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P E R I O D I C W A V E S IN A R U N N I N G S T R E A M 

BY 

MARVIN SHINBROT* 

1. Introduction. In this paper, we discuss questions of the existence and 
calculation of periodic, steady flows over periodic streambeds. There are some 
surprises. 

Problems such as this, of flows in running streams, are free-surface problems, 
and part of the difficulty is that the domain occupied by the fluid is not 
completely known a priori. That is, one is given a streambed, usually assumed to 
be described by a function ~B:R2-^R\ and one looks for the upper surface 
H:R2-^R1 so that the fluid flows in the domain1 

(1.1) G-{(X, Y, Z)e R3 :-B(X, Z)<Y<H(X, Z)}. 

A velocity potential is a function <Ï>:G—>Rl such that the velocity of the 
fluid at any point is the gradient of <£> at that point. (See, e.g., [8, 14, 17].) Such 
a potential necessarily satisfies Laplace's equation 

(1.2) ®xx + $ Y Y + d>zz - 0 in G. 

Also, if the flow is to be steady, there can be no component of the velocity 
normal to the boundary of G. Since the fluid velocity is the gradient of <ï>, its 
normal component is the normal component of the gradient of <t>—i.e., the 
normal derivative of <ï>. Thus, for steady flows, the normal derivative of <E> must 
be zero on the boundary of G, which gives 

(1.3) $ Y + BX3>X + B Z $ Z = 0 when Y=-B(X,Z), 

and 

(1.4) * Y = HX<Ï>X + HZ<Ï>Z when Y=H(X,Z). 

Since H is not known a priori, we expect a second condition on the free 
surface. This condition is usually that the pressure is constant (equal to 
atmospheric pressure) there, but, more generally, one can allow for the effects 
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(1 )It is common (cf. [17]) in problems of water waves to choose a coordinate system with the 
Y-axis vertical and positive upward. This allows for the reduction to two dimensions by simply 
omitting the variable Z. 
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of surface tension. In that case, the condition becomes that the pressure on the 
free surface differs from atomospheric pressure by a term proportional to the 
mean curvature of the surface [8, 9]. This reduces to the condition of constant 
pressure on the free surface when the constant of proportionality is zero. When 
surface tension is included, Bernoulli's equation [8, 14, 17] can be used to 
show that the condition on the pressure becomes 

(1.5) gH-—D2- „ D2H
rr>2 + ï\D3<ï>\2 = constant when Y=H(X,Z). 

P ^/I + \D2H\ 

Here, g denotes the acceleration due to gravity, p is the density of the fluid, 
and Tj^O is the surface tension. All three of these objects are assumed 
constant. D 2 denotes the two- and D 3 the three-dimensional gradient. As we 
remarked, (1.5) reduces to the constant pressure condition when T\ = 0. Notice 
that the problem remains nonlinear, even when TT = 0, because of the term 
||D3<Ï>|2 occurring in (1.5). 

The basic problem to be solved is (1.2)-(1.5), with — B:R2—>RX given and 
the functions H:R2->R1 and Q-.G-^R1 to be found. But there is one more 
constant to be specified, the mean speed, I/, of the flow. If we think of the 
problem stated as modelling the flow in a laboratory flume, U can be adjusted 
by using a more or less powerful pump. 

What follows is a brief outline of some known results when B is periodic. 
For a more detailed history, see [18, 19]. All but one of the known results that 
I am aware of are two-dimensional. This means only that B, H and <I> are 
independent of Z. Until further notice, then, we consider the two-dimensional 
problem. Also, most of the known results assume no surface tension, so that 
T t - 0. 

Even in this simplest case of two-dimensional flows without surface tension, 
it was indicated as early as 1886 that interesting things might be expected to 
happen. In 1886, Kelvin (see [8, p. 409]) looked at a simple linearized version 
of the problem, assuming B to be a simple sinusoid. He then showed that even 
the qualitative features of the flow may be expected to depend strongly on the 
mean speed U. In fact, Kelvin showed that, in his linear model, H is a sinusoid 
when B is, and that, when U is large enough, the top follows the bottom, the 
maxima of the top lying directly over the maxima of the bottom and the 
minima over the minima. However, he also showed that, at a certain speed Uu 

the flow inverts, so that, for U <U1, the maxima of the top lie over the minima 
of the bottom and the minima over the maxima! This phenomenon was 
recently verified experimentally [16]. 

The first rigorous results for the full, nonlinear problem are due to Gerber 
[1]. He considered two-dimensional flow in the absence of surface tension. 
Assuming B periodic and, like a sinusoid, having one maximum and one 
minimum per period, Gerber showed that, if U is large enough, a periodic flow 
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exists with the free surface also having one maximum and one minimum per 
period and following the bottom in the sense defined in the preceding para
graph. Gerber's proof uses Leray-Schauder theory and is strictly non-
constructive. 

In 1957, Moiseev [10] went further, making the same hypotheses as Gerber, 
that the flow is two-dimensional, without surface tension, and that the bottom 
has exactly two extrema per period. He also assumed that the variation of B is 
small enough, so that B does not deviate too far from being flat. In this case, 
Moiseev showed that there is a periodic flow, except for a sequence {Un} of 
mean speeds. He showed further that the only limit point of the sequence {Un} 
is zero, that the speeds Un are bifurcation points, and that the top follows the 
bottom when U>UU but that it inverts when2 U<U1. Moiseev uses the 
implicit function theorem and Krasnosel'skii's [6] bifurcation theorem. Accord
ingly, Moiseev's arguments are, in principle, at least, constructive, although one 
would have to put some time into the details. 

Still making the hypotheses that the flow is two-dimensional and without 
surface tension, Krasovskii [7] then showed that he can avoid Gerber's and 
Moiseev's hypothesis that the bottom has two extrema per period. Krasovskii 
also does not assume, as Moiseev did, that the bottom is nearly flat. Assuming 
only that the bottom is periodic and that U is large enough, Krasovskii showed 
that there is a periodic solution to the problem. He also showed that he was 
able to reproduce Gerber's result that the top follows the bottom when U is 
large, if B has only one maximum and one minimum per period. Krasovskii's 
methods involve the theory of monotone operators and cannot be called 
constructive. 

Also assuming the bottom nearly flat, Hewgill, Reeder & Shinbrot [3] 
recently rederived Moiseev's existence results by a different method and 
eliminated the hypothesis that B has only two extrema per period. The paper 
[3] is the first I know of that makes no use of the theory of functions of a 
complex variable. Accordingly, it is the first with the possibility of generaliza
tion to three dimensions3. However, there were still difficulties with the 
generalization, and it was only provided later. Hewgill, Reeder & Shinbrot 
invoked the hypothesis that B is nearly flat by assuming it to have the form 

(1.6) B = d0(l + efe), 

where d0 is the mean depth and £ is a (small) parameter. Let {Un} be the 

(2)Moiseev also claims that the top follows the bottom when U2k_l<U<U2k and inverts 
when U2k <U< U2k-v Since such behavior is not a feature of Kelvin's linear model, since it is not 
supported by experimental evidence [16], and since, finally, Moiseev's paper does not contain 
details of his proof, I view these further conclusions as doubtful, or, at best, unproved. 

(3) In different contexts, and to solve different problems, similar methods were used by Joseph 
[5] and by Sattinger [13]. 
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sequence of bifurcation speeds introduced by Moiseev. Hewgill, Reeder & 
Shinbrot then showed that, when U^ Un, the solution exists and is an analytic 
function of e in a neighborhood of £ ^ 0 . Accordingly, the solution can be 
found to any desired degree of accuracy by simply expanding H and $ in a 
series of powers of s and equating coefficients of like powers. (Actually, the 
process involves one additional step: for some details, see [3].) We call a 
solution regular if it is analytic in e in a neighborhood of 8 = 0. In the later 
sections, we discuss only regular solutions, since it is they which can be 
calculated explicitly. Incidentally, by showing the solution to be regular, 
Hewgill, Reeder & Shinbrot also proved Kelvin's calculations to be valid for 
small enough e (and U^ Un). 

The results of Moiseev and of Hewgill, Reeder & Shinbrot raise a curious 
question. They showed that periodic flows exist for all small enough s provided 
U£{Un}. They also showed that {Un} decreases to zero. But why should zero 
be a limit of singular velocities of any kind? After all, experience shows that, as 
the mean speed goes to zero, the flow simply grows more tranquil, eventually 
coming to a complete stop. This question was answered implicitly by the 
introduction of surface tension. In a series of papers by Beckert [2], Hilbig [4], 
and Zeidler [20] (see Zeidler [19, chap. 10] for a complete account of these 
results), these authors showed that, in the presence of surface tension, the 
problem has a solution except for a sequence {L^TO}, where {Un(0)} is 
Moiseev's sequence {Un} and has zero as its only limit point. When T \ > 0 , on 
the other hand, o° is the only limit point of { L ^ T ^ } , and {U^T^} is bounded 
away from zero. It follows, using the methods of [3] (see [15]), that regular flow 
exists in an interval 0 ^ U< U', and that this flow goes to zero as U I 0. 

The first—and, to this date, the only4—three-dimensional results are due to 
Shinbrot [15]. In [15], I discussed two- and three-dimensional periodic flows 
over periodic bottoms, with and without surface tension. The work [15] is the 
subject of the rest of this paper. 

2. The basic theorems. In this section, we state the main results proved in 
[15]. They are then interpreted in two and in three dimensions in §§3 and 4, 
respectively. 

2.1. The coordinate system. We always use a rectangular coordinate system 
defined in the following way. The Y-axis is vertical and points up. The plane 
Y = 0 is taken as the free surface when there is no flow (i.e., when U=0). The 
X-axis is chosen in the direction of the mean flow. (In two dimensions, this 
statement is redundant; in three dimensions, it means that the X- and Z-axes 
are chosen so that the mean value of d<&/dZ is zero.) In this coordinate system, 
we suppose the bottom to be described by a formula Y = ~B(X, Z ) < 0 , and we 

(4) See, however, [12] and, especially, [11], where different, but related problems in water 
waves are solved. 
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define d0 to be the mean value of B. Then, d0 is the mean depth when there is 
no flow. We always assume that B has the form (1.6): 

(2.1) B = d0(l + eb). 

Here, g is a parameter, and b has mean value zero. 

2.2. Dimensionless parameters. None of the results discussed in the intro
duction were originally stated in terms of U or Tl9 although they can be 
restated in those terms. Rather, as is usual (and usually most fruitful) in 
physical problems, the results are proved using dimensionless parameters that 
are measures of U and Tx. The usual parameters are the Froude number F and 
the Bond number T, defined by 

(2.2) F = ^~ and T = - T l 

gd0 Pgd0 

It is easy to see that F and r are dimensionless. Also, it turns out that, when B 
is periodic and has the form (2.1), the flow is generally completely determined 
by the three parameters F, r, and s. 

2.3. The sets 3^T. As indicated in the introduction, one can prove existence 
of periodic solutions of the problem (1.1)—(1.5) except when the Froude 
number lies in a certain set which depends on r. The set is different in two and 
in three dimensions, but, in order to state the main results without reference to 
dimension, we give the set the same name in both two and three dimensions. 

In two dimensions, let B have period Ld0. Then, when T ^ O is fixed, the set 
of Froude numbers that cause difficulty is defined by 

(23)2 H(^+T-T)tanhT-^=1'2'--
In three dimensions, the definition of F̂T is an extension of the set defined in 
(2.3)2. Here, we assume B doubly periodic, so that it is periodic in two 
directions with two periods. The X-axis is fixed, as in §2.1, by the direction of 
the mean flow. We suppose B is periodic in two different directions, making 
angles a and j3 with the X-axis. Without loss in generality, we may assume 
-7r /2<a , /3^=7T/2. We suppose also that B has period Ld0 in the direction a 
and Md0 in the direction ]8. For integers € and m, let 

2TT€ . 27rm . 
—— sin 3 ——— sin a 

L M 
sin (j8-o:) 

(2.4) 2TT€ lirm 
——- cos B —— cos a 

L M 
sm (a- ]3) 
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We can now define the set 3FT in three dimensions. It is given by 

(2.3)3 yT = { ^ ^ p / m t a n h P / m : < m = ±l ,±2 , . . . } . 
I A€m ) 

Notice that (2.3)2 is formally obtained from (2.3)3 by taking a = 0, )3 = 7i/2, 
and M = o°, as might be expected. 

2.4. Definition of a solution. In the statements of the theorems that follow, 
no precise smoothness conditions are given, either on B or the solution. Let us 
say here that B e C3 + a(K2) certainly suffices for the results, although one can 
do with quite a bit less. (See [3] and [15].) Also, although the precise 
conditions on the solution are not given, we can remark that all functions 
appearing in (1.1)—(1.5) are at least continuous. (Again, for details of this, see 
[15].) 

Once d0 is given, the numbers a, |3, L and M define a fundamental 
parallelogram of periodicity of B. We say that B is periodic-(a, Ld0; ]8, Md0), 
these four numbers defining the periodicity of B. By a solution of (1.2)-(1.5), 
we mean a pair (H, <I>) of sufficiently smooth functions satisfying (1.2)—(1.5), 
where G is the domain defined by (1.1). A periodic solution is a solution for 
which the functions (X, Z)»->H(X, Z) and 

(2.5) (X, Z ) H - > - U X + 0 ( X , yB(X, Z) + (1 + y)H(X, Z), Z) 

are periodic - ( a , Ld0; j8, Md0) for every y, —1< y < 0 . 
A remark about the complicated function (2.5) is, perhaps, in order. First, 

note that <ï> itself cannot be periodic, because d<$>/dX must have mean value U. 
This is the reason for the term -UX appearing in (2.5). Also, it would make no 
sense to say that (X, Z) •-> - UX + <I>(X, Y, Z) is periodic for fixed Y, since this 
function is not, in general, even defined on all of JR2 for all Y y»-> 
yB + (l + y)H is merely the simplest homotopy connecting —B to H such that 
(2.5) is defined on all of R2. 

Notice that, by a periodic solution, we mean a solution having the same 
periodicity properties (i.e., the same values of a, ]6, L and M) as B. 

Finally, recall that a solution is regular if it is analytic in e in a neighborhood 
of e = 0. 

2.5. The main results. We now have the definitions required to state the 
main results of [15]. The only ambiguity is in the definition of ^ T ; I remind the 
reader that £FT is defined by (2.3)2 in two dimensions and by (2.3)3 in three 
dimensions. The first result, then, is 

THEOREM 2.5.1. Let B have the form (2.1), where b is periodic and sufficiently 
smooth. If r > 0 , then (1.2)-(1.5) has a unique, periodic solution for all small 
enough \e\ if only F G [ 0 , ° ° ) \ ^ T . 
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Of course, this is a mere existence statement. However, we have, as 
indicated in the introduction. 

THEOREM 2.5.2. The solutions of theorem 2.5.1 are regular. Moreover, H = 
0(e) and <&=UX+0(s). If we write H=eH1 + 0(e2) and <P = 
UX+ £<£>! +0(e2), then (H1,<î>1) is the solution of the usual [16] linear water 
waves problem associated with (1.1)—(1.5). 

The last sentence here is the justification for Kelvin's conclusion, discussed in 
the introduction, of inversion of the two-dimensional flow when F passes 
through Ft = max 3FT. The argument here is valid for T > 0 (see [15]), while 
Kelvin's argument applies also when T = 0. However, we have the following 
result, which is the only difference (with regard to existence) between two- and 
three-dimensional flows. 

THEOREM 2.5.3. In two dimensions, theorems 2.5.1 and 2.5.2 remain valid 
also when T = 0. 

The difficulty with the case r = 0 in three dimensions is discussed in §4. It 
contains one of the surprises mentioned in the first paragraph of §1. 

It remains to ask what happens when F e f r In this case, we have 

THEOREM 2.5.4. Let a, L, /3, M and d0 be given. Let r ^ O . Then, there exists a 
periodic-(a, Ld0; j8, Md0) function b e C°(JR2) such that (1.2)—(1.5) has no regu
lar, periodic solution for any Fe 2FT. 

This shows that for Froude numbers in &*r there is the opportunity for the 
situation to be genuinely nasty. It is probably true, at least, that isolated points 
of £FT are bifurcation points and that there is a periodic solution, analytic in 
some power of s, although this is still an open question. More serious is the fact 
that points of 3FT are not always isolated, as we shall see. Whether there is any 
solution at all in such cases is doubtful. Again, though, the matter is open. 

The proofs of theorems 2.5-1-4 can be found in [15]. We leave this for the 
interested reader. 

3. Two-dimensional flows. Since, in all cases, there is a regular, periodic 
solution of our problem whenever F<£ 3FT, it remains to describe in some detail 
the sets SFT. We begin with two dimensions; the description of ^Tin that case, 
taken together with the results of §2, give just the theorems of Moiseev [10], 
Hewgill, Reeder & Shinbrot [3], Hilbig [4] and Zeidler [20]. 

3.1. The case T = 0 . When T = 0 , (2,3)2 gives 

(3.1) *0 = {^tanh^:/=l ,2 , . . . f 
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Thus, 3F0 is
 a sequence converging to zero. Theorem 2.5.3 gives, therefore, 

THEOREM 3.1. (Moiseev [10], Hewgill, Reeder & Shinbrot [3]). Let b be 
periodic, sufficiently smooth, and independent of Z. Then, the two-dimensional 
problem without surface tension has a unique, periodic solution for all small 
enough s, except for a sequence {F€} of Froude numbers whose only limit point is 
zero. Moreover, the problem always has a solution when the Froude number 
F ^ l . 

The only thing that does not follow immediately from (3.1) and theorem 
2.5.3 is the last sentence of theorem 3.1. However, m a x ^ v ^ F ^ 
(L/27r)tanh(27r/L)<l. Since the problem has a solution whenever F£cFT, and 
$FT contains n o F ^ l (for any L), the last sentence follows. 

3.2. The case T > 0 . When T > 0 , (2.3)2 gives immediately that 2FT is a 
sequence whose only limit point is infinity. Most interesting is the fact that 

(3.2) min &T ̂ m in ( — tanh p) > 0 . 
P>O \ p / 

These facts, together with theorem 2.5.3 give the following result. 

THEOREM 3.2 (Hilbig [4], Zeidler [19]). Let b be periodic, sufficiently 
smooth, and independent of Z. Then, if T > 0 , the two-dimensional problem has 
a unique, periodic solution for all small enough s, except for a sequence {F€(r)} of 
Froude numbers whose only limit point is °°. The minimum of {F€(T)} is positive 
when T > 0 , so the problem has a solution for all small enough Froude numbers. 

The last sentences of theorems 3.1 and 3.2 indicate that widely different 
results can be expected in the two cases when surface tension is present and 
when it is not. When surface tension is taken into account, the flow is perfectly 
regular in an interval [0, F') of Froude numbers. This is what our intuition 
would lead us to expect. On the other hand, when surface tension is neglected, 
zero is a limit point of Froude numbers at which bifurcation takes place [10]. It 
is surprising, but apparently true, that what makes our intuition correct about 
fluids at small Froude numbers is the presence of surface tension. 

4. Three-dimensional flows. It is impossible, of course, to make a flow 
perfectly two-dimensional in reality. Thus, the three-dimensional case holds 
most of the physical interest. What is most significant is the difference between 
the two- and the three-dimensional results when T = 0 . One can probably 
conclude that most earlier work on flows in a running stream—work in two 
dimensions with no surface tension—has little or no descriptive significance for 
actual flows. 

4.1. The case T = 0 . Because we only have theorems 2.5.1 and 2.5.2 availa
ble in three dimensions, and not theorem 2.5.3, we can say nothing positive 
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about existence in three dimensions when T = 0. However, we have theorem 
2.5.4 available to prove non-existence when Fe f T , even when T = 0 . 

In three dimensions, 3FT is defined by (2.3)3. When r = 0, we have 

LEMMA 4.1.1. In three dimensions, the set £F0 is dense in (O,00). 

The proof of lemma 4.1.1 is cumbersome and unenlightening, so we refer the 
reader to the proof given in [15]. 

When taken together with theorem 2.5.4, lemma 4.1.1 gives 

THEOREM 4.1.2 (Shinbrot [15]). Let a, L, /3, M and d0 be given, and let T = 0. 
Then, there exists a periodic-(a, Ld0, j(3, Md0) function b e C°°(R2) such that 
(1.2)-(1.5) has no regular, periodic solution for any Froude number in a dense 
subset of (0,o°). 

This means that the two-dimensional solutions of theorem 3.1 can in no 
sense be limits of three-dimensional solutions without surface tension. Since, 
furthermore, waves closely approximating two-dimensional ones can be ob
tained in practice [16], this probably means that the entire body of literature on 
two-dimensional waves without surface tension must be reappraised. Of 
course, before this reappraisal can be undertaken seriously, more work must be 
done on flows that are not regular. One thing is certain, however: modern 
theories of bifurcation are not equipped to handle situations where the possible 
bifurcation points are dense. 

4.2. The case T > 0 . When r > 0 , on the other hand, the two- and the 
three-dimensional results are in many ways the same. In particular, (2.4) shows 
that |A^m|^p^m, so that we obtain once again the lower bound (3.2) for 5FT. 
Also, since p^m->°° when either \€\ or |m|—>°°, while |A^m|^p^m, it follows 
easily that 

— - ^ p€m tanh p€m ->oo as either \£\ or \m\ ->oo. 

Therefore, we have the following analog of theorem 3.2. 

THEOREM 4.2. (Shinbrot [15]). Let b be doubly periodic and sufficiently 
smooth. Then, if r > 0 , the three-dimensional problem has a unique, periodic 
solution for all small enough e, except for a sequence {F€m(r)} of Froude numbers 
whose only limit point is infinity. The minimum of {F€m(r)} is positive when 
T > 0 , so the problem has a unique, regular solution for all small enough Froude 
numbers. 

This result and theorem 4.1.2 show that, in three dimensions, at least, the 
problem only has physical significance when r > 0 . 
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