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Following the stability analysis method in classic fluid dynamics, a linear stability equation
(LSE) suitable for rarefied flows is derived based on the Bhatnagar–Gross–Krook (BGK)
equation. The global method and singular value decomposition method are used for
modal and non-modal analysis, respectively. This approach is validated by results obtained
from Navier–Stokes (NS) equations. The modal analysis shows that LSEs based on NS
equations (NS-LSEs) begin to fail when the Knudsen number (Kn) increases past ∼0.01,
regardless of whether a slip model is used. When Kn ≥ 0.01, the growth rate of the least
stable mode is generally underestimated by the NS-LSEs. Under a fixed wavenumber, the
pattern (travelling or standing wave) of the least stable mode changes with Kn; when the
mode presents the same pattern, the growth rate decreases almost linearly with increasing
Kn; otherwise, rarefaction effects may not stabilize the flow. The characteristic lengths
of the different modes are different, and the single-scale classic stability analysis method
cannot predict multiple modes accurately, even when combined with a slip model and even
for continuum flow. However, non-modal analysis shows that this error does not affect
the transient growth because modes with small growth rates offer little contribution to
the transient growth. In rarefied flow, as long as the Mach number (Ma) is large enough,
transient growth will occur in some wavenumber ranges. The rarefaction effect plays a
stabilizing role in transient growth. The NS-LSEs-based method always overestimates the
maximum transient growth.

Key words: kinetic theory

1. Introduction

With the development of micromanufacturing technology, microelectromechanical
systems (MEMS) are attracting much attention due to their various advantages over
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conventional devices. MEMS refers to devices that have characteristic lengths 1 μm to
1 mm that are finding increased applications in a variety of areas, such as electronics,
biochemistry, medicine and aerospace. Microchannels are the fundamental part of MEMS.
Due to microsize effects, gas flows in a microchannel can fall into the continuum regime
(Kn ≤ 0.001), the slip regime (0.001 < Kn ≤ 0.1), and even the transition regime (0.1 <

Kn ≤ 10) (Ho & Tai 1998), where Kn is the Knudsen number, which is defined as the ratio
of the molecular mean free path to the characteristic length of the flow. Therefore, the
rarefaction effects cannot be ignored in understanding the flow physics of microchannel
flow. Although many studies have investigated the flow physics of microchannel flow
(Rostami, Mujumdar & Saniei 2002; Guo & Li 2003; Squires & Quake 2005), the flow
stability of microchannel flow considering rarefaction effects remains largely unexplored.
The flow stability characteristics at the microscale are quite different from those at
the macroscale. Understanding the flow stability characteristics of microchannel flow is
critical for the control of microfluidics and the performance improvement of MEMS.

In the continuum flow regime, the flows can be simulated using the Navier–Stokes
(NS) equations, and the linear stability theory based on the NS equations, which is
used to study how perturbations develop in the linear stage of transition, is mature. In
the slip regime, an important feature of these flows is that velocity slip appears at the
solid wall. To capture the slip velocity, slip boundary conditions are usually applied.
A brief introduction and review of the slip models can be found in the literature (Dongari,
Agrawal & Agrawala 2007; Cao et al. 2009; Zhang, Meng & Wei 2012). For flows in the
transition and free molecular regimes, the NS equations are invalid because the continuum
assumption breaks down; instead, the Boltzmann (model) equation can be used. The
methods for investigating rarefied gas flows based on the Boltzmann (model) equation
are generally divided into statistical and deterministic methods. The direct simulation
Monte Carlo (DSMC) method (Bird 1994) is a widely used statistical method, but it
usually suffers from a high computational cost and high statistical noise, especially in
simulating low-speed flows. Recently, some deterministic methods based on the discrete
velocity method (Broadwell 1964), such as the gas-kinetic unified algorithm (Li & Zhang
2004; Li et al. 2015), unified gas-kinetic scheme (UGKS) (Xu & Huang 2010; Huang,
Xu & Yu 2012), discrete unified gas-kinetic scheme (DUGKS) (Guo, Xu & Wang 2013;
Guo, Wang & Xu 2015) and conserved discrete unified gas kinetic scheme (CDUGKS)
(Liu et al. 2018; Chen et al. 2019), have been proposed. These deterministic methods have
been proven to simulate accurately the gas flow in various flow regimes from rarefied to
continuum, and have been applied successfully to a variety of flow problems in different
flow regimes, such as turbulent flows (Wang, Wang & Guo 2016; Bo et al. 2017; Zhang
et al. 2020), microflows (Liu, Bai & Zhong 2015; Zhu & Guo 2017), compressible flows
(Peng et al. 2016; Chen et al. 2020) and multiphase flows (Zhang, Yan & Guo 2018; Yang,
Zhong & Zhuo 2019), providing a reliable numerical scheme for the accurate calculation
of base flow in the stability analysis of rarefied flow.

The problems relating to the instability of rarefied gas flows and their transition
to turbulence were investigated using the DSMC method. The results for Bénard
flow (Cercignani & Stefanov 1992; Stefanov & Cercignani 1992), Taylor–Couette flow
between two cylinders (Riechelmann & Nanbu 1993; Stefanov & Cercignani 1993) and
microchannel flow (Stefanov & Cercignani 1994), focusing on Knudsen numbers of order
10−2, show that the flow is unstable under certain parameters, and rarefaction effects seem
to increase the critical value of the instability. In addition to two-dimensional flow, the
propagation of disturbances in the three-dimensional channel flow of a rarefied gas was
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investigated by Stefanov & Cercignani (1998), who observed some typical phenomena of
transition. It can be concluded that there is still flow instability even with a certain degree
of rarefaction. Therefore, it is necessary to carry out flow stability research considering
rarefaction effects.

Confined flows, such as in channels and pipes, are common in MEMS. The influences
of the slip velocity (length) on the flow stability have been widely studied based on NS
linear stability equations (NS-LSEs) with slip boundary conditions (Gersting & John 1974;
Vinogradova 1999; Spille, Rauh & BüHring 2000; Chu 2001, 2003, 2004; Lauga & Cossu
2005; Min & Kim 2005; He & Wang 2008; Průša 2009; Straughan & Harfash 2013;
Seo & Mani 2016; Pralits, Alinovi & Bottaro 2017; Chai & Song 2019; Xiong & Tao
2020; Chen & Song 2021). However, it should be noted that the slip velocity considered
here is caused not by rarefaction effects but by hydrophobic surfaces (Vinogradova 1999;
Min & Kim 2005; Seo & Mani 2016; Pralits et al. 2017; Xiong & Tao 2020; Chen &
Song 2021), polymers (Spille et al. 2000) and porous media (Gersting & John 1974;
Straughan & Harfash 2013). To our knowledge, the stability of low-speed microchannel
flow considering rarefaction effects has not been studied by the NS-LSEs with slip models.

The NS equations with slip boundary conditions become invalid for highly rarefied
gas flows. Yoshida & Aoki (2006) analysed the linear stability of the cylindrical
Couette flow of a rarefied gas for the first time based on the Bhatnagar–Gross–Krook
(BGK) model of the Boltzmann equation (Boltzmann–BGK) (Bhatnagar, Gross & Krook
1954). The solution is rather complicated since the eigenvalue problem based on the
Boltzmann–BGK model involves many independent variables and integral and differential
operators. Yoshida & Aoki (2006) avoided solving the generalized eigenvalue problem
directly by solving the initial and boundary value problem through the finite difference
method, obtaining the time evolution of the disturbance variables, and further obtaining
the maximum growth rate of the disturbance. Finally, the parameter range where the
cylindrical Couette flow is unstable was clarified.

To conclude, the stability analysis methods and analyses considering the rarefaction
effects mentioned above have played a vital role in understanding the influence of
rarefaction effects on flow stability. However, these methods and analyses still have some
limitations. The DSMC method is efficient for flows at high Mach numbers with high
degrees of rarefaction. However, recent studies suggest that the instability of the flow
may occur only in the near-continuum flow regime. Moreover, Sone, Handa & Sugimoto
(2002) showed that the DSMC method inevitably introduces disturbances, which limit its
application in flow stability analyses. Quite a few studies based on the NS equations with
slip boundary conditions have been devoted to the stability analysis of incompressible
flows. However, the slip velocity considered is caused not by rarefaction effects but by
porous media, hydrophobic surfaces, etc. The influence of the velocity slip caused by the
rarefaction effects on the stability of incompressible flows remains to be studied. Moreover,
according to the review article of slip models by Zhang et al. (2012), there are various slip
models and many empirical parameters, so the results may be affected by the slip model
and empirical parameters selected. In addition, Gan & Wu (2006) noted that the slip model
instability is also important. If the instability is purely a model instability, then caution
should be exercised in performing a stability analysis using the slip model. Therefore,
the above-mentioned factors affect the application of a slip model in the stability analysis
of slip flow. On the other hand, the correctness or accuracy of the slip model used for
stability analysis considering rarefaction effects needs further study. Finally, the method
based on the NS equations with slip boundary conditions is applicable only to the slip
flow regime, but the critical Knudsen number of the instability may not be determined by
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this method. It is widely accepted that the Boltzmann (model) equation is applicable to all
Knudsen number flows. Therefore, the stability analysis method based on the Boltzmann
(model) equation provides a new way to study flow stability problems. However, the
current research based on the Boltzmann (model) equation can obtain only the most
unstable mode. From the perspective of predicting transitions, the most unstable mode
is supposed to be the most important mode, but from the perspective of transition control,
studying the behaviour of different modes may provide some theoretical support. For
example, the stability analysis of a compressible flow shows that synchronization between
the first two acoustic modes is observed when their phase speeds are comparable. Such
synchronizations can result in high growth rates, which often lead to dominant instabilities
in the flow (Fedorov & Tumin 2011; Ramachandran et al. 2016). Therefore, analysing the
synchronization between different modes may provide some theoretical support for flow
control. In addition, for some instability problems, particularly the instability in shear
flows, the modal stability analysis fails to match most experimental results because it
describes only the asymptotic fate of the perturbations and fails to capture short-term
characteristics (Schmid 2007). At this time, the non-modal linear stability approach is
introduced, which needs to consider multiple modes. Therefore, the accurate calculation
of multiple modes is a prerequisite for non-modal analysis.

In the present work, to overcome the limitations of the stability analysis methods
discussed above and provide a reliable means for the stability analysis of rarefied gas
flows, a novel multiscale approach based on kinetic theory is developed for low-speed
isothermal flows by using the Boltzmann–BGK equation. To illuminate the influences of
the rarefaction effect on the stability of low-speed isothermal microchannel flows, and
verify the correctness and accuracy of the NS equations with the slip boundary conditions
for the stability analysis of slip flows, the newly developed approach and NS-LSEs with
slip model are used to carry out a stability analysis. Since the two-dimensional plane
Couette flow is a simple and archetypal wall-bounded flow, we use it as the physical model
for the modal stability analysis. To our knowledge, corresponding research has not been
reported in the literature.

The rest of the paper is organized as follows. In § 2, the Boltzmann–BGK equation is
described. The updating rule of the base flow solver CDUGKS and boundary conditions
for continuum and rarefied flows are given in § 3. The linear stability equations (LSEs),
including the NS and BGK equations, are presented in § 4. The numerical method and the
linear stability equations in discrete form are described in § 5. The numerical results and
discussion are presented in § 6. Finally, conclusions are drawn in § 7.

2. Boltzmann–BGK equation

Consider a flow bounded by two infinite parallel plates moving in opposite directions at
the same speed U∗

w at y∗ = ±H/2, where H is the distance between the two parallel plates,
as shown in figure 1. Let x∗ denote the longitudinal direction along the channel centreline,
and let y∗ denote the normal direction perpendicular to the wall. Under fully developed
flow conditions, the velocity component in the y∗-direction (denoted by v∗) vanishes,
and the velocity component in the x∗-direction (denoted by u∗) is dependent solely upon
y∗. The velocity vector of the steady base flow is denoted by ū∗( y∗) = [ū∗( y∗), 0]. The
Boltzmann–BGK equation used for base flow simulation and stability analysis is given by

∂f ∗

∂t∗
+ ξ∗ · ∂f ∗

∂r∗ = Ω∗ ≡ − 1
τ ∗
[

f ∗ − f e∗] , (2.1)
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Figure 1. Schematic of the plane Couette flow.

where f (r∗, ξ∗, t∗) is the velocity distribution function for particles moving in
D-dimensional velocity space with velocity ξ∗ = (ξ∗

1 , . . . , ξ∗
D) at position r∗ and time t∗.

Here, Ω∗ is the collision term, τ ∗ = μ∗/p∗ is the relaxation time, μ∗ is the dynamic
viscosity, p∗ = ρ∗RT∗ is static pressure, T∗ is the temperature, ρ∗ is the density, R is the
gas constant, and f e∗ is the equilibrium distribution function. We compute f e∗ as

f e∗ = ρ∗

(2πRT∗)D/2 exp
(

−|ξ∗ − u∗|2
2RT∗

)
. (2.2)

The conservative flow variables are computed by the moments of the velocity
distribution function:

ρ∗ =
∫

f ∗ dξ∗, (2.3a)

ρ∗u∗ =
∫

ξ∗f ∗ dξ∗. (2.3b)

In the present paper, the power law for the dynamic viscosity μ∗ is used:

μ∗ = μ∞
(

T∗

T∞

)ω

, (2.4)

where μ∞ is the viscosity at the reference temperature T∞, and ω is an index related to
the hard sphere or variable hard sphere model. We consider a hard sphere model. For this
model, ω = 0.5.

Dimensionless variables are used in the present paper. The density and temperature
under standard conditions are used as reference variables, i.e.

ρref = ρ∞, Tref = T∞. (2.5a,b)

The length is scaled by Lref = H/2. Velocities are scaled by Uref = √
2RTref , time by

tref = Lref /Uref , pressure by pref = ρref U2
ref , dynamic viscosity by μref = ρref Uref Lref ,

and the velocity distribution function by fref = ρref /U2
ref .

The dimensionless Boltzmann–BGK equation can be rewritten as

∂f
∂t

+ ξ · ∂f
∂r

= Ω = − f − f e

τ
, (2.6)

where τ = 15 Kn
√

π/((5 − 2ω)(7 − 2ω)ρT1−ω).
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The equilibrium distribution function is

f e = ρ

πT
exp

(
−(ξ − u)2

T

)
. (2.7)

The relevant dimensionless parameters are the Mach number Ma, Reynolds number Re,
and Knudsen number Kn:

Ma = U∗
w√

γ RTref
, Re = ρref U∗

wLref

μ∞
, Kn = λref

Lref
, (2.8a–c)

where γ is the ratio of the specific heats, and λref is the mean path of the gas molecules. In
addition, λref is related to the reference density and the reference dynamic viscosity (Shen
2006):

λref = 2μ∞(5 − 2ω)(7 − 2ω)

15ρref (2πRTref )1/2 . (2.9)

The relationship between Ma, Re and Kn can be derived from (2.8a–c) and (2.9):

Kn = 2(5 − 2ω)(7 − 2ω) Ma
15 Re

√
γ

2π
. (2.10)

3. Base flow solver for rarefied gas flows: CDUGKS

CDUGKS (Liu et al. 2018; Chen et al. 2019), a successful numerical method for rarefied
gas flows, is used to obtain the macroscopic flow variables and the velocity distribution
function of the base flow. To ensure that the solution is rigorous, the evolution procedure
of CDUGKS is introduced as follows.

3.1. Updating rule of CDUGKS
Integrating (2.6) on a control volume Vj centred at xj from time tn to tn+1, one can obtain

f n+1
j (ξ) − f n

j (ξ) + 	t∣∣Vj
∣∣ Fn+1/2(ξ) = 	t

2

[
Ωn+1

j (ξ) + Ωn
j (ξ)

]
, (3.1)

where 	t = tn+1 − tn is the time step, and Fn+1/2(ξ) is the microflux across the cell
interface given by

Fn+1/2(ξ) =
∫

∂Vj

(ξ · n) f (r, ξ , tn+1/2)dS, (3.2)

where ∂Vj represents the surface enclosing Vj, and n is the unit vector orthogonal to ∂Vj.
Equation (3.1) can be written as an explicit scheme:

f n+1
j =

(
1 + 	t

2

8ρn+1
j

5 Kn
√

π

)−1

×
[

f n
j − 	t

Vj
Fn+1/2

j + 	t
2

(
8ρn+1

j

5 Kn
√

π
f e,n+1
j +

8ρn
j

5 Kn
√

π
( f e,n

j − f n
j )

)]
. (3.3)

Taking the conservation moment (1, ξ)T into (3.1), and given the conservative properties
of the collision operators, the unknown conservative variables on the right-hand side of
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(3.3) can be obtained from(
ρn+1

j
(ρu)n+1

j

)
=
(

ρn
j

(ρu)n
j

)
− 	t∣∣Vj

∣∣
∫

∂Vj

(ξ · n)

(
f (r, ξ , tn+1/2)

ξ f (r, ξ , tn+1/2)

)
dS dξ . (3.4)

To evaluate Fn+1/2, the distribution function f (r, ξ , tn+1/2) on the interface of the cell
needs to be obtained, and then (3.3) can be updated.

To obtain f (r, ξ , tn+1/2), (2.6) is integrated within a half time step h = 	t/2 along the
characteristic line from tn to tn+1/2 that ends at the interface centre rb:

f (rb, ξ , tn + h) − f (rb − ξh, ξ , tn) = h
2

[
Ω(rb, ξ , tn + h) + Ω(rb − ξh, ξ , tn)

]
. (3.5)

To remove the implicit term on the right-hand side of (3.5), two new distribution
functions are introduced and defined as

f̄ = f − h
2

Ω = 5 Kn
√

π + 4hρ

5 Kn
√

π
f − 4hρ

5 Kn
√

π
f e, (3.6a)

f̄ + = f + h
2

Ω = 5 Kn
√

π − 4hρ

5 Kn
√

π
f + 4hρ

5 Kn
√

π
f e. (3.6b)

Then (3.5) can be written as

f̄ (rb, ξ , tn + h) = f̄ + (rb − ξh, ξ , tn) . (3.7)

The right-hand side of (3.7) is approximated as

f̄ + (rb − ξh, ξ , tn) = f̄ + (rc, ξ , tn) + ∇f̄ + (rc, ξ , tn) · (rb − ξh − xc) , rb − ξh ∈ Vj,
(3.8)

where rc denotes the cell centre.
From (3.6a), (3.7) and (3.8), f (r, ξ , tn+1/2) can be obtained:

f = 5 Kn
√

π

5 Kn
√

π + 4hρ

[
f̄ + (rc, ξ , tn) + ∇f̄ + (rc, ξ , tn) · (rb − ξh − xc)

]
+ 4hρ

5 Kn
√

π + 4hρ
f e. (3.9)

Finally, Fn+1/2 can be evaluated according to (3.2) and (3.9).
Numerical integration is used in the computation. Gauss–Hermite (Galant 1969; Shizgal

1981) and Newton–Cotes quadratures are used commonly. The Gauss–Hermite quadrature
has a relatively high accuracy compared with the Newton–Cotes quadrature (Yang et al.
2016; Wang et al. 2019). It is suitable for the case in which the distribution function is close
to the local equilibrium state. However, for high Mach number and highly non-equilibrium
flows, the discrete velocities determined in this way may not be appropriate because
the distribution function deviates from equilibrium. In such cases, the Newton–Cotes
quadrature with a relatively large number of discrete nodes is preferred. However, the
computational cost will also increase. According to Guo et al. (2013), the Gauss–Hermite
quadrature provides satisfactory predictions for low-speed isothermal flow. Therefore,
to avoid unnecessary computational costs, the Gauss–Hermite quadrature is used to
determine the discrete velocities and weights in the present paper. However, it should
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be noted that whether they are used to obtain the base flow or solve the stability
equation, the numerical integration methods do not affect the analysis framework and
need only to replace the abscissas and associated quadrature weights. Therefore, for
highly non-equilibrium flows where the distribution function deviates from the local
equilibrium state, the method that we developed combined with the Newton–Cotes rule
is still applicable.

3.2. Boundary conditions
In the continuum flow regime, the Knudsen number is very small, and the slip velocity
can be ignored. Wu et al. (2016) introduced a non-equilibrium extrapolation scheme into
CDUGKS to realize the boundary no-slip condition. In the present paper, this boundary
condition is used for the continuum flow. The distribution function reflected from the wall
located at the interface rw can be determined by

f (rw, ξ , t + h) = f eq(ξ ; ρw, uw) + f (rnc, ξ , t + h) − f eq(ξ ; ρnc, unc), ξ · nw > 0,

(3.10)

where nw is the unit vector normal to the wall pointing to the cell, and nc denotes the
neighbouring cell of rw.

The diffuse-scattering scheme (Guo et al. 2013) is used in rarefied cases. The
distribution function reflected from the wall becomes

f (rw, ξ , t + h) = f eq(ξ ; ρw, uw), ξ · nw > 0, (3.11)

where ρw is determined by the condition that no particles can pass through the wall,

ρw = −
∫

ξ ·n<0
(ξ · n) f (rw, ξ , t + h) ×

[∫
ξ ·n>0

(ξ · n) f e(ξ ; 1, uw)

]−1

. (3.12)

4. LSEs based on the NS and BGK equations

In the present paper, the perturbed fluid is not assumed to be incompressible. Before we
derive the LSE based on the BGK equation (BGK-LSE), we first introduce the NS-LSEs
with a non-zero disturbance density.

4.1. NS-LSEs
Using (2.9) of the viscosity with ω = 0.5 for the NS equations, the dimensionless form of
the two-dimensional isothermal NS equations and the equation of state are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (4.1a)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∂P

∂x
+ 5 Kn

√
π

16

(
∂τxx

∂x
+ ∂τyx

∂y

)
, (4.1b)

∂(ρv)

∂t
+ ∇ · (ρvu) = −∂P

∂y
+ 5 Kn

√
π

16

(
∂τxy

∂x
+ ∂τyy

∂y

)
, (4.1c)

P = 1
2ρ. (4.1d)
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In the continuum flow regime, the no-slip boundary conditions, which have been
employed extensively in classic fluid dynamics, are

u(±1) = ±Uw, v(±1) = 0. (4.2a,b)
However, in the slip flow regime, velocity slip might exist at the wall. The first-order

velocity slip boundary condition (Sone 2007) is commonly used to model such rarefaction
effects in the slip flow regime as

u(±1) = ± Uw ∓ χ
∂u
∂y

∣∣∣∣
y=±1

, v(±1) = 0, (4.3a,b)

where χ = 1.254
√

π Kn/2 is the first-order coefficient of the velocity slip for a hard sphere
gas (Sone 2007).

The base flow denoted by the overbar is assumed to be steady and unidirectional,
and ρ̄( y) = 1, P̄( y) = 1

2 . This leads to zero solutions for the continuity equations. The
x-momentum can be simplified to

dū
dy

= const. (4.4)

For the continuum flow case, by making use of the no-slip boundary conditions (4.2a,b),
the solution of (4.4) yields

ū( y) = ±Uwy. (4.5)
For the slip flow case, considering the first-order velocity slip boundary conditions

(4.3a,b), the base flow solution is given by

ū( y) = Uw

1 + χ
y. (4.6)

Assume that the two-dimensional disturbances are superimposed on the base flow. The
instantaneous flow variables u, v, ρ and P can be decomposed into base flows and unsteady
perturbation as

u = ū( y) + ũ(x, y, t), v = ṽ(x, y, t),

ρ = ρ̄( y) + ρ̃(x, y, t), P = P̄( y) + P̃(x, y, t),

}
(4.7)

where the ∼ denotes the perturbation variable.
Here, p̃ and ρ̃ have the relation

P̃ = ρ̃

2
. (4.8)

Substituting (4.7) and (4.8) into (4.1), and dropping the nonlinear terms, one can obtain
the non-dimensional linearized perturbation equations (after dropping the overbar from
the base flow variables)

2
∂P̃
∂t

+ ρ
∂ ũ
∂x

+ 2u
∂P̃
∂x

+ ∂ρ

∂y
ṽ + ρ

∂ṽ

∂y
= 0, (4.9a)

ρ

[
∂ ũ
∂t

+ u
∂ ũ
∂x

+ ṽ
∂u
∂y

]
= −∂P̃

∂x
+ 5 Kn

√
π

16

(
l2

∂2ũ
∂x2 + l1

∂2ṽ

∂xy
+ ∂2ũ

∂y2

)
, (4.9b)

ρ

[
∂ṽ

∂t
+ u

∂ṽ

∂x

]
= −∂P̃

∂y
+ 5 Kn

√
π

16

(
∂2ṽ

∂x2 + l1
∂2ũ
∂xy

+ l2
∂2ṽ

∂y2

)
, (4.9c)

where li = i − 2
3 .
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In the normal mode analysis, the perturbation quantities are assumed to be represented
by harmonic waves of the form

(ũ, ṽ) = [û( y), v̂( y)] exp(i(αx − � t)), (4.10a)

P̃ = P̂( y) exp(i(αx − � t)), (4.10b)

where α is the wavenumber in the x-direction, and � is the frequency of the disturbance
waves (and i = √−1). These two parameters are generally complex numbers. In temporal
stability theory, the wavenumber is real and the frequency is complex, while the converse
is true in spatial stability theory. Temporal stability is considered in the present paper.

The complex phase speed is defined as

c = �/α = cr + ici. (4.11)

In temporal stability theory, the imaginary part of the complex phase speed represents
the growth rate. If ci < 0, then the perturbations decay in time, and if ci > 0, then the
perturbations grow exponentially. If ci = 0, then the perturbation is said to be neutrally
stable. The real part of the complex phase speed represents the phase speed of the
disturbance wave.

Substituting (4.10) into (4.9), the LSEs are obtained as

ρ(iα) û + ∂ρ

∂y
v̂ + ρ

∂v̂

∂y
+ (2uiα − 2i�)p̂ = 0, (4.12a)[

ρ(−i� + iαu) − 5 Kn
√

π

16
(iα)2l2

]
û + ρ

∂u
∂y

v̂ − 5 Kn
√

π

16
∂2û
∂y2

−5 Kn
√

π

16
l1iα

∂v̂

∂y
+ iαP̂ = 0, (4.12b)[

ρ(−i� + iαu) − 5 Kn
√

π

16
(iα)2

]
v̂ − 5 Kn

√
π

16
l1(iα)

∂ û
∂y

−5 Kn
√

π

16
l2

∂2v̂

∂y2 + ∂P̂
∂y

= 0. (4.12c)

The LSE in (4.12) is in the form described by Kn. According to (2.10), it can also be
written in the form described by Ma and Re. It is different from the classic incompressible
Orr–Sommerfeld equation (Lin 1955), which does not include Ma and the disturbance
density, and cannot be used to analyse the influence of Kn.

The no-slip boundary conditions for (4.12) are

û(±1) = v̂(±1) = ∂P̂
∂y

∣∣∣∣∣
y=±1

= 0. (4.13)

For slip flow, (4.12) are supplemented by first-order velocity slip boundary conditions

û(±1) = ∓χ
∂ û
∂y

∣∣∣∣
y−±1

, v(±1) = ∂P̂
∂y

∣∣∣∣∣
y=±1

= 0. (4.14a,b)

Equations (4.12) with boundary conditions (4.13) or (4.14a,b) constitute an eigenvalue
problem, which is described by the dispersion relation

� = (α; Kn). (4.15)
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Linear stability analysis method for a rarefied flow

4.2. BGK-LSE
The two-dimensional isothermal BGK equation reads

∂f
∂t

+ ξx
∂f
∂x

+ ξy
∂f
∂y

= 8ρ

5 Kn
√

π
( f e − f ). (4.16)

By introducing the reduced distribution function to remove the dependence of the
distribution function on ξz, one can obtain

g(x, y, ξx, ξy) =
∫ ∞

−∞
f (x, y, ξx, ξy, ξz) dξz. (4.17)

From (4.17), (4.16) can be expressed as

∂g
∂t

+ ξx
∂g
∂x

+ ξy
∂g
∂y

= 8ρ

5 Kn
√

π
(ge − g), (4.18)

where ge = (ρ/π) exp(−(ξ − u)2).
The base flow ρ̄ and ū are the moments of the distribution function ḡ, and P̄ can be

obtained from the equations of state:

ρ̄ =
∫

ḡ dξ , (4.19a)

ū = 1
ρ̄

∫
ξ ḡ dξ , (4.19b)

P̄ = 1
2 ρ̄ . (4.19c)

Also, ge can be obtained by ρ̄ and ū:

ge = ρ̄

π
exp

[
− (ξ − ū)2

]
. (4.20)

The instantaneous distribution function can be written as

g = ḡ(y, ξx, ξy) + g̃(t, x, y, ξx, ξy), (4.21a)

ge = ge(y, ξx, ξy) + g̃e(t, x, y, ξx, ξy). (4.21b)

Substituting (4.7) and (4.21) into (4.18), we obtain(
∂ ḡ
∂t

+ ξx
∂ ḡ
∂x

+ ξy
∂ ḡ
∂y

)
+ ∂ g̃

∂t
+ ξx

∂ g̃
∂x

+ ξy
∂ g̃
∂y

= 8ρ̄
(
ge − ḡ

)
5 Kn

√
π

+ 8
5 Kn

√
π

[
ρ̄
(
g̃e − g̃

)+ ρ̃
(
ge − ḡ

)+ ρ̃g̃e − ρ̃g̃
]
. (4.22)

Because the base flow satisfies (4.18), the first term on the left- and right-hand sides of
(4.22) is dropped. After dropping the nonlinear terms, one can obtain the non-dimensional
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linearized perturbation equations

∂ g̃
∂t

+ ξx
∂ g̃
∂x

+ ξy
∂ g̃
∂y

= 8
5 Kn

√
π

[
ρ̃
(
ge − ḡ

)+ ρ̄
(
g̃e − g̃

)]
, (4.23)

where g̃e can be obtained from

g̃e = ∂ge

∂ρ̄
ρ̃ + ∂ge

∂ ū
ũ + ∂ge

∂v̄
ṽ. (4.24)

Furthermore, (4.24) can be written as

g̃e = ge
(

ρ̃

ρ̄
+ 2((ξx − ū)ũ + ξyṽ)

)
. (4.25)

The perturbation flow variables ρ̃, ũ and ṽ can be computed from

ρ̃ =
∫

g dξ −
∫

ḡ dξ , (4.26a)

ũ = 1
ρ

∫
ξxg dξ − 1

ρ̄

∫
ξxḡ dξ , (4.26b)

ṽ = 1
ρ

∫
ξyg dξ − 1

ρ̄

∫
ξyḡ dξ . (4.26c)

Finally, (4.26) can be simplified to

ρ̃ =
∫

g̃ dξ , (4.27a)

ũ = 1
ρ̄

∫
(ξx − ū)g̃ dξ , (4.27b)

ṽ = 1
ρ̄

∫
ξyg̃ dξ . (4.27c)

The perturbation density and perturbation distribution function can be written in the
form of normal modes:

ρ̃ = ρ̂ ( y) exp(i(αx − � t)), (4.28a)

g̃ = ĝ(y, ξx, ξy) exp(i(αx − � t)), (4.28b)

g̃e = ĝe(y, ξx, ξy) exp(i(αx − � t)). (4.28c)

Substituting (4.28) into (4.23), we obtain the linearized stability equation (after dropping
the overbar from the base flow variables)

−i� ĝ + iαξxĝ + ξy
∂ ĝ
∂y

= 8ρ

5 Kn
√

π
(ĝe − ĝ) + 8(ge − ḡ)

5 Kn
√

π
ρ̂, (4.29)

where ĝe is the equilibrium distribution function, defined as

ĝe = ge
(

ρ̂

ρ
+ 2((ξx − u)û + ξyv̂)

)
. (4.30)
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Linear stability analysis method for a rarefied flow

The macro perturbation quantities can be computed from the perturbation distribution
function and the base flow variable:

ρ̂ =
∫

ĝ dξ , (4.31a)

û = 1
ρ

∫
(ξx − u) ĝ dξ , (4.31b)

v̂ = 1
ρ

∫
ξyĝ dξ . (4.31c)

The boundary conditions for (4.29) are the same as those of (3.10) and (3.11).
Similarly, (4.29) and the boundary conditions also constitute an eigenvalue problem

described by the dispersion relation (4.15).

5. Numerical method for the LSEs

The global method is used to solve the discrete systems of the BGK-LSE and NS-LSEs,
and the Chebyshev spectral collocation method (Malik 1990) is used to discretize the
equations.

5.1. Discrete form of the NS-LSEs
By using the Chebyshev spectral collocation method, (4.12) can be written at the
collocation points as

ρ(ζj) (iα) û(ζj) + ∂ρ(ζj)

∂y
v̂(ζj) + ρ(ζj)

N∑
k=0

Ejk v̂(ζk) + (2u(ζj) iα − 2i�) p̂(ζj) = 0,

(5.1a)[
ρ(ζj) (−i� + iα u(ζj)) − 5 Kn

√
π

16
(iα)2l2

]
û(ζj) + ρ(ζj)

∂u(ζj)

∂y
v̂(ζj)

− 5 Kn
√

π

16

N∑
k=0

E′′
jk û(ζk) − 5 Kn

√
π

16
l1iα

N∑
k=0

Ejk v̂(ζk) + iα P̂(ζj) = 0, (5.1b)

[
ρ(ζj) (−i� + iαu) − 5 Kn

√
π

16
(iα)2

]
v̂(ζj) − 5 Kn

√
π

16
l1(iα)

N∑
k=0

Ejk û(ζk)

− 5 Kn
√

π

16
l2

N∑
k=0

E′′
jk v̂(ζk) +

N∑
k=0

Ejk P̂(ζk) = 0. (5.1c)

The no-slip boundary conditions at the wall ζw are enforced as

û(ζw) = v̂(ζw) =
N∑

k=0

Ejk( j = ζw) p̂(ζk) = 0. (5.2)
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The slip boundary conditions at the wall ζw are given by

û(ζw = ±1) = ∓χ

N∑
k=0

Ejk( j = ζw) û(ζk), v̂(ζw) =
N∑

k=0

Ejk( j = ζw) p̂(ζk) = 0.

(5.3a,b)

5.2. Discrete form of the BGK-LSE
Equation (4.29) can be written at the collocation points as(

iαξx,k + 8ρ(ζj)

5 Kn
√

π

)
ĝk(ζj) −

(
8(ge

k(ζj) − g(ζj))

5 Kn
√

π
+ 8ge

k(ζj)

5 Kn
√

π

) Q∑
p=0

Wp ĝp(ζj)

+ ξy,k

N∑
m=0

Ejm ĝk(ζm) − 16
5 Kn

√
π

ge
k(ζj)(ξx,k − u(ζj))

Q∑
p=0

Wp(ξx,p − u(ζj))ĝp(ζj)

− 16
5 Kn

√
π

ge
k(ζj) ξy,k

Q∑
p=0

Wpξy,p ĝp(ζj) = � i ĝk(ζj), (5.4)

where Wp are the weights of the Gauss–Hermite quadrature.
The non-equilibrium extrapolation scheme (3.10) can be written as

ĝk(ζw) − Ak(ζw)

Q∑
p=0

Wp ĝp(ζw) + Ak(ζnc)

Q∑
p=0

Wp ĝp(ζnc)

+ Bk(ζnc)

Q∑
p=0

Wp(ξx,p − u(ζnc))ĝp(ζnc) + Ck(ζnc)

Q∑
p=0

Wpξy,p ĝp(ζnc) − ĝk(ζnc) = 0.

(5.5)

The diffuse-scattering scheme (3.11) can be written as

ĝk(ζw) − Ak(ζw)

Q∑
p=0

Wp ĝp(ζw) − Bk(ζw)

Q∑
p=0

Wp(ξx,p − u(ζw))ĝp(ζw)

− Ck(ζw)

Q∑
p=0

Wpξy,p ĝp(ζw) = 0, (5.6)

where A, B and C in (5.5) and (5.6) are

A = f e

ρ
, B = 2f e(ξx − u), C = 2f eξy. (5.7a–c)

The eigenvalues and eigenfunctions of the discretized system are solved using the QZ
eigenvalue algorithm.
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Linear stability analysis method for a rarefied flow

6. Results and discussion

In this section, the stability results of low-speed isothermal plane Couette flow are
presented. The no-slip base flow solution of the NS equations with no-slip perturbation
boundary conditions (termed N–N), the slip base flow solution of the NS equations with
slip perturbation boundary conditions (termed S–S), and the base flow numerical solution
of the BGK equation with non-equilibrium extrapolation and diffuse-scattering schemes,
are used to study the flow stability.

The complex phase speed cr is scaled by the plate velocity. Because the modes are
symmetric about the real axis cr = 0, only the modes with −1 < cr ≤ 0 are analysed. In
addition, unless otherwise specified, the moving speed of the plate is Ma = 0.1.

6.1. Validation

6.1.1. Validation of the base flows
The base flows of plane Couette flow obtained by the BGK equation in different flow
regimes are in good agreement with the reference solutions (Sone, Takata & Ohwada
1990; Park, Bahukudumbi & Beskok 2004), which are not presented here. The velocity
profiles for continuum and slip base flows (Kn = 1 × 10−2, 2 × 10−2, 4 × 10−2) are
shown comparatively in figure 2, in which the continuum base flow is an analytical solution
of the NS equations with no-slip boundary conditions, and slip base flows are obtained by
the BGK equation with the diffuse-scattering scheme and NS equations with slip boundary
conditions. For the slip base flows, the non-uniform mesh (Guo et al. 2013) is used for
discrete physical space, which can better improve the prediction of the local flow field, such
as the structure of the Knudsen layer near the wall. The discrete nodes (xi, yj) are generated
by xi = (ηx,i + ηx,i+1)/2, yj = (ηy,j + ηy,j+1) − 1.0 for 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1,
where ηx,i and ηy,j are defined by

ηx,i = 2i/Ny, i = 0, 1, . . . , Nx, ηy,j = 1
2

+ tanh[θ( j/Ny − 0.5)]
2 tanh(θ/2)

, j = 0, 1, . . . , Ny,

(6.1)

in which θ is a constant that determines the distribution of the grid. A large value of θ leads
to a dense distribution of the mesh near the walls. In the present paper, θ is set to 3.5, and
Nx × Ny = 5 × 100. With Knudsen layer thickness 1.5λ (Ohwada, Sone & Aoki 1989), in
the case Kn = 4 × 10−2, there are 10 grid nodes in the Knudsen layer. The velocity space
discrete nodes and weight coefficients are determined by the Gauss–Hermite quadrature
with 24 × 24 velocity nodes. As shown in figure 2, the slip base flow velocity profiles
obtained by the BGK equation show similar variations but exhibit quantitative differences.
The overall solution gradually deviates from the solution of continuum flow with the
increase in the Knudsen number. There are nonlinear flow characteristics within the
Knudsen layer, and velocity slip occurs at the wall; the proportions of the Knudsen layer
in the whole flow and the slip velocity increase with the Knudsen number. The continuum
base flow velocity profile is merely a straight line. In addition, comparing the slip base flow
velocity profiles obtained by the BGK and NS equations, it can be seen that applying the
slip boundary conditions does provide an accurate solution outside the Knudsen layer but
still fails to capture the structure of the Knudsen layer. Lockerby, Reese & Gallis (2005)
noted that the error at the boundary is not from the slip model but from within the NS
equations themselves (i.e. from the linearity of these constitutive relations). In addition,
the velocity slip is overestimated by the NS equations with slip boundary conditions.
Compared with the continuum base flow velocity profile, the nonlinear and boundary
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Figure 2. Velocity profiles of the plane Couette flow at different Knudsen numbers (Kn = 1 × 10−2, 2 ×
10−2, 4 × 10−2). The black dashed line denotes the solution in continuum flow, and the solid line and
dash-dotted line denote the solutions of the BGK equation with the diffuse-scattering scheme, and NS equations
with slip boundary conditions in the slip regime, respectively. The arrow indicates the direction of increasing
Kn.

velocity slip characteristics of the slip base flow velocity profiles have the potential to
affect the flow stability.

6.1.2. Validation of the eigenvalues in the continuum and rarefied flow regimes
One of the motivations for introducing NS-LSEs in this paper is to verify the developed
new method based on the BGK equation. However, a difference between the NS-LSEs
and the classic incompressible Orr–Sommerfeld equation is that the perturbed fluid is
not assumed to be incompressible. In other words, the NS-LSEs include the influence
of Ma. Before verifying the BGK-LSE, the NS-LSEs are first verified. Table 1 shows
the eigenvalues corresponding to the first ten modes under different Ma, with Re = 800
and α = 1.0, together with the classic incompressible Orr–Sommerfeld equation solution
(Schmid & Henningson 2001). In the calculation, Ny = 120. With the decrease in Ma, the
eigenvalue gradually converges to the reference result. In addition, when Ma is large, the
influence of its change on the eigenvalue is prominent. With the decrease in Ma, the impact
caused by its change can be ignored. In summary, when Ma is small enough, the results
obtained from the NS-LSEs can converge to the results of the classic incompressible
Orr–Sommerfeld equation, so the NS-LSEs and code are verified.

In the continuum flow regime, the BGK-LSE and its solution method are verified by
comparing the obtained eigenvalues with those of the NS-LSEs with N–N. Table 2 shows
the convergence test of the least stable eigenvalues for the plane Couette flow in the case
Kn = 1 × 10−4 and α = 0.1 and 0.5 obtained from the NS-LSEs and BGK-LSE with
the non-equilibrium extrapolation scheme. When Kn = 1 × 10−4, the molecular mean
free paths are very small, therefore the thickness of the Knudsen layer can be ignored.
On the other hand, the gas flow in the whole flow field is close to the equilibrium
state, and few discrete nodes are required to discretize the velocity space (Wang et al.
2019). When solving the BGK-LSE, the Gauss–Hermite quadrature with 5 × 5, 8 × 8 and
12 × 12 velocity nodes is used to determine the discrete velocities and weights. From the
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NS-LSEs

α = 0.1 α = 0.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

81 −0.28534793 −0.21411034 −0.57367751 −0.12282431
101 −0.28534793 −0.21411034 −0.57367749 −0.12282433
121 −0.28534793 −0.21411034 −0.57367748 −0.12282434

BGK-LSE (Gauss nodes: 5 × 5)

α = 0.1 α = 0.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

81 −0.28624705 −0.21488764 −0.57400091 −0.12307965
101 −0.28624723 −0.21488729 −0.57400122 −0.12307905
121 −0.28624727 −0.21488723 −0.57400126 −0.12307896

BGK-LSE (Gauss nodes: 8 × 8)

α = 0.1 α = 0.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

81 −0.28627394 −0.21488577 −0.57401213 −0.12307392
101 −0.28627412 −0.21488542 −0.57401243 −0.12307329
121 −0.28627415 −0.21488535 −0.57401249 −0.12307316

BGK-LSE (Gauss nodes: 12 × 12)

α = 0.1 α = 0.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

81 −0.28627395 −0.21488576 −0.57401213 −0.12307391
101 −0.28627412 −0.21488542 −0.57401244 −0.12307328
121 −0.28627415 −0.21488535 −0.57401249 −0.12307316

Table 2. Eigenvalue solutions of the least stable mode for the plane Couette flow at Kn = 1 × 10−4 using the
NS-LSEs and BGK-LSE with different physical space and velocity space nodes.

convergence test, the results based on the NS-LSEs and BGK-LSE gradually converge with
the increasing physical space and velocity space nodes, and the maximum deviation is of
the order of 10−3. The deviation is inevitable because the matrix elements must change
with changes in the equation.

Figure 3 shows the phase velocity spectra corresponding to the finest grid case in table 2.
In addition to the least stable mode, the other modes are also in good agreement. The
comparisons presented above validate the capability of the BGK-LSE for continuum flow
stability analysis.

In the slip flow regime, the influence of the number of discrete nodes in physical and
velocity space on the eigenvalues of the least stable mode for the plane Couette flow in
the case Kn = 4 × 10−2 is presented in table 3. Both the travelling wave (α = 5.5) and
standing wave (α = 3.5) are considered. In this case, the Knudsen layer needs to be taken
into account. To capture the Knudsen layer structure in the base flow, the Gauss–Hermite
quadrature with 12 × 12, 16 × 16, 20 × 20 and 24 × 24 velocity nodes is used to discretize
the velocity space, and a non-uniform mesh is used to refine the mesh near the two walls in
physical space. For Ny = 40, 60, 80 and 100, there are 4, 6, 8 and 10 nodes in the Knudsen
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Figure 3. Phase velocity spectra at Kn = 1 × 10−4, for (a) α = 0.1, and (b) α = 0.5.

layer, respectively. As shown in table 3, as the number of discrete nodes in the physical
and velocity spaces increases, the eigenvalues converge to four decimal places. When the
number of discrete nodes is the same in physical space and different in velocity space, it
can be seen that the maximum relative error of the eigenvalues does not exceed the order
of 10−4; that is, when the number of velocity nodes is greater than 12 × 12, changing
the number of velocity nodes has little effect on the eigenvalues. When the number of
velocity nodes is the same, the maximum relative error of the eigenvalues corresponding
to the Ny = 100 and 80 cases also does not exceed the order of 10−4. We can conclude
that continuing to refine the nodes has little effect on the results.

6.2. Effects of gas rarefaction
In this subsection, the effects of gas rarefaction on the flow stability are investigated based
on the BGK-LSE.

6.2.1. When do the NS-LSEs fail?
The classification of the flow regime according to the Knudsen number is empirical
and therefore only approximate for a particular flow geometry. To determine when the
NS–LSEs fail in the stability analysis of the plane Couette flow in the near continuum
flow regime, the eigenvalues of the least stable mode are computed based on the NS–LSEs
and BGK–LSE for a slightly rarefied gas flow (Kn = 1 × 10−3, 5 × 10−3, 1 × 10−2,
4 × 10−2), as shown in table 4. Both a travelling wave (α = 5.5) and a standing wave
(α = 0.1) are considered. When conducting a stability analysis based on the NS–LSEs,
cases N–N and S–S are both used. When the Knudsen number is small (Kn = 1 × 10−3),
the deviation (εc = cBGK−LSE − cNS−LSEs) of the predicted eigenvalues is very small, and
the maximum deviation is of the order of 10−3; but with the increase of the Knudsen
number, the deviation also gradually increases. In the case Kn = 5 × 10−3, when N–N is
used, the maximum deviation is of the order of 10−2. When S–S is used, the maximum
deviation can be reduced to the order of 10−3. On the whole, the prediction results of S–S
are closer to those of BGK-LSE than those of N–N; that is, the slip boundary conditions
further improve the accuracy of the NS–LSEs in predicting the stability of rarefied flow.
However, for the case Kn = 1 × 10−2, even if the slip boundary conditions are used, the
deviation is still of the order of 10−2. From § 6.1.2, for the continuum flow case, the
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Gauss nodes: 12 × 12

α = 3.5 α = 5.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

41 2.6 × 10−14 −1.230746 −0.158404 −1.726970
61 −2.8 × 10−14 −1.230526 −0.157825 −1.726789
81 −1.4 × 10−14 −1.230456 −0.157645 −1.726735
101 9.0 × 10−15 −1.230426 −0.157568 −1.726713

Gauss nodes: 16 × 16

α = 3.5 α = 5.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

41 −7.8 × 10−14 −1.230699 −0.158473 −1.726901
61 −2.1 × 10−15 −1.230477 −0.157894 −1.726715
81 3.5 × 10−14 −1.230407 −0.157713 −1.726661
101 −1.4 × 10−14 −1.230377 −0.157635 −1.726637

Gauss nodes: 20 × 20

α = 3.5 α = 5.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

41 −9.5 × 10−14 −1.230673 −0.158516 −1.726862
61 3.5 × 10−14 −1.230450 −0.157937 −1.726674
81 −7.4 × 10−14 −1.230380 −0.157755 −1.726618
101 −1.8 × 10−14 −1.230350 −0.157677 −1.726595

Gauss nodes: 24 × 24

α = 3.5 α = 5.5

Ny + 1 Phase speed Growth rate Phase speed Growth rate

41 3.2 × 10−14 −1.230656 −0.158544 −1.726838
61 −3.4 × 10−15 −1.230433 −0.157966 −1.726647
81 2.1 × 10−15 −1.230363 −0.157784 −1.726591
101 −9.5 × 10−14 −1.230332 −0.157706 −1.726568

Table 3. Eigenvalue of the least stable mode for the plane Couette flow at Kn = 4 × 10−2 using the
BGK-LSE with different numbers of physical space and velocity space nodes.

maximum deviation of the eigenvalues based on the NS–LSEs and BGK–LSE is of the
order of 10−3. Therefore, the NS equations can accurately predict the eigenvalues of the
least stable mode only for Kn < 1 × 10−2, regardless of whether or not the Knudsen layer
correction is used.

6.2.2. What are the results of using the NS-LSEs to study the stability of rarefied flow?
When rarefaction effects need to be considered, what happens when NS-LSEs are still
used?

To answer this question, we consider nine test cases with different Knudsen numbers
(Kn = 5 × 10−3, 1 × 10−2, 2 × 10−2) and wavenumbers (α = 1, 3, 6). Figure 4 shows the
deviations (ε = ci,BGK−LSE − ci,NS−LSEs) of the growth rate (the first ten modes) predicted
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BGK

α = 0.1 α = 5.5

Kn Phase speed Growth rate Phase speed Growth rate

1 × 10−3 1.5 × 10−09 −0.581082 −0.447861 −0.332319
5 × 10−3 1.2 × 10−11 −2.948496 −0.502830 −0.392815
1 × 10−2 9.9 × 10−15 −5.838520 −0.403574 −0.609631
4 × 10−2 5.8 × 10−14 −21.770889 −0.157645 −1.726735

N–N
α = 0.1 α = 5.5

Kn Phase speed Growth rate Phase speed Growth rate

1 × 10−3 −2.6 × 10−11 −0.583397 −0.445630 −0.332486
5 × 10−3 1.8 × 10−11 −2.982189 −0.500076 −0.393706
1 × 10−2 −1.3 × 10−11 −5.973287 −0.397536 −0.612334
4 × 10−2 −1.2 × 10−11 −23.926354 −0.084928 −1.803490

S–S
α = 0.1 α = 5.5

Kn Phase speed Growth rate Phase speed Growth rate

1 × 10−3 2.4 × 10−11 −0.582068 −0.446048 −0.332274
5 × 10−3 −3.4 × 10−12 −2.949125 −0.501959 −0.392868
1 × 10−2 −1.8 × 10−11 −5.842199 −0.401803 −0.610292
4 × 10−2 −5.2 × 10−13 −21.941228 −0.128735 −1.778215

Table 4. Eigenvalues of the least stable mode obtained from the BGK-LSE and the NS-LSEs with N–N
and S–S.

by the NS-LSEs (circles denote that N–N is used, triangles denote that S–S is used) and
BGK-LSE, where the horizontal coordinate axis represents the sequence number of the
different modes. For the least stable mode, the deviations may be negative or positive, but
in most cases, they are positive. For other modes, the values of all deviations are positive.
For all cases, the deviation of the least stable modes in the first ten modes is always the
smallest, but the deviation increases gradually as the Knudsen number increases, as shown
in table 5, showing the relative error (δ = ε/ci,BGK−LSE) of the growth rate of the least
stable mode. Therefore, if the NS-LSEs are used to analyse the flow with rarefaction
effects, then the transition cannot be predicted accurately, and the growth rate of the
least stable mode is underestimated in most cases. Comparing the deviations obtained
from N–N and S–S, it can be seen that the deviation obtained from S–S is smaller than
that calculated by N–N in all cases for all modes; that is, the slip boundary conditions
significantly improve the stability prediction accuracy of the plane Couette flow in the
slip flow regime. In addition, for a fixed α, a comparison of the deviation under different
Knudsen numbers indicates that the deviation increases with the Knudsen number.

Note that under the same Knudsen number, the deviation between different modes
is also different, and the deviation increases with the sequence number, as shown in
figure 4. To illustrate a possible reason for this phenomenon, the imaginary and real
parts of the eigenfunctions û and v̂ of the first three modes are plotted in figures 5
and 6 for Kn = 5 × 10−3 and Kn = 2 × 10−2 with α = 1. These figures show that the
characteristic lengths of the eigenfunctions decrease with the increasing sequence number.
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Figure 4. Deviations (ε = ci,BGK−LSE − ci,NS−LSEs) of the growth rate (the first ten modes) at α = 1, 3, 6 for
(a) Kn = 5 × 10−3, (b) Kn = 1 × 10−2, (c) Kn = 2 × 10−2, and (d) Kn = 4 × 10−2. Circles denote that N–N
is used, and triangles denote that S–S is used. The black line denotes α = 1, the red line denotes α = 3, and
the blue line denotes α = 6.

N–N S–S

Kn α = 1 α = 3 α = 6 α = 1 α = 3 α = 6

5 × 10−3 −0.535 % −0.284 % −0.236 % −0.014 % −0.009 % −0.034 %
1 × 10−2 −2.040 % −0.606 % −0.488 % −0.082 % −0.051 % −0.176 %
2 × 10−2 −4.633 % 1.105 % −1.167 % −0.269 % 0.186 % −0.732 %
4 × 10−2 −10.372 % −3.751 % −4.528 % −1.027 % −1.165 % −3.342 %

Table 5. The relative error (δ = ε/ci,BGK−LSE) of the least stable mode.

Therefore, the Knudsen number based on the characteristic length increases with the
increasing sequence number. This phenomenon is related to the Knudsen number. To
further confirm this point, we plot the curves of the deviation of the least stable mode with
the Knudsen number under different wavenumbers, as shown in figure 7. The variation
trend of the deviation with the Knudsen number is similar to that of figure 4, which further
verifies the above analysis. This also means that multiple modes constitute a multiscale
problem, which needs a multiscale method to study it. As seen from figure 4, the stability
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1.0

0.5

–0.5

–1.0
–20

–9 0 9–8–16 0 8

–10 0 –40 –20 20 40010 20 30

0

1.0

0.5

–0.5

–1.0

0

1.0

0.5

–0.5

–1.0

0

1.0

0.5

–0.5

–1.0

0

y

y

ûr ûi

v̂r v̂i

(a) (b)

(c) (d )

Figure 5. Eigenfunctions of (a,b) û and (c,d) v̂ corresponding to the first three modes for the case
Kn = 5 × 10−3 and α = 1. The black line denotes the first mode, the red line denotes the second mode, and
the blue line denotes the third mode.

analysis method in classic fluid dynamics cannot predict multiple modes accurately even
when combined with Knudsen layer correction, even for flow with Kn < 1 × 10−2 (as
shown in figure 4a). Only the mode whose characteristic scale is equivalent to the base
flow characteristic scale can be predicted accurately for near-continuum flow because it is
a single-scale method based on the continuum assumption. Therefore, the stability analysis
method based on the NS equations should be used carefully when multiple modes are
considered, such as in non-modal linear stability analysis. In addition, the failure threshold
(critical Kn) of the NS-LSEs determined in § 6.2.1 is based on the base flow characteristic
scale, so it does not apply to other modes; that is, the critical Kn values within which
the NS-LSEs can be used to accurately predict each mode are different, and the threshold
should be determined based on the characteristic length of each mode.

6.2.3. Effects of rarefaction on spectrum, phase speed and growth rate
The phase velocity spectra for Kn = 1 × 10−4, 5 × 10−3, 1 × 10−2, 2 × 10−2 and α = 3
are shown in figure 8. When Kn = 1 × 10−4, there are two more branches on the left and
right branches, with cr = 0 as the axis of symmetry, while at larger Knudsen numbers,
only one branch exists on the left and right branches, and the number of modes on these
branches gradually decreases with increasing Knudsen number, and disappears when the
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Figure 6. Eigenfunctions of (a,b) û and (c,d) v̂ corresponding to the first three modes for the case
Kn = 2 × 10−2 and α = 1. The black line denotes the first mode, the red line denotes the second mode, and
the blue line denotes the third mode.
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Figure 7. Deviations (ε = ci,BGK−LSE − ci,NS−LSEs) of the growth rate of the least stable mode at α = 1, 6 for
different Knudsen numbers.
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Figure 8. Phase velocity spectra for the plane Couette flow at α = 3 for (a) Kn = 1 × 10−4, and
(b) Kn = 5 × 10−3, 1 × 10−2, 2 × 10−2.
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Figure 9. Phase velocity of the least stable mode as a function of the wavenumber.

Knudsen number is greater than a certain value. In addition, for the case Kn = 1 × 10−4,
the eigenvalues near the junction point of the branches are very sensitive to the number
of discrete nodes and will never converge. The reason for this sensitive triangle region
of the spectrum is the presence of non-orthogonal eigenfunctions. In this case, a large
transient growth of the energy is possible even if all eigenvalues are confined to the stable
half-plane. At this time, this should be studied with the help of the non-modal stability
analysis approach.

Figure 9 shows the phase velocity that corresponds to the least stable mode versus the
wavenumber at different Knudsen numbers. When the phase velocity is negative, the phase
velocity decreases as the Knudsen number increases, and gradually tends to −1 for all
Knudsen number cases. For Kn = 1 × 10−4, the eigenvalues all appear in pairs over the
entire range of α studied. For a large Knudsen number and relatively small wavenumber,
the phase velocity of the least stable mode is zero (standing wave), and with the increase
in the Knudsen number, the standing wave can appear in a broader range of wavenumbers.
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Figure 10. (a) Variation in the growth rate of the least stable mode with α for various Knudsen numbers.
(b) Magnified view of Kn = 1 × 10−4. (c) Magnified view of Kn = 5 × 10−3 and Kn = 1 × 10−2.
(d) Magnified view of Kn = 2 × 10−2 and Kn = 4 × 10−2.

Figure 10 shows the variation in the growth rate corresponding to the least stable mode
with α from 0.5 to 6.0 at different Knudsen numbers. Figures 10(b–d) show magnified
views of figure 10(a) for different Knudsen numbers. For a fixed α, as the Knudsen number
increases, if the least stable mode presents in the same pattern (travelling wave or standing
wave), then the growth rate decreases; otherwise, the growth rate does not necessarily
decrease. For example, from figure 9, it is seen that for the case of α = 1.6, when Kn =
5 × 10−3, the least stable mode is a travelling wave (the phase velocity is −0.06619),
and when Kn = 1 × 10−2, the least stable mode is a standing wave (the phase velocity is
5.17 × 10−13). Figure 10(c) shows that when Kn = 5 × 10−3, the growth rate of the least
stable mode is −0.4433, and when Kn = 1 × 10−2, the growth rate is −0.4400; that is,
the growth rate at Kn = 1 × 10−2 is greater than that at Kn = 5 × 10−3.

Figure 10(b) shows that for Kn = 1 × 10−4, the growth rate increases monotonically
with the wavenumber, and the change is relatively gentle. However, for moderate to
large Knudsen numbers, as figures 10(c,d) show, the variation in the growth rate with
the wavenumber is non-monotonic and changes sharply at the first minimal value point,
which corresponds to the wavenumber when the phase velocity changes from zero to
negative, as shown in figure 9. From figure 10, for all cases except the continuum one
(Kn = 1 × 10−4), when cr = 0, the trend of change of the growth rate at different Knudsen
numbers is consistent, i.e. increasing first and then decreasing; when cr /= 0, at moderate
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Figure 11. Growth rate of the least stable mode trends with the Knudsen number for different α.

Knudsen numbers, as shown in figure 10(c), the growth rate increases and then decreases.
However, at large Knudsen numbers, as shown in figure 10(d), the growth rate decreases
monotonically.

Figure 11 shows the variation in the growth rate of the least stable mode with the
Knudsen number for different wavenumbers (α = 0.5, 1.0, 5.5, 6.0). Figure 9 shows that
under different Knudsen numbers (Kn from 5 × 10−3 to 4 × 10−2), for the cases α = 0.5
and α = 1.0, the least stable modes are standing waves. For the cases α = 5.5 and α = 6.0,
the least stable modes are travelling waves; that is, for a fixed wavenumber, the least stable
mode under different Knudsen numbers presents the same pattern (travelling or standing
wave). In this case, as seen from figure 11, the growth rate decreases almost linearly with
the increasing Knudsen number.

6.2.4. Effects of rarefaction on the eigenfunctions
In this subsubsection, the effects of the Knudsen number on the eigenfunctions of the least
stable mode are analysed.

Figure 12 shows the eigenfunctions in the cases Kn = 5 × 10−3, 1 × 10−2, 2 ×
10−2, 3 × 10−2, 4 × 10−2 and α = 1.0. For these cases, the least stable mode is a standing
wave. For different Knudsen numbers, except for the difference in the peak values of û at
y = 0.0, the rarefaction effects have little influence on the eigenfunctions û and v̂. While
the least stable mode corresponds to a travelling wave with a negative phase velocity (Kn =
1 × 10−4, 5 × 10−3, 1 × 10−2, 2 × 10−2, 3 × 10−2, 4 × 10−2 and α = 6.0), the influence
of the rarefaction on the eigenfunctions is significant, as shown in figure 13. The amplitude
peaks of û and v̂ gradually shift upwards with the increasing Knudsen number. For
Kn = 1 × 10−4, the continuum flow case, the magnitudes of û and v̂ vanish at y = 0.0.
For Kn = 5 × 10−3 and Kn = 1 × 10−2, the magnitudes of û and v̂ vanish in the fluid
domain near the upper wall. However, for a larger Knudsen number, there is still a large
disturbance in the fluid domain near the upper wall. Figures 12 and 13 show that the slip
velocity increases as the Knudsen number increases.

We wish to know whether the influence law of the wavenumber on the eigenfunctions is
consistent in the continuum and rarefied flow regimes.
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Figure 12. Effects of Knudsen numbers Kn = 5 × 10−3, 1 × 10−2, 2 × 10−2, 3 × 10−2, 4 × 10−2 on the

eigenfunctions (a) û and (b) v̂ of the least stable mode for α = 1.
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Figure 13. Effects of Knudsen numbers Kn = 1 × 10−4, 5 × 10−3, 1 × 10−2, 2 × 10−2, 3 × 10−2, 4 × 10−2

on the eigenfunctions (a) û and (b) v̂ of the least stable mode for α = 6.

Figure 14 shows the eigenfunctions at Kn = 5 × 10−3 and 2 × 10−2 under different
wavenumbers α = 0.5, 1.0, 1.5. For these cases, the least stable mode is a standing wave.
The wavenumber has little influence on the eigenfunctions û and v̂, only causing the
peak values of û to change at y = 0.0, and the influence law of the wavenumber on the
eigenfunctions is the same in the continuum and rarefied flow regimes; that is, with the
increasing wavenumber, the peak value of û at y = 0.0 gradually increases. Figure 14(b)
shows that the slip velocity at the upper and lower walls increases as the wavenumber
increases.

For the case of the least stable mode being the travelling wave, Kn = 1 × 10−4 and
2 × 10−2 with α = 3.5, 4.0, 5.5, 5.5, 6.0 are considered, as shown in figure 15. As the
wavenumber increases, similar to the continuum flow cases, the amplitude peaks of û and
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Figure 14. Effects of wavenumbers α = 0.5, 1.0, 1.5 on the eigenfunctions û and v̂ of the least stable mode
for (a) Kn = 5 × 10−3 and (b) Kn = 2 × 10−2. The black line denotes α = 0.5, the red line α = 1.0, and the
blue line α = 1.5. The solid and dashed lines denote û and v̂, respectively.

v̂ gradually shift downwards in the rarefied flow cases. For these cases, with the increasing
wavenumber, the slip velocity increases on the upper wall and decreases on the lower wall.

6.3. Non-modal stability
It is well known that if the linearized evolution operator is non-normal, then even if all
eigenvalues are confined to the stable half-plane, transient energy growth can still occur.
Therefore, it may be inappropriate to analyse the behaviour of a non-normal operator using
its spectrum alone. In this subsection, we use the singular value decomposition method
to analyse the potential for transient growth of the plane Couette flow considering the
rarefaction effects.

The maximum possible amplification G(t) (Schmid & Henningson 1994) of the initial
perturbation energy is defined as

G(t) = max
q0

E(q(t))
E(q0)

, (6.2)

where E(q) denotes the kinetic energy of the perturbation. Under the NS analysis
framework, q = (û, v̂, ρ̂). When analysing the transient energy growth based on the modal
results of the BGK-LSE, the eigenfunction composed of the velocity distribution function
is first converted into a macro quantity, and then the non-modal analysis is carried out
using the analysis method under the NS analysis framework. For a more detailed process
of calculating the transient energy growth, the reader is referred to Schmid & Henningson
(1994) and Hanifi, Schmid & Henningson (1996).

Before we analyse the influence of the rarefaction effect on transient growth, by
comparing the results based on the NS equations, the transient energy growth calculated
by the BGK equation is first verified. Figure 16 shows the transient growth plots for the
case Ma = 0.1, Re = 1000, α = 1.0. They are in good agreement with each other.

From the analysis in figure 4, we know that the NS-equations-based stability
analysis method cannot predict multiple modes accurately with different characteristic
lengths at the same time, while the information of multiple modes is used
in the non-modal analysis, so there may be some differences between the
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Figure 15. Effects of wavenumbers α = 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 on the eigenfunctions (a,c) û and (b,d) v̂

of the least stable mode, for (a,b) Kn = 1 × 10−4 and (c,d) Kn = 2 × 10−2.
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Figure 16. Transient energy growth for the plane Couette flow with Ma = 0.1, Re = 1000.0 and α = 1.0.
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Kn = 1 × 10−4

NS BGK Relative error

α Gmax tmax Gmax tmax δGmax δtmax

0.5 10.58 17.05 10.04 17.06 5.38 % −0.06 %
0.6 12.40 15.41 11.79 15.41 5.17 % 0.00 %
0.7 13.88 14.08 13.02 14.08 4.99 % 0.00 %
0.8 15.04 12.99 14.36 13.00 4.74 % −0.77 %
0.9 15.92 12.09 15.23 12.09 4.53 % 0.00 %
1.0 16.56 11.32 15.87 11.32 4.35 % 0.00 %

Kn = 5 × 10−4

NS BGK Relative error

α Gmax tmax Gmax tmax δGmax δtmax

0.5 3.40 10.54 3.23 10.51 5.26 % 0.29 %
0.6 3.97 9.47 3.78 9.45 5.03 % 0.21 %
0.7 4.44 8.59 4.24 8.58 4.73 % 0.12 %
0.8 4.81 7.87 4.60 7.86 4.57 % 0.13 %
0.9 5.10 7.27 4.88 7.26 4.51 % 0.14 %
1.0 5.30 6.76 5.09 6.76 4.13 % 0.15 %

Table 6. The maximum transient energy growth (Gmax) and the corresponding time (tmax) obtained from the
NS and BGK equations, and the relative errors of Gmax (δGmax = (Gmax,NS − Gmax,BGK)/Gmax,BGK ) and tmax
(δtmax = (tmax,NS − tmax,BGK)/tmax,BGK ).

transient energy growth based on NS and BGK equations. For this reason, the
maximum transient energy growth (Gmax = maxt>0 G(t)) and the time (tmax) at
which this maximum is achieved were calculated for two continuum flow cases
(Kn = 1 × 10−4, 5 × 10−4) based on the NS and BGK equations, respectively,
and the relative errors of Gmax (δGmax = (Gmax,NS − Gmax,BGK)/Gmax,BGK) and tmax
(δtmax = (tmax,NS − tmax,BGK)/tmax,BGK) are also analysed. The results are shown in table 6.
It can be seen that the deviation is very small. However, the analysis in figure 4 does
show that with the increase in sequence number, the deviation of the NS-equations-based
stability analysis method in predicting growth rate increases gradually. To explain this
phenomenon, we analysed the contribution of different parts of the eigenvalue spectrum to
the energy growth in the case Kn = 5 × 10−4 and α = 1.0. The eigenvalue spectrum and
the transient growth calculated according to different parts of the eigenvalue spectrum are
given in figure 17. It can be seen that the mode with a growth rate less than a certain value
has no contribution to the transient growth. Therefore, for the problems studied in the
present paper, although the NS-equations-based stability analysis method cannot predict
accurately multiple modes at the same time, it has little impact on transient growth in the
case of continuum flow.

Figure 18 shows the transient energy growth at Kn = 5 × 10−3 for different Ma
(0.1, 0.2, 0.25, 0.3) and α (1.0, 1.5, 2.0, 2.5, 3.0) values obtained by the NS and BGK
equations. It can be seen that when Ma is small, energy decays exponentially with a rate
that is given by its corresponding eigenvalue. When Ma is large, transient growth occurs
in some wavenumber ranges. When the wavenumber is small, with the increase in Ma,
transient growth occurs, and Gmax gradually increases. When α = 2.5, with the increase
in Ma, the energy undergoes a process from exponential decay to algebraic growth and
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Figure 17. Effects of (a) different parts of the spectrum on (b) transient growth for Kn = 5 × 10−4, α = 1.0.
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Figure 19. Transient energy growth at Kn = 0.01 for (a) Ma = 0.25, and (b) Ma = 0.3. The lines and circles
represent the results obtained by the NS equations with slip boundary conditions and the BGK equation,
respectively. Black, red, blue, green and orange represent α = 1.0, 1.5, 2.0, 2.5 and 3.0, respectively.

then to exponential decay. When α = 3.0, there is no algebraic growth in the wavenumber
under consideration. In addition, by comparing the results of the NS and BGK equations,
it can be seen that when transient energy growth occurs, the NS-equations-based method
always overestimates Gmax.

Furthermore, the variation of G(t) with time at Kn = 0.01 for different Ma (0.25, 0.3)
and α (1.0, 1.5, 2.0, 2.5, 3.0) values is computed, and the results are shown in figure 19.
The NS-equations-based method still overestimates Gmax. From the BGK results, we can
see that when Ma = 0.25, there is no transient growth. When Ma = 0.3, there is a small
transient growth for medium wavenumbers. In addition, by comparing Gmax under the
same Ma and α in figures 18 and 19, it can be seen that the higher the rarefaction degree,
the smaller the Gmax value, and even no transient growth is possible. Therefore, we can
conclude that with a higher degree of rarefaction, the transient growth may occur only in
the case of a large Ma value, and the rarefaction effect has a stabilizing effect on transient
energy growth.

7. Conclusions

We develop a novel linear stability analysis method to describe the stability of rarefied
gas flows based on the BGK model equation. Different from the previous stability
analysis method (Yoshida & Aoki 2006) based on kinetic theory, we solve eigenvalue
problems numerically, which can solve multiple modes accurately. The validity of the
novel approach is verified by the continuum flow stability results from the NS-LSEs.
Furthermore, the linear stability characteristics and the non-modal transient energy growth
in the plane Couette flow have been investigated using the novel approach (only the modes
with −1 < cr ≤ 0 are considered). When conducting the stability analysis of rarefied flow,
the method based on the NS equations with slip boundary conditions is also used. The
correctness and accuracy of applying slip boundary conditions to analyse the stability of
slip flow are verified. The main findings are as follows.

(1) In the near-continuum flow regime, for plane Couette flow, the NS-LSEs can
accurately predict only the eigenvalues of the least stable mode for Kn < 1 × 10−2,
regardless of whether or not slip boundary conditions are used. When Kn ≥ 1 × 10−2,
the NS-LSEs underestimate the growth rate of the least stable mode in most cases. In the
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slip flow regime, although the slip boundary conditions cannot capture the structure of the
Knudsen layer near the wall, compared with the no-slip boundary conditions, it greatly
improves the prediction accuracy of the slip flow disturbance growth rate.

(2) The characteristic length of the different modes is different, that is, the multiple
mode analysis is a multiscale problem. However, the stability analysis method based on
the NS equations is a single-scale method that cannot predict multiple modes accurately,
even when combined with the Knudsen layer correction and even for continuum flow.
Only the mode whose characteristic scale is equivalent to the base flow characteristic scale
can be predicted accurately for the near-continuum flow. Therefore, the stability analysis
method based on the NS equations should be used carefully when multiple modes are
considered. However, for the continuum flow, the non-modal analysis shows that the error
has little effect on the transient growth because the modes with small growth rates do not
contribute to the transient energy growth.

(3) A change in the Knudsen number will change the pattern of the disturbance wave
(standing or travelling wave). For a fixed wavenumber, only when the least stable mode
presents the same pattern does the growth rate decrease almost linearly with the increasing
Knudsen number. However, when the least stable mode under different Knudsen numbers
appears in different patterns, the growth rate at large Knudsen numbers may be greater
than that at small Knudsen numbers for some wavenumbers.

(4) When the wavenumber is small, the least stable mode is a standing wave. With
the increase in the Knudsen number, the standing wave can appear in a broader range
of wavenumbers. When the least stable mode is the travelling wave, with the increasing
wavenumber, the growth rate increases monotonically for a small Kn, first increases and
then decreases for a medium Kn, and decreases monotonically for a large Kn. However, the
variation law of the phase velocity with the wavenumber is not affected by the Knudsen
number.

(5) For the least stable mode with a negative phase velocity, the amplitude peak of the
eigenfunctions gradually moves towards the upper wall with the increase in the Knudsen
number. However, the rarefaction effects have little influence on the eigenfunctions of
the least stable standing mode. The influence of the wavenumber on the eigenfunctions
in a rarefied flow is consistent with that in a continuum flow; that is, the amplitude
peak of the eigenfunctions gradually moves towards the lower wall with the increasing
wavenumber. For the least stable standing mode, the slip velocity increases with the
increasing wavenumber, but for the least stable mode with a negative phase velocity,
the slip velocity at the lower (upper) wall increases (decreases) with the increasing
wavenumber.

(6) For the non-modal transient growth analysis, it is shown that there will still be
transient growth in a rarefied flow, and the rarefaction effect plays a stabilizing role in
the transient growth. The higher the Ma value, the more likely transient growth will
occur in the flow with a higher rarefaction degree. For a given Kn, the trend of Gmax
with Ma depends on the wavenumber. When α is small, Gmax gradually increases with
increasing Ma. In addition, when the NS-equations-based method is used to calculate the
transient growth of rarefied flow, compared with the results of the BGK equation, it always
overestimates the maximum transient growth.

The novel stability analysis method developed in this paper is targeted towards
two-dimensional low-speed flows. For high Mach number flow, the velocity distribution
function deviates from the local equilibrium state, and the temperature changes
significantly. However, the Gauss–Hermite quadrature is used in our method, and the
influence of temperature is not considered, so the method is limited to low-speed flow.
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If the newly developed stability analysis approach is used for hypersonic flow, then first,
the influence of temperature needs to be considered. Additionally, the Gauss–Hermite
quadrature needs to be replaced by the Newton–Cotes quadrature, but this will not affect
the overall analysis framework. For three-dimensional flow, because the method developed
in the present paper needs to discretize both physical space and velocity space, the
computer storage and CPU requirements are far greater than those of classic stability
analysis methods. For high-speed flow, the matrix dimension is more considerable.
However, for three-dimensional supersonic Couette flow, there are unstable modes, and
three-dimensional modes could be more unstable than their two-dimensional counterparts
for some values of streamwise wavenumbers (Malik, Dey & Alam 2008). Therefore,
it is meaningful to further develop stability analysis methods suitable for high-speed
three-dimensional flow and analyse the influence of the rarefaction effect on unstable
modes and transient energy growth. At the same time, it is necessary to develop a
matrix algorithm that can quickly solve for the eigenvalues and eigenvectors of super-large
matrices. In the future, we will carry out further work in these two areas.
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