ON ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS OF MAPPINGS

R. D. HOLMES AND P. P. NARAYANASWAMI(1)

1. Introduction. A selfmapping f of a metric space (X, d) is nonexpansive $(\varepsilon$ -nonexpansive) if $d(f(x), f(y)) \le d(x, y)$ for all $x, y \in X$ (respectively if $d(x, y) < \varepsilon$). In [1], M. Edelstein proved that a nonexpansive mapping f of E^n admits a fixed point provided the f-closure of E^n (i.e. the set of all points which are cluster points of $\{f^n(x)\}$ for some x) is nonempty. R. D. Holmes [2] considered commutative semigroups of selfmappings of a metric space and obtained fixed point theorems for such semigroups under certain contractivity conditions.

In this note, we consider asymptotically nonexpansive semigroups G which are defined analogously to the asymptotic contractions considered in [2]. For a general metric space X, we obtain results parallel to those of [1], and in the special case where $X = E^n$, we prove, under certain conditions, that there exists a point z such that G acts on the orbit of z as a semigroup of translations. As a corollary, it follows that if some orbit is bounded, G has a common fixed point.

2. Definitions and Notation. Throughout, (X, d) (or simply X) will denote a metric space and E^n the *n*-dimensional Euclidean space. Let $G: X \to X$ denote the collection of mappings $g: X \to X$, $g \in G$, where G is a commutative semigroup of mappings with identity⁽²⁾. Set $G(x) = \{g(x): g \in G\}$ (the orbit of x), $G(A) = \{g(x): g \in G\}$ and $G \mid A = \{g \mid A: g \in G\}$ for $A \subseteq X$. A fixed point for G will be a point $z \in X$ such that g(z) = z for all g in G.

If $G: X \to X$, we say that G is asymptotically nonexpansive if for all x, y in X

(2.1) there exists $g \in G$ such that for all $f \in G$, $d(fg(x), fg(y)) \le d(x, y)$.

If there is an $\varepsilon > 0$ such that whenever $d(x, y) < \varepsilon$, (2.1) holds, then G is called ε -asymptotically nonexpansive. G is said to be asymptotically (ε -asymptotically) isometric if

(2.2) for all $x, y \in X$ (with $d(x, y) < \varepsilon$) there exists $g \in G$ such that for all f in G, $\frac{d(fg(x), fg(y)) = d(x, y)}{d(fg(x), fg(y)) = d(x, y)}.$

By the G-closure of X (denoted by X^{G}) we shall mean the set

(2.3) $\{z \in X \mid \exists x \in X \text{ such that } \forall f \in G, \varepsilon > 0, \exists g \in G \text{ with } d(fg(x), z) < \varepsilon\}.$

(²) The presence of an identity is not essential for our results, and is assumed for convenience only.

Received by the editors October 15, 1969.

⁽¹⁾ This research was supported by the National Research Council Grant A-3999.

In the case when G is generated by a single mapping f, the G-closure of X is precisely the f-closure of X as defined in [1].

If $A \subseteq E^n$, co A(co A) denotes the convex hull (closed convex hull) of A. If $G: E^n \to E^n$ and $z \in E^n$ is such that $G \mid G(z)$ is a semigroup of translations, then z will be called a *T*-point (translational point) for G.

3. Asymptotically nonexpansive semigroups in general metric spaces.

PROPOSITION 1. Let $G: X \rightarrow X$ be ε -asymptotically nonexpansive and $z \in X^G$. Then

(3.1) $\begin{array}{l} \forall f \in G, \varepsilon > 0 \ \exists g \in G \ such \ that \ d(fg(z), z) < \varepsilon \ (i.e. \ in \ condition \ (2.3), \ x \ can \ be replaced \ by \ z). \end{array}$

Proof. Let x be as in (2.3) and suppose that $f \in G$, $\varepsilon > 0$. It clearly follows from (2.3) that $\exists g_0 \in G$ so that $d(g_0(x), z) < \varepsilon/2$, and G being ε -asymptotically nonexpansive, $\exists g_1 \in G$ such that $\forall h \in G$, $d(hg_1g_0(x), hg_1(z)) \le d(g_0(x), z) < \varepsilon/2$. Replacing f in (2.3) by fg_1g_0 , we can find a $g_2 \in G$ such that $d(fg_2g_1g_0(x), z) < \varepsilon/2$. Setting $g = g_2g_1$ and $h = fg_2$, we have $d(gf(z), z) \le d(fg_2g_1(z), fg_2g_1g_0(x)) + d(fg_2g_1g_0(x), z) < \varepsilon/2$.

LEMMA 1. Under the hypotheses of Proposition 1, $G \mid G(z)$ is an ε -asymptotic isometry.

Proof. Suppose that contrary to the assumption $\exists f_1, f_2 \in G$ with $d(f_1(z), f_2(z)) < \varepsilon$ and such that $\forall g \in G$, $\exists f \in G$ for which $d(fgf_1(z), fgf_2(z)) \neq d(f_1(z), f_2(z))$. Since G is ε -asymptotically nonexpansive, there is a $g_0 \in G$ such that

$$\delta = d(f_1(z), f_2(z)) - d(g_0 f_1(z), g_0 f_2(z)) > 0.$$

Also replacing x and y in (2.1) by $g_0f_1(z)$, $g_0f_2(z)$ respectively, we obtain a $g_1 \in G$ such that

$$d(fg_1g_0f_1(z), fg_1g_0f_2(z)) \le d(g_0f_1(z), g_0f_2(z)), \quad \forall f \in G.$$

Now by Proposition 1, $d(h_0g_1g_0(z), z)$ can be made so small that the continuity of f_1 and f_2 will imply the existence of an $h_0 \in G$ for which

$$d(h_0g_1g_0f_1(z), f_1(z)) < \delta/2$$
 and $d(h_0g_1g_0f_2(z), f_2(z)) < \delta/2$.

Hence

$$\begin{aligned} d(f_1(z), f_2(z)) &\leq d(f_1(z), h_0 g_1 g_0 f_1(z)) + d(h_0 g_1 g_0 f_1(z), h_0 g_1 g_0 f_2(z)) + d(h_0 g_1 g_0 f_2(z), f_2(z)) \\ &< \delta/2 + d(g_0 f_1(z), g_0 f_2(z)) + \delta/2, \end{aligned}$$

which is impossible.

Now it follows from Lemma 1 that if G is asymptotically nonexpansive and $z \in X^{G}$, then $G \mid G(z)$ is an asymptotic isometry. An even stronger conclusion is obtained in the following

PROPOSITION 2. If $G: X \to X$ is asymptotically nonexpansive and $z \in X^G$, then $G \mid G(z)$ is an isometry.

Proof. We have to show that $\forall f_1, f_2, g_0 \in G$, $d(g_0f_1(z), g_0f_2(z)) = d(f_1(z), f_2(z))$. By Lemma 1, $\exists g_1, g_2 \in G$ such that for all f, we have

$$d(fgf_1(z), fgf_2(z)) = d(f_1(z), f_2(z))$$

and

$$d(fg_2g_0f_1(z), fg_2g_0f_2(z)) = d(g_0f_1(z), g_0f_2(z)).$$

Substituting g_2g_0 and g_1 for f in the first and second equalities respectively, and applying commutativity of G, the result follows.

REMARKS. (1) If G is asymptotically contractive and $x \in X^G$ then it is readily seen that x is a common fixed point for G. Thus Lemma 1 generalizes its counterpart (Theorem 2 in [2, p. 10]).

(2) If the asymptotically nonexpansive semigroup G has a fixed point $\omega \in X$, then for each $z \in X^G$, G(z) lies on a sphere centered at ω . Indeed, if not, then $\exists g \in G$ with $d(g(z), \omega) \neq d(z, \omega)$. In case $d(g(z), \omega) < d(z, \omega)$ we set $\delta = d(z, \omega) - d(g(z), \omega) > 0$. Now there is a $g_1 \in G$ such that $\forall f \in G$, $d(fg_1g(z), \omega) \le d(g(z), \omega)$ and $\exists f_1 \in G$ with $d(f_1g_1g(z), z) < \delta$. Now,

$$\delta = d(z, \omega) - d(g(z), \omega) \le d(z, \omega) - d(f_1g_1g(z), \omega) \le d(f_1g_1g(z), z) < \delta$$

which is absurd. The case where $d(g(z), \omega) > d(z, \omega)$ can be treated similarly.

4. Asymptotically nonexpansive semigroups of mappings in Euclidean spaces.

THEOREM 1. Let $G: E^n \to E^n$ be asymptotically nonexpansive. If $x \in (E^n)^G$, then there exists a T-point $z \in \overline{co} G(x)$ for G.

COROLLARY 1. If $G: A \to A$ (where $A \subseteq E^n$) is asymptotically nonexpansive, A contains no nontrivial linear variety and there exists an $x \in A^G$ with $\overline{\operatorname{co}} G(x) \subseteq A$, then $\overline{\operatorname{co}} G(x)$ contains a unique fixed point.

A number of properties of isometric and asymptotically nonexpansive semigroups of mappings in E^n are needed in the proof of Theorem 1. These are furnished in the following sequence of lemmas.

LEMMA 2. Let $G: E^n \to E^n$ be asymptotically nonexpansive and $A \subseteq E^n$. If $G \mid A$ is an isometry, then $G \mid co A$ is again an isometry. If in addition, $G(A) \subseteq A$, then $G(co A) \subseteq co A$.

The proof is similar to the corresponding Proposition 2 of [1]. It is also clear that in Lemma 2, we can replace co A by $\overline{co} A$.

1970]

LEMMA 3. If $G: E^n \to E^n$ is isometric, maps the closed convex set C of E^n into itself, $C^G \neq \phi$ and G has a T-point in E^n , then G has a T-point in C.

Proof. Let $A = \overline{\operatorname{co}} G(a)$ for some $a \in C^G$. If $x, \omega \in G(a), \exists g_x, g_\omega \in G$, such that $x = g_x(a), \omega = g_\omega(a)$. Also since $a \in C^G$, given $f, \varepsilon > 0, \exists g \in G$ with $||a - gf(a)|| < \varepsilon$ by Proposition 1. For $z = \lambda x + (1 - \lambda)\omega, 0 \le \lambda \le 1$, using the facts that $f \mid A$ is affine, and that G is isometric, we obtain

$$\begin{aligned} \|z - gf(z)\| &= \|\lambda x + (1 - \lambda)\omega - gf(\lambda x + (1 - \lambda)\omega)\| \\ &\leq \lambda \|x - gf(x)\| + (1 - \lambda)\|\omega - gf(\omega)\| \\ &= \lambda \|g_x(a) - gfg_x(a)\| + (1 - \lambda)\|g_\omega(a) - gfg_\omega(a)\| \\ &= \lambda \|a - gf(a)\| + (1 - \lambda)\|a - gf(a)\| \\ &= \|a - gf(a)\| < \varepsilon, \end{aligned}$$

implying that $z \in C^{G}$. It is easy to check that C^{G} is closed, and hence we conclude that $A \subseteq C^{G}$.

Let x be a T-point of G. If $x \notin A$, let y be the (unique) point of A nearest to x and W be the supporting hyperplane at y of the closed ball with center x and radius ||x-y||. We claim that y is a T-point of G.

If f(x) = x for some $f \in G$, then $f(y) \in A$, ||x - f(y)|| = ||f(x) - f(y)|| = ||x - y||, and the uniqueness property of y imply f(y) = y. If $f(x) \neq x$ and the line L containing f(x) and x meets W, say at z, then since $f \mid L$ is a translation, it is true that for g = f or $g = f^{-1}$, $x \in [z, g(x)]$ and so $||g(x) - g(y)|| > \inf\{||g(x) - u|| : u \in W\} > ||x - y||$ which is impossible since g is an isometry. Hence $L \cap W = \phi$ so that L is parallel to W. We note that the line joining x and y is perpendicular to W, and clearly so is the line joining f(x) and f(y). Thus f(y) - y = f(x) - x. Hence for $f \in G$, either f(y) = y or f(y) = y - x + f(x). If now, $f, g \in G$ then fg(y) is a translate of y. Since g(y) is a translate of y, fg(y) can be expressed as a translate of g(y). In other words, y is a T-point of G.

LEMMA 4. If $G: E^n \rightarrow E^n$ is isometric, then G has a T-point.

Proof. Let g be a fixed element of G. We first show that the set $A_g = \{z \mid \exists a \text{ such } that \forall y \in G(z), g(y) = y + a\}$ is nonempty. If g has a fixed point z, then clearly $z \in A_g$. So assume that g has no fixed point. Since g is a rigid motion, we can introduce an orthonormal system of coordinates in E^n so that if

$$x = (x_1, x_2, \dots, x_n), \quad g(x) = xM + a,$$

where M is an orthogonal matrix in normal form. In particular suppose

$$M = \begin{pmatrix} I_k & & \\ & -I_l & \\ & & R \end{pmatrix}$$

where I_k , I_l are $(k \times k$, resp. $l \times l$) identity matrices and

$$R = \begin{pmatrix} R_1 & & & \\ & R_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & R_{\frac{n-k-l}{2}} \end{pmatrix}$$

with

$$R_i = \begin{pmatrix} \cos \phi_i & -\sin \phi_i \\ \sin \phi_i & \cos \phi_i \end{pmatrix}$$

 $\phi_i \neq m\pi, m = 0, \pm 1, \pm 2, \ldots$

It is fairly easy to show (cf. [1, Lemma 2]) that there exist numbers $\xi_{k+1}, \xi_{k+2}, \ldots$, ξ_n so that

$$g(x_1, x_2, \ldots, x_k, \xi_{k+1}, \xi_{k+2}, \ldots, \xi_n) = (x_1 + a_1, x_2 + a_2, \ldots, x_k + a_k, \xi_{k+1}, \xi_{k+2}, \ldots, \xi_n)$$

and note that the ξ_i are unique with the property of remaining fixed.

Suppose $f \in G$ is of the form f(x) = xN + b, where

$$N = \frac{k}{n-k} \left(\frac{D_1 \mid D_2}{D_3 \mid D_4} \right)$$

Now as fg=gf, it is easy to see that we must have $D_2=0$, $D_3=0$. Thus if P is the projection defined by $P(x) = (0, 0, \dots, 0, x_{k+1}, \dots, x_n)$ then we have PfP = Pf. Clearly PgP = Pg. Hence PgPf = Pgf = Pfg = PfPg and so Pg and Pf commute. Pghas $\xi = (0, 0, \dots, 0, \xi_{k+1}, \dots, \xi_n)$ as a unique fixed point, and so $Pf(\xi) = \xi$. In particular, if $B = \{(x_1, x_2, \ldots, x_k, \xi_{k+1}, \ldots, \xi_n)\}, f(B) \subseteq B$, and as f was arbitrary, $G(B) \subseteq B$. Since $g \mid B$ is a translation, $B \subseteq A_g$.

Note that A_{q} is a linear variety and that $G(A_{q}) \subseteq A_{q}$. Now if V is any linear variety with $G(V) \subseteq V$, we must have $V \cap A_g \neq \phi$, for if we consider $G \mid V$, then the above argument shows that $A_g^* = \{z \in V \mid \exists a \text{ such that } \forall y \in G(z), g(y) = y + a\}$ is nonempty. But $A_g^* \subseteq V$ and $A_g^* \subseteq A_g$. This implies that for any $f_1, f_2, \ldots, f_{n+1} \in G$, $\bigcap_{i=1}^{n+1} A_{f_i} \neq \phi$. Consider all finite intersections of the A_g 's. Each such intersection is a linear variety of dimension ≥ 0 . If d denotes the smallest dimension of such intersections, $d \ge 0$ and there exists a finite family $\{A_{g_i}\}, i=1, 2, ..., m$ so that dim $\{\bigcap_{i=1}^{m} A_{g_i}\} = d$. It is clear that if an $A_g \neq A_{g_i}$, i = 1, 2, ..., m, then A_g must contain $\bigcap_{i=1}^{m} A_{g_i}$, as otherwise dim $\{A_g \cap (\bigcap_{i=1}^{m} A_{g_i})\} < d$, a contradiction. This shows that $\bigcap_{g \in G} A_g \neq \phi$, and clearly any point of the intersection is a T-point.

Proof of Theorem 1. As $x \in (E^n)^G$, we know by Proposition 2 that $G \mid G(x)$ is isometric and thus $F = G \mid \overline{\text{co}} G(x)$ is isometric (Lemma 2). As in 3.4, Lemma 1

of [1], F can be extended to H on all of E^n such that H is isometric and commutative. By Lemma 4, H has a T-point ω and as $H(\overline{\operatorname{co}} G(x)) \subseteq \overline{\operatorname{co}} G(x)$, Lemma 3 implies that H has a T-point $z \in \overline{\operatorname{co}} G(x)$. But $H | \overline{\operatorname{co}} G(x) = G | \overline{\operatorname{co}} G(x)$ and z is thus a T-point of G.

Proof of Corollary 1. As in the proof of Theorem 1, $G \mid \overline{\text{co}} G(x)$ is isometric and thus we can conclude that $\overline{\text{co}} G(x)$ contains a *T*-point *z*. As *A* contains no nontrivial linear variety, the only translations of G(z) are the trivial ones, i.e. $g(z)=z \forall g \in G$. Uniqueness of *z* follows from Remark (2) (in the same manner as the corresponding assertion in [1] follows from Remark 2.3 there).

In Corollary 1, we cannot relax the requirement that A contains no nontrivial linear variety. This is exhibited by the example where n=1, $A=E^1$ and G is the group of all translations on E^1 . Clearly $A^G = E^1$, and $\overline{\operatorname{co}} G(x) = E^1$ contains no fixed point of G.

ACKNOWLEDGEMENT. The authors are grateful to Professor M. Edelstein for his suggestions and valuable guidance.

REFERENCES

1. M. Edelstein, On nonexpansive mappings, Proc. Amer. Math. Soc. 15 (1964), 689-695.

2. R. D. Holmes, *Contributions to the theory of contraction mappings*, Doctoral Dissertation, Dalhousie University, 1969.

DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA