of its Fitting series, G satisfies $\mathrm{h}(G)=3,\left|\operatorname{cd}\left(G / F_{1}\right)\right|=2$ and $|\operatorname{cd}(G)|=5$, and yet G has no chief factor of the form F_{1} / M for which $\left|F_{1}: M\right|$ is relatively prime to $\left|F_{2}: F_{1}\right|$. This will show that the hypothesis $|\operatorname{cd}(G)| \leq 4$ in Theorem 1.5 is truly needed.

If N is a normal subgroup of a group G, we denote by $\operatorname{cd}(G \mid N)$ the set of degrees of the characters in the set $\operatorname{Irr}(G \mid N)=\{\chi \in \operatorname{Irr}(G) \mid N \nsubseteq \operatorname{ker}(\chi)\}$. Note that $\operatorname{Irr}(G)=\operatorname{Irr}(G / N) \cup \operatorname{Irr}(G \mid N)$ is a disjoint union, while $\operatorname{cd}(G)=\operatorname{cd}(G / N) \cup \operatorname{cd}(G \mid N)$ is not necessarily disjoint. For any given character $\theta \in \operatorname{Irr}(N)$, we denote by $\operatorname{cd}(G \mid \theta)$ the set of degrees of the characters in the set $\operatorname{Irr}(G \mid \theta)=\left\{\psi \in \operatorname{Irr}(G) \mid\left[\psi_{N}, \theta\right] \neq 0\right\}$.

For any given prime q and any positive integer n, it is standard terminology to say that a prime p is a Zsigmondy prime for $q^{n}-1$ in case p divides $q^{n}-1$ while p fails to divide $q^{m}-1$ for every integer $1 \leq m<n$. For any given pair of distinct primes q and p, we introduce the notation $f(q, p)$ to denote the multiplicative order of the element q in the ring $\mathbb{Z} / p \mathbb{Z}$. Thus $f=f(q, p)$ is the smallest positive integer such that p divides $q^{f}-1$. In particular, $f(q, p)$ is a divisor of $p-1$, and p is a Zsigmondy prime for $q^{f}-1$.

We shall say that (p, r, s) is a $(*)$-triple if p, r, and s are distinct primes such that $f(r, p) / r$ is an integer divisible by $f(r, s)$, while $f(s, p) / r$ is an integer divisible by $f(s, r)$. Below we shall construct a finite solvable group corresponding to any given (*)-triple.

In a (*)-triple, r divides $f(r, p)$, which divides $p-1$, and so we deduce that r divides $p-1$. Further, since $f(r, s)$ divides $m=f(r, p) / r$, we see that s divides $r^{m}-1$. These observations clearly suggest a method which, for any given prime p, generates all possible candidates for the primes r and s in a $(*)$-triple. Using this method, we find that the only $(*)$-triples for which $p \leq 17$ are $(5,2,3),(13,2,7)$, $(13,3,2),(17,2,3),(17,2,5)$.

Construction Let (p, r, s) be a (*)-triple and write $q=r^{f(r, p) / r}$. Choose any positive integer h that divides $q^{r}-1$ and that is divisible by both $c=\left(q^{r}-1\right) /(q-1)$ and s. We construct a finite solvable group G that has the following properties.
(i) $\mathrm{h}(G)=3$ and $\operatorname{cd}(G / \mathbf{F}(G))=\{1, r\}$ and $\operatorname{cd}(G)=\left\{1, r, r^{2} p, h, r^{2} h\right\}$.
(ii) $\mathbf{F}(G)=W \times V$ where W and V are minimal normal subgroups of G, having orders $r^{f(r, p)}$ and $s^{f(s, p)}$ respectively. Furthermore, $|G: \mathbf{F}(G)|=h r^{2}$.
(iii) The primes r and s both divide $\left|\mathbf{F}_{2}(G): \mathbf{F}(G)\right|$.
(iv) The groups $G / \mathbf{C}_{G}(W)$ and $G / \mathbf{C}_{G}(V)$ are both nonnilpotent.

Note that c is always odd. (If $r=2$, then q is a power of 2 , so $c=q+1$ is odd. If r is odd, then q is odd, so $c=1+q+\cdots+q^{r-1}$ is odd.) Thus, if p, r, s are all odd, as in the case of the $(*)$-triple $(41,5,13)$, then choosing $h=c s$ produces a group G of odd order.

We give the construction for G. For $m=f(r, p) / r$ and $n=f(s, p) / r$, the definition of $(*)$-triple implies that s divides $r^{m}-1$ and that r divides $s^{n}-1$. Because $m r=f(r, p)$ and $n r=f(s, p)$, we see that p is a Zsigmondy prime for both $r^{m r}-1$ and $s^{n r}-1$.

Let C be the subgroup of order c in the cyclic multiplicative group GF $\left(r^{m r}\right)^{\times}$of order $r^{m r}-1$, and note that $\operatorname{GF}\left(r^{m r}\right)^{\times}=C \dot{\times} \operatorname{GF}\left(r^{m}\right)^{\times}$. Let σ be the field automorphism that raises every element of $\mathrm{GF}\left(r^{m r}\right)$ to the power r^{m}, and note that σ has order r. The centralizer of σ in $\operatorname{GF}\left(r^{m r}\right)^{\times}$is $\operatorname{GF}\left(r^{m}\right)^{\times}$, which has a subgroup of order s, because s divides $r^{m}-1$. The action of $\langle\sigma\rangle$ on C is Frobenius. As p divides
$r^{m r}-1$ but not $r^{m}-1$, we see that C contains a subgroup of order p, and it follows that r divides $p-1$.

Let H be the subgroup of order h in $\operatorname{GF}\left(r^{m r}\right)^{\times}$. Let R be a cyclic group of order r^{2}, acting on H in such a way that $A=\mathbf{C}_{R}(P)$ has order r, while the action of R / A on H is equivalent to the natural action of $\langle\sigma\rangle$ on H. For the corresponding semidirect product group $R H$, note that $\mathbf{F}(R H)=A \times H$ is cyclic of order $r h$, and so $\operatorname{cd}(R H)=$ $\{1, r\}$.

We let $R H$ act on the additive group $W=\operatorname{GF}\left(r^{m r}\right)$ such that $\mathbf{C}_{R H}(W)=A$, and the action of the the nonnilpotent group $R H / A$ on W is equivalent to the natural action of $H\langle\sigma\rangle$ on W. Since c divides $h=|H|$, we see that H has a subgroup of order p. Viewed as a $\operatorname{GF}(r)[R H]$-module, W is irreducible because p is a Zsigmondy prime for $r^{m r}-1$. For each nonprincipal character $\lambda \in \operatorname{Irr}(W)$, note that $\mathbf{I}_{R H}(\lambda)$ is cyclic of order r^{2}.

We now show that if $r=2$, then $s^{n}+1$ is not a power of 2 . Assuming this is false, recall that p is a Zsigmondy prime for $s^{n r}-1=s^{2 n}-1=\left(s^{n}-1\right)\left(s^{n}+1\right)$. Thus p divides the 2-power $s^{n}+1$, forcing $p=2=r$, which contradicts our assumption that $p \neq r$.

Let L be the subgroup of index p in H. Thus $R H / L$ has order $r^{2} h$. By the preceding paragraph, the fact that r divides $s^{n}-1$, and [3, Theorem 10], the group RH acts on the additive group $V=\operatorname{GF}\left(s^{n r}\right)$ in such a way that $\mathbf{C}_{R H}(V)=L$, and the action of the nonnilpotent group $R H / L$ on V is Frobenius. As a $\operatorname{GF}(s)[R H]$-module, V is irreducible because p is a Zsigmondy prime for $s^{n r}-1$. Let G be the semidirect product corresponding to the action of $R H$ on the direct product $W \times V$. Indeed $\mathbf{C}_{R H}(W \times V)=\mathbf{C}_{R H}(W) \cap \mathbf{C}_{R H}(V)=A \cap L=1$. Hence $\mathbf{F}(G)=W \times V$, and so $\mathrm{h}(G)=3$. Write $F_{1}=\mathbf{F}(G)$.

Finally we determine $\operatorname{cd}\left(G \mid F_{1}\right)$. Each nonprincipal character $\varphi \in \operatorname{Irr}\left(F_{1}\right)$ has the form $\varphi=\lambda \times \mu$, with at least one of $\lambda \in \operatorname{Irr}(W)$ and $\mu \in \operatorname{Irr}(V)$ being nonprincipal, and of course $\mathbf{I}_{R H}(\varphi)=\mathbf{I}_{R H}(\lambda) \cap \mathbf{I}_{R H}(\mu)$. If λ is principal, then $\mathbf{I}_{R H}(\varphi)=$ $\mathbf{I}_{R H}(\mu)=L$ has order h / p, and so, because $|R H|=r^{2} h$, we have $\operatorname{cd}(G \mid \varphi)=\left\{r^{2} p\right\}$, by [2, Corollary 11.22, Theorem 6.11]. If μ is principal, then $\mathbf{I}_{R H}(\varphi)=\mathbf{I}_{R H}(\lambda)$ is cyclic of order r^{2}, and so $\operatorname{cd}(G \mid \varphi)=\{h\}$. If both λ and μ are nonprincipal, then $\mathbf{I}_{R H}(\varphi)=\mathbf{I}_{R H}(\lambda) \cap \mathbf{I}_{R H}(\mu)=1$, and so $\operatorname{cd}(G \mid \varphi)=\left\{r^{2} h\right\}$. It follows that $\operatorname{cd}\left(G \mid F_{1}\right)=\left\{r^{2} p, h, r^{2} h\right\}$, and so $\operatorname{cd}(G)=\operatorname{cd}\left(G / F_{1}\right) \cup \operatorname{cd}\left(G \mid F_{1}\right)=\left\{1, r, r^{2} p, h, r^{2} h\right\}$, as claimed.

Acknowledgements We thank I. M. Isaacs and Mark L. Lewis for their helpful suggestions.

References

[1] B. Huppert and O. Manz, Degree problems I. Squarefree character degrees. Arch. Math. Basel 45(1985), no. 2, 125-132.
[2] I. M. Isaacs, Character Theory of Finite Groups. Dover, New York, 1994.
[3] M. L. Lewis and J. M. Riedl, Affine semi-linear groups with three irreducible character degrees. J. Algebra 246(2001), no. 2, 708-720.
[4] T. Noritzsch, Groups having three complex irreducible character degrees. J. Algebra 175(1995), no. 3, 767-798.
[5] J. M. Riedl, Fitting heights of solvable groups with few character degrees. J. Algebra 233(2000), no. 1, 287-308.
[6] $\underset{421-442 \text {. }}{ }$, Fitting heights of odd-order groups with few character degrees. J. Algebra 267(2003), no. 2,

Department of Mathematics
University of Akron
Akron, OH 44325-4002
U.S.A.
e-mail: riedl@uakron.edu

[^0]: Received by the editors June 7, 2004.
 AMS subject classification: 20B99, 20C15, 20C20.
 (C)Canadian Mathematical Society 2006.

