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Abstract

Objective: Cognitive tasks are used to probe neuronal activity during functional magnetic resonance imaging (fMRI) to
detect signs of aberrant cognitive functioning in patients diagnosed with schizophrenia (SZ). However, nonlinear
(inverted-U-shaped) associations between neuronal activity and task difficulty can lead to misinterpretation of group
differences between patients and healthy comparison subjects (HCs). In this paper, we evaluated a novel method for
correcting these misinterpretations based on conditional performance analysis. Method: Participants included 25 HCs
and 27 SZs who performed a working memory (WM) task (N-back) with 5 load conditions while undergoing fMRI.
Neuronal activity was regressed onto: 1) task load (i.e., parametric task levels), 2) marginal task performance (i.e.,
performance averaged over all load conditions), or 3) conditional task performance (i.e., performance within each load
condition). Results: In most regions of interest, conditional performance analysis uniquely revealed inverted-U-shaped
neuronal activity in both SZs and HCs. After accounting for conditional performance differences between groups, we
observed few difference in both the pattern and level of neuronal activity between SZs and HCs within regions that are
classically associated with WM functioning (e.g., posterior dorsolateral prefrontal and parietal association cortices).
However, SZs did show aberrant activity within the anterior dorsolateral prefrontal cortex. Conclusions: Interpretations
of differences in neuronal activity between groups, and of associations between neuronal activity and performance,
should be considered within the context of task performance. Whether conditional performance-based differences reflect
compensation, dedifferentiation, or other processes is not a question that is easily resolved by examining activation and
performance data alone.
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INTRODUCTION

Cognitive tasks are used during functional magnetic reso-
nance imaging (fMRI) to probe for signs of aberrant neuronal
functioning in patients diagnosed with schizophrenia (SZs).
However, since brain responses vary with task performance,
and because performance differs between patients and
healthy control subjects (HCs), it is often unclear whether dif-
ferent patterns of neuronal response between groups should
be attributed to intrinsic differences in brain function,
differences in performance, or both (Brown & Eyler, 2006;
Callicott et al., 2003; Manoach, 2003).

Typically, one of two approaches is used to understand the
relationship between performance and neuronal activity

differences between groups. The first approach is to examine
neuronal activity as a function of task difficulty (e.g., Cohen
et al., 1997; Jansma, 2004). This approach is able to charac-
terize different patterns of activity across task difficulty levels
but obscures the impact of group performance levels on brain
activation. The second approach is to examine neuronal activ-
ity as a function of marginal (or average) task performance
levels (e.g., Karlsgodt et al., 2009; Manoach et al., 1999).
This approach is able to characterize patterns of activity
across task performance levels but obscures the impact of task
difficulty levels on neuronal activity. Consequently, neither
of these approaches examines differences in both the pattern
and level of neuronal activity between patient and control
groups.We aimed to resolve this problem using a novel meth-
odology: conditional performance analysis. That is, the
examination of neuronal activity as a function of performance
within specific difficulty levels.
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Neuroimaging of Working Memory in
Schizophrenia

Working memory (WM) is defined as the “ : : : mechanisms
or processes that are involved in the control, regulation and
active maintenance of task-relevant information in the service
of complex cognition : : : ” (Miyake & Shah, 1999, p. 450).
WM deficits are a core feature of schizophrenia (Barch &
Smith, 2008; Kalkstein, Hurford, & Gur, 2010; Lee &
Park, 2005), as well as a predictor of poor functional outcome
(Green, Kern, Braff, & Mintz, 2000). In the attempt to better
understand WM deficits, researchers often rely on neuroi-
maging methods, especially fMRI (Brown & Eyler, 2006).

Unfortunately, inconsistencies in the properties of tasks
used can complicate interpretations of brain imaging results
(Gur, Erwin, & Gur, 1992). This is due, in part, to nonlinear
neuronal response functions. Early fMRI research demon-
strated that increased task difficulty results in increased brain
response in cortical regions thought to be involved in WM
(Desmond, Gabrieli, Wagner, Ginier, & Glover, 1997;
Manoach et al., 1997). However, an early PET imaging study
by Goldberg and colleagues suggested that neuronal activity
is not monotonic, but rather can also decrease as demands
become excessive (1998). More specifically, Callicott and
colleagues (1999) found an inverted-U-shaped response pat-
tern in the dorsolateral prefrontal cortex (DLPFC).
Presumably, task disengagement—the descending slope of
the inverted-U—is related to high computational costs
(Westbrook & Braver, 2015); that is, if the examinee deems
that cognitive effort is unlikely to result in accurate perfor-
mance (and reward), they might disengage resources.

Studies comparing the DLPFC response between patients
and controls suggest that nonlinearity can confuse the com-
parison of neuronal activity between groups. Specifically,
because patients are assumed to have “left-shifted”
inverted-U-shaped neuronal response functions—that is,
the neuronal response peaks at lower levels of difficulty—
using tasks with varying levels of difficulty between studies
can produce contradictory patterns. For example, Glahn et al.
conducted a meta-analysis of fMRI research using a popular
WM task (N-back) and concluded that SZs demonstrate
hypoactivation in the DLPFC (Glahn et al., 2005).
However, this conclusion was challenged by a significant
minority of studies finding hyperactivation (Brown &
Thompson, 2010). Presumably, evidence that SZs show less
neuronal activity during task engagement is an artifact that
reflects examinees’ experience of being overwhelmed by task
difficulty. Manoach and colleagues, for example, suggested
that, because “ : : : DLPFC activation may reflect WM
demand only up to the point at which the demands begin
to outstrip WM capacity” (Manoach et al., 1999, p. 1135),
combined with the fact that patients demonstrate worse per-
formance, “ : : : subjects may [engage in] cognitive and affec-
tive processes that [are] unrelated to WM [such as] error
monitoring, attempts at compensation, disengaging from
the task, feeling overwhelmed, and guessing” (Manoach
et al., 1999, p. 1129).

Studies have provided mixed support for the inverted-U
model of neuronal activity in both HCs and SZs, particularly
as they relate to the theory that, after accounting for the “left-
shift,” patients demonstrate inefficient (i.e., greater) activity
(Callicott et al., 2000; Jansma, 2004; Karlsgodt et al.,
2009; Manoach et al., 2000; Potkin et al., 2009; Van
Snellenberg et al., 2016; Zou, Gu, Wang, Gao, & Yang,
2011). The methodological challenge is clear: How should
differences in neuronal activity be interpreted between patient
and control groups given that task performance also differs?
Some researchers focus on fMRI data produced by items or
tasks where performance does not differ between groups.
This might include selecting subsets of individuals from each
group that are matched on performance, parametrically
manipulating task conditions on an individual basis, or evalu-
ating only correct trials in event-related designs (Brown &
Eyler, 2006; Jansma, 2004; Potkin et al., 2009). However,
matching performance between groups can artificially create
a scenario that does not reflect the original abnormality, thus
creating ambiguity when interpreting neurophysiological
results (Zhou et al., 2016). More broadly, this problem is
known as the performance–activation dilemma (Brown &
Eyler, 2006) and poses a significant obstacle to the develop-
ment of comprehensive, brain-cognitive models of mental
illness.

The Inverted-U: Sources of Misinterpretation

Examining neuronal activity differences between patient and
control groups without considering group differences in the
match between ability and task difficulty can be counterpro-
ductive. To help explain why, Figure 1 presents several pos-
sible scenarios based on the inverted-U model of neuronal
activity. To simplify the analysis, the model assumes that
the relationship between neuronal activity and task difficulty
is a normal distribution with equal group variances and with
the mode of the schizophrenia group “left-shifted” toward
less difficult task conditions compared to controls. Note that
in both groups, it is assumed that activity increases with dif-
ficulty up to some critical point and then decreases. Not all
tasks produce inverted-U-shaped activity; thus, here we are
limiting our discussion to tasks where the relationship
between difficulty and brain activation follows this theoreti-
cal model.

Figure 1 plots neuronal activity as a function of three lev-
els of task difficulty (non-shaded region of each plot): a low
difficulty task, amoderate difficulty task, and a high difficulty
task. The left panel shows the pattern of hyperactivation
among SZs when overall task difficulty is low. In this sce-
nario, the SZs are expected to show greater neuronal activity
than HCs, because, whereas SZs are moderately challenged
by the task, HCs are only very weakly challenged. In other
words, left panel is indicative of a task that is too easy from
HCs but appropriately difficult for SZs. The middle panel
shows the pattern of no difference in activity between SZs
and HCs when overall task difficulty is moderate. SZs are
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highly challenged and HCs are beginning to be moderately
challenged. However, because mirror sides of the inverted-
U functions are engaged, the expected result is no overall
group differences in neuronal activity. Finally, the right panel
shows the pattern of hypoactivation among SZs—which is
most often reported in the literature—that occurs when over-
all task difficulty is high. The task in this scenario is too hard
for SZs but appropriately difficult for HCs.

In this paper, we test the assumption that examining neuro-
nal activity as a function of performance conditioned on task
difficulty (i.e., WM load) will resolve these interpretative
challenges. Conditional performance analysis requires the
investigator to estimate individual subjects’ performance
(e.g., accuracy) at each level of task difficulty (e.g., each level
of WM load) and then to analyze the data as a repeated mea-
sures design. The key argument for using this approach is that
neuronal activity should be examined as a function of condi-
tional performance and not task difficult or even marginal
(i.e., average) performance.

Study Aims

Our study had three aims. The first aim was hypothesis-
driven and the second and third aims were exploratory.
The first aim was to demonstrate the use of conditional per-
formance analysis for examining and comparing load-
response curves between groups of patients and controls.
We hypothesized that conditional performance analysis
would uniquely and consistently reveal nonlinear (inverted-
U) shaped neuronal activity in both groups. The second
aim was to compare brain response between SZs and HCs
in order to explore the neural inefficiency model of WM def-
icits in schizophrenia. The third aim was to explore demo-
graphic, clinical, and cognitive correlates of inefficient
neuronal activity. We also conducted whole-brain, voxel-

wise exploratory analyses of group and group-by-conditional
performance effects.

METHODS

Participants

Data were collected from 27 SZs (schizophrenia or schizo-
affective disorder) and 25 HCs. We aimed to recruit male
and female adults aged 18–70 years with adequate hearing
and eyesight who were fluent in English and able to perform
the cognitive and imaging tasks required. Exclusion criteria
were inability to understand or give consent, positive drug
toxicology screen (except marijuana), alcohol or substance
dependence in the preceding 6 months, pregnancy, contra-
indications and conditions incompatible withMRI, previous
significant head injury, significant extrapyramidal symp-
toms or tardive dyskinesia, and significant medical or neu-
rological diagnoses (except diabetes). Controls were
additionally excluded if they were enrolled in special edu-
cation courses during school or met diagnostic criteria for
any psychosis spectrum disorder or bipolar disorder.
Clinical diagnoses were verified using a structured clinical
interview administered by a licensed psychologist (First,
Williams, Karg, & Spitzer, 2015). We did not exclude
left-handed participants because left-handedness tends to
be higher among people with psychosis (Webb et al.,
2013), and thus we did not want to limit the generalizability
of our results. The final proportion of left-handed individ-
uals was nearly identical between HCs (3/25; 12%) and
SZs (4/27; 15%), and Fisher’s exact test indicated no signifi-
cant association between handedness and group. Written
consent was obtained from all participants. Research proce-
dures were reviewed and approved by the UC San Diego
Institutional Review Board.

Fig. 1. Conceptual inverted-U models of neuronal activity as a function of task difficulty assuming a left-shift of the neuronal activity–task
difficulty curve in the SZ group. Differences in difficulty are show as a right-shift of the unshaded window. Left panel: low difficulty tasks are
expected to result in hyperactivation among SZs, as indicated by the elevation of the SZ curve over the HC curve within the difficulty window.
Middle panel: moderate difficulty tasks are expected to result in little difference in neuronal activity between groups. Right panel: high dif-
ficulty tasks are expected to result in hypoactivation among SZs. Bottom-left panel: low difficulty tasks are expected to result in no association
between performance and neuronal activity among SZs, but a negative association among HCs.
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Experimental and Behavioral Task Design

The experimental design was a two-by-five mixed factorial.
The between-subjects factor was population (i.e., HC vs. SZ;
two levels). The within-subjects factor was WM load (five
levels). To manipulate load, participants were administered
the N-back task. The N-back task is a forced-choice measure
of WM that requires examinees to monitor a continuous
stream of stimuli (pseudowords) and respond each time an
item is repeated from N before. This task was chosen because
it is commonly used to study brain and cognitive functioning
in SZs (Glahn et al., 2005). We created three N-back runs,
each consisting of five blocks of trials (i.e., 1- through 5-back
load conditions). One run was administered outside of the
scanner and the remaining two were administered within
the scanner. Blocks were counterbalanced over runs. The task
was administered using PsychoPy (Peirce et al., 2019).
Pseudowords were presented in white font on a black back-
ground for 2500 ms with a 500 ms inter-item interval. The
timing was constrained so that each block would last exactly
60 s. Blocks were separated by 20 s intervals (with a fixation
cross). Additional experimental and task design details are
provided in the Supplemental Materials.

Clinical and Cognitive Measures

Symptoms were assessed using the Scale for the Assessment
of Negative Symptoms (SANS) and Scale for the Assessment
of Positive Symptoms (SAPS) (Andreasen, 1984b, 1984a).
Cognitive measures included Trail Making Test: Part A
(TMT), Brief Assessment of Cognition in Schizophrenia
Symbol Coding (BASC), Hopkins Verbal Learning Test
(HVLT), Letter-Number Sequencing (LNS), and Category
(Animal) Fluency from the NIMH MATRICS Consensus
Cognitive Battery (MCCB) (Green et al., 2004). We also
administered the Wide Range Achievement Test 3rd
Edition (WRAT-3) Reading subset. Effort was objectively
measured using the Rey 15-Item task with the extended rec-
ognition trial (Boone, Salazar, Lu, Warner-Chacon, &
Razani, 2002) and subjectively measured using the NASA
Task Load Index (Hart & Staveland, 1988). Functioning
was measured using the Role Functioning Scale
(Goodman, Sewell, Cooley, & Leavitt, 1993).

Image Acquisition

Participants were scanned using a General Electric (GE)
Discovery MR750 3.0 Tesla whole-body imaging system
and a Nova 32-channel head coil. Anatomical scans were
based on a T1-weighted spoiled gradient echo sequence with
fast and prospective motion correction imaging options
(TR= 7.4 ms; TI= 1060 ms; TE= 2.3 ms; flip angle= 8°;
FOV= 25.6 cm; matrix size= 320 × 320; in-plane resolu-
tion = .8 mm; slice thickness = .8 mm; slices= 204; slice
spacing= 0) acquired parallel to the sagittal plane in an inter-
leavedmanner. Functional scans sensitive to the T2-weighted
blood-oxygen-level-dependent (BOLD) signal were

collected using a gradient echo pulse sequence with multi-
band and echo-planar imaging options (TR = 800 ms;
TE = 25 ms; flip angle= 52°; FOV= 20.8 cm; matrix size
= 86 × 86; in-plane resolution= 2.42 mm; slice thickness
= 2.4 mm; slices= 10 [60 effective]; slice spacing= 0; multi-
band factor= 6) acquired parallel to the intercommissural
(AC-PC) plane in an interleaved manner.

Image Processing and Regions of Interest (ROIs)

We used software from Analysis of Functional NeuroImages
(AFNI; Ver. 18.1.14) (Cox, 1996) and FMRIB Software
Library (FSL; Ver. 5.0.10) (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012) to preprocess the struc-
tural and functional images. A detailed description of prepro-
cessing steps is included in the Supplemental Materials.
Briefly, images were processed using a pipeline that included
segmentation, distortion correct, despiking, alignment and
co-registration of the functional images to the structural
images, detection of outliers, and blurring. To account for
physiological motion, respiration and cardiac activity were
acquired in parallel with the functional images and converted
to sines and cosines of the first- and second-phase cycles
modeling of the physiological activity (Glover, Li, & Ress,
2000). Using AFNI’s 3dDeconvolve tool, a general linear
model (GLM) was then applied to each participant’s
co-registered functional images and movement time series
data (ignoring censored values). The GLM analysis incorpo-
rated covariates accounting for linear, quadratic, cubic, and
quartic drift, six motion parameters, eight physiological noise
regressors, and the reference functions. The reference
functions were vectors representing the behavioral paradigm
convolved with a model of the hemodynamic response using
a gamma function.

To prepare for group analyses, individual statistical maps
reflecting parameter estimates for each simple contrast (1-, 2-,
3-, 4-, and 5-back vs. low-level fixation baseline) were
rescaled to reflect percent signal change. We then removed
non-brain tissue from the functional maps usingAFNI’s 3dre-
sample tool with masks based on the structural images.
AFNI’s adwarp tool was then used to warp the masked indi-
vidual statistical maps into Talairach space using the ICBM-
452 brain template (Rex, Ma, & Toga, 2003).

Regions of interest (ROIs) were based on results from a
quantitative meta-analysis on the N-back task using the acti-
vation likelihood estimates (Owen, McMillan, Laird, &
Bullmore, 2005). Specifically, using the meta-analysis coor-
dinates, we selected ROIs in regions traditionally considered
to be part of the DLPFC, ventrolateral prefrontal cortex
(VLPFC), parietal association cortex (PAC), and dorsal mid-
cingulate cortex (dMCC). The first two ROIs were in the
DLPFC. The first was centered near the anterior portion of
the left middle frontal gyrus (aMFG) primarily near
Brodmann area 10 (RAI x= 38, y = −44, z= 20; radius =
6 mm) and the second was centered near the posterior portion
of the left middle frontal gyrus (pMFG) primarily near
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Brodmann area 46 (RAI x= 44, y = −18, z= 22; radius
= 14.2 mm). The third ROI, a marker of the VLPFC, was
located near the opercular part of the inferior frontal gyrus
(IFG) primarily near Brodmann area 44 (RAI x= 50,
y = −12, z = 5; radius = 11.3 mm). The fourth ROI was cen-
tered near the dMCC primarily near Brodmann area 32 (RAI
x= 2, y = −12, z= 42; radius= 9 mm). The fifth ROI, a
marker of the PAC, was centered near the left inferior parietal
lobule (IPL)—mostly the supramarginal gyrus—primarily
near Brodmann area 40 (RAI x= 34, y= 48, z= 38;
radius= 10.7 mm).

Analyses

Activation differences between groups in the ROIs were ana-
lyzed using linear mixed-effect models (Hox, 2010) within
the R “lme4” package (Bates, Mächler, Bolker, & Walker,
2015). We regressed percent signal change in the BOLD
response within each ROI onto the fixed effects of group, a
single type of load performance regressor, and the interaction
of group by load performance. Group was contrast-coded.
Performance was operationalized as discriminability (d 0)
from an equal variance signal detection-item response model
(Thomas et al., 2018). d 0 is an index of performance accuracy,
but one that has been adjusted for response bias. The load per-
formance regressor was either: (1) N-back load: 1–5; (2) mar-
ginal performance: d 0 averaged across load; or (3) conditional
performance: d 0 calculated for each load level. In other
words, whereas the N-back load regressor only varied over
conditions (e.g., 1-back), the marginal performance regressor
varied over subjects (e.g., Subject 1’s d 0, Subject 2’s d 0, etc.),
and the conditional performance regressor varied over sub-
jects within conditions (e.g., Subject 1’s d 0 at 1-back,
Subject 2’s d 0 at 1-back, Subject 1’s d 0 at 2-back, Subject
2’s d 0 at 2-back, etc.). In all cases, the load performance
regressor was coded using orthogonal linear contrasts.
Random intercepts and slopes for run and order effects were
included in all models. To determine whether nonlinear mod-
els fitted the data better than linear models, we compared the
overall fit of models with linear or both linear and quadratic
terms using the Akaike information criterion (AIC; smaller is
better) and chi-square difference tests (Δχ2). Significance val-
ues were adjusted for multiple comparisons using the false
discovery rate correction (Benjamini & Hochberg, 1995).

Separate from our ROI analyses, exploratory whole-brain,
voxel-wise analyses were performed using the AFNI equit-
able thresholding and clustering (ETAC) technique to limit
the potential false-positive rate to 5% (Cox, 2019). ETAC
was implemented as part of the 3dttestþ tool with clustering
based on voxels touching at faces or edges, two-sided t-tests,
p values of .05, .01, and .001 with no added blur. We con-
ducted both one-sample and independent two-sample t-tests.
Separate analyses were conducted with the dependent varia-
ble defined either as the average BOLD response or as the
quadratic BOLD response predicted from conditional
performance.

RESULTS

Table 1 reports demographic and clinical characteristics of
both samples. SZs and HCs differed significantly on years
of education and WRAT scores, but not on age, gender, eth-
nicity, race, or years of parents’ education. In terms of N-back
task accuracy, SZs performed significantly worse overall
(t(50) = −3.586, p = .001, Cohen’s d = −1.00), as well at
all levels of N-back load, with Cohen’s ds of −.89, −.63,
−.58, −.53, and −.48 for 1- through 5-back, respectively.
Additionally, a nonparametric (Kolmogorov–Smirnov) test
of equality between raw accuracy distributions for SZs and
HCs indicated a significant difference (D = .47, p = .002).
Estimates of memory discriminability (d 0) and bias (Cc) over
N-back load by group are plotted in Figure 2.

Aim 1: Nonlinear Neuronal Activity

Comparisons of models that included linear versus nonlinear
(both linear and quadratic) terms are reported in Table 2.
Predictions based on the best-fitting model for each ROI
are reported in Figure 3. Corresponding estimates of regres-
sion parameters and effect sizes with confidence intervals are
reported in Supplemental Table 1.

Table 1. Demographic and clinical characteristics

Healthy con-
trols (HCs)

Schizophrenia
patients (SZs)

p HCs
vs. SZs

Sample size 25 27 –

Age 40.60 (9.38) 43.26 (9.59) .32
Age range 23–54 21–58 –

Sex: male 16 (64%) 18 (67%) >.999
Hispanic 5 (20%) 8 (30%) .53
Race – – .37
American Indian/
Alaskan native

0 (0%) 1 (4%) –

Asian 4 (16%) 3 (11%) –

Black or African
American

2 (8%) 6 (22%) –

More than one
race

5 (20%) 2 (7%) –

White 14 (56%) 15 (56%) –

Education 15.80 (2.06) 12.70 (2.15) <.001
Parents’ education 13.92 (3.56) 12.67 (3.25) .19
WRAT reading
score

104.36
(10.98)

96.00 (10.87) .01

Chlorpromazine
equivalent doses

– 482.61 (462.83) –

SAPS – 21.48 (9.90) –

SANS – 6.59 (4.11) –

Note: Means and standard deviations are reported for continuous variables.
Counts and percentages are reported for discrete variables. Groupswere com-
pared using regression for continuous variables and Fisher’s exact test for
categorical variables. Education is in years completed. SANS = Scale for
the Assessment of Negative Symptoms reported as total global rating scores;
SAPS = Scale for the Assessment of Positive Symptoms reported as total
global rating scores; WRAT = Wide Range Achievement Test.
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For the prediction of neuronal activity from N-back load,
nonlinear activity was only found in the left IPL. All other
comparisons indicated linear patterns of activity. In the left
IPL, the patterns of activity were mixed for N-back load, with
HCs, in blue, showing a negative quadratic trend (i.e.,
inverted-U-shaped), and SZs, in red, showing a positive
quadratic trend (i.e., U-shaped). For the prediction of neuro-
nal activity frommarginal performance, none of the nonlinear
models fitted the data significantly better than models that
only included linear terms. As reported in Figure 3, neuronal
activity was positively associated with marginal performance
for SZs and showed a mixed pattern of positive and negative
trends for HCs. For the prediction of neuronal activity from
conditional performance, all but one ROI favored the nonlin-
ear model. The one exception was the left IFG. For all other

ROIs, Figure 3 shows clear evidence of negative quadratic
trends (i.e., inverted-U-shaped activity) in both groups.

Aim 2: Neuronal Inefficiency in Schizophrenia

Neuronal inefficiency is operationalized as one group—such
as patients—needing to produce greater neuronal activity to
achieve a similar level of performance as another group—
such as controls. Thus, neuronal inefficiency should be
evidenced by large group main or interaction effects in the
conditional performance domain. In Figure 3, neuronal
inefficiency should be evidenced by diverging patterns of
neuronal activity (and also by meaningful group effect sizes
for conditional performance in Supplemental Table 1).

Contrary to the neuronal inefficiency model, the patterns
of activity are mostly overlapping, with the possible excep-
tion of the left aMFG. That is, as reported in Supplemental
Table 1, most group and group interaction effect size param-
eters were small, and their confidence intervals included zero.
However, there was a medium-sized group-by-quadratic
interaction effect with a nonzero confidence interval in the
left aMFG. Specifically, SZs showed a more negative quad-
ratic slope. In Figure 3, it can be seen that SZs produced more
peaked activity in the aMFG in comparison to HCs, who pro-
duced a more muted, flatter pattern of activity.

Aim 3: Correlates of Inefficient Neuronal Activity

To better understand the meaning of aMFG activity, we
explored the demographic, cognitive, and clinical correlates
of BOLD response within the ROI in comparison to activity
observed within the pMFG. We operationalized “inefficient”
activity as SZ BOLD signal that was in excess to the signal

Fig. 2. Estimates of memory discriminability (d 0) and bias (Cc) over
N-back load by group. Vertical lines indicate standard errors of the
means.

Table 2. Differences in linear versus nonlinear model fit for the regression of neuronal activity onto N-back, marginal performance, and
conditional performance

ROI Predictor Linear AIC Nonlinear AIC Δχ2 df pFDR

Left aMFG N-back 409.56 413.50 .07 2 .968
Left aMFG Marginal performance 409.18 411.66 1.53 2 .583
Left aMFG Conditional performance 413.40 403.29 14.11 2 .004
Left pMFG N-back 132.20 129.21 6.99 2 .076
Left pMFG Marginal performance 122.24 124.42 1.82 2 .556
Left pMFG Conditional performance 133.35 126.28 11.07 2 .015
Left IFG N-back 414.01 417.30 .71 2 .751
Left IFG Marginal performance 401.93 399.79 6.13 2 .100
Left IFG Conditional performance 413.05 414.45 2.60 2 .495
dMCC N-back 329.57 332.27 1.30 2 .602
dMCC Marginal performance 320.50 322.70 1.79 2 .556
dMCC Conditional performance 329.60 323.75 9.85 2 .022
Left IPL N-back 121.73 107.90 17.82 2 .002
Left IPL Marginal performance 111.70 113.27 2.43 2 .495
Left IPL Conditional performance 113.16 101.14 16.02 2 .002

Note: aMFG = anterior middle frontal gyrus; pMFG = posterior middle frontal gyrus; IFG = inferior frontal gyrus; dMCC = dorsal mid cingulate cortex;
IPL = inferior parietal lobule; AIC = Akaike information criterion; pFDR = false discovery rate corrected p-value; ROI = region of interest. Statistically sig-
nificant effects are highlighted in bold font.
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observed among HCs at individually matched levels of N-
back load.

Specifically, within the conditional performance domain
(bottom row of Figure 3), we noted that peak BOLD activity
generally occurred between discriminability (d 0) values of 2–
3. This is equivalent to a performance accuracy range for tar-
get items of approximately 69%–84% (after accounting for
response bias). Matched load was defined as the N-back con-
dition that was likely to produce discriminability (d 0) values
of 2.5 (˜77% performance accuracy) for each subject.

Figure 4 presents correlations (with 95% confidence inter-
vals) of “inefficient” BOLD activity in the pMFG and aMFG
with demographic, clinical, and cognitive variables. Only the
group correlation (first line) includes HCs; all other correla-
tions are based on the SZ group alone. The general descriptive
pattern suggests that while greater BOLD activity was

broadly associated with better health (e.g., younger, fewer
symptoms, and better cognitive functioning), the pattern of
association is stronger for the pMFG relative to the aMFG.

Whole-Brain, Voxel-Wise Analyses

Results of whole-brain, voxel-wise analyses indicated signifi-
cant group differences in BOLD activity overall, but no sig-
nificant group-by-quadratic conditional performance effects.
Panel A of Figure 5 plots results from whole-brain, voxel-
wise analyses comparing average activity collapsed over
groups across all WM load conditions to the low-level base-
line. Colors indicate effect sizes presented as Cohen’s d.
Redder colors indicate greater BOLD signal relative to base-
line. Bluer colors indicate less BOLD signal relative to base-
line. Only voxels surviving false-positive rate corrections

Fig. 3. Best-fitting regression model predictions and standard errors (shaded regions) for percentage change in blood-oxygenation-level-de-
pendent (BOLD) response as a function of N-back load, marginal performance, and conditional performance. Patients diagnosed with schizo-
phrenia and plotted in red and healthy comparison subjects are plotted in blue. ROI= region of interest; aMFG= anterior middle frontal gyrus;
pMFG = posterior middle frontal gyrus; IFG = inferior frontal gyrus; dMCC = dorsal midcingulate cortex; IPL = inferior parietal lobule.
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(ETAC) are shown in color. The results indicate bilateral
increases in BOLD signal within regions generally consid-
ered to be part of the task-positive network (e.g., frontal
eye fields, DLPFC and VLPFC, dMCC, and IPL).
Concurrently, there are bilateral decreases in BOLD signal
within regions considered to be part of the task-negative or
default mode network (e.g., posterior cingulate, medial fron-
tal gyrus, and middle temporal gyrus). Panel B of Figure 5
plots results from whole-brain, voxel-wise analyses compar-
ing group differences. Nearly, all of the significant voxels are
within default mode brain regions, with SZs showing greater
activity.

DISCUSSION

We largely confirmed our hypothesis that conditional perfor-
mance analysis would uniquely reveal inverted-U-shaped
neuronal activity in both patients and controls. Although
analyses based on task difficulty alone revealed one ROI with
inverted-U-shaped neuronal activity for HCs, results sug-
gested the oppositive pattern for SZs. These results are con-
sistent with the “left-shift” in that the neuronal response
curves for SZs appears to peak at lower levels of difficulty.
Thus, differences in neuronal activity between groups as a
function of load were largely determined by (or reflected
in) differences in cognitive performance.

Our second aim was to explore whether patients would
show greater activity in comparison to controls (i.e., neural
inefficiency) for similar levels of performance. In most

ROIs, SZs demonstrated a very similar pattern of neuronal
activity to HCs (bottom panel of Figure 3). Only the
aMFG differed; specifically, SZs demonstrated a more
peaked inverted-U-shaped load-response curve in the
aMFG. Interpretively, it appears that HCs exhibited flat,
modest activity in this region, and SZs exhibited highly
peaked activity (i.e., both high and low activity depending
on performance level).

Our third aim was to explore demographic, clinical, and
cognitive correlates of inefficient neuronal activity.
Perhaps surprisingly, “inefficient” BOLD activity in the
aMFG appears to be a sign of relatively better health in
SZs. Changes in PFC activity in both schizophrenia and aging
research are sometimes interpreted as evidence of compensa-
tory activation (Cabeza et al., 2018; Manoach et al., 1999).
However, our results suggest that greater pMFG activity rel-
ative to the aMFG is a stronger marker of cognitive health in
schizophrenia. Thus, whether aberrant aMFG activity should
be interpreted as compensation, a deficit, or both, is unclear.
Ciesklik el al. (2013) argue that that there is an anterior–ven-
tral DLPFC that is more strongly connected to the anterior
cingulate, and a posterior–dorsal DLPFC that is more
strongly correlated with bilateral intraparietal sulci.
Whereas the anterior–ventral DLPFC is more strongly related
to attention and inhibition, the posterior network is more
strongly related to action execution and WM. Interestingly,
in Figure 3, it can be seen that conditional performance pre-
dicted a similarly elevated pattern of activity in the aMFG and
dMCC for SZs relative to HCs. More peaked activity in the

Fig. 4. Neuronal activity at ideal task difficulty. Correlations with psychosis diagnosis include healthy comparison participants and patients
diagnosed with psychosis. All other correlations include only patients diagnosed with psychosis. pMFG = posterior middle frontal gyrus;
aMFG = anterior middle frontal gyrus; CPZs = Chlorpromazine equivalents; WRAT-3 = Wide Range Achievement Test 3rd edition;
TMT = Trial Making Test; BASC = Brief Assessment of Cognition in Schizophrenia Symbol Coding; HVLT = Hopkins Verbal
Learning Test; LNS = Letter-Number Sequencing.
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aMFG among SZs could be indicative of greater need to exert
control over attention and inhibition during task engagement.
Nonetheless, within patients, the suggestion from these find-
ings is that exertion of greater cognitive control is associated
with better cognitive health overall. Thus, there is at least
some support for the idea of compensation. It is also possible
that more diffuse activation topography reflects dedifferenti-
ation or failure to specialize (Koen & Rugg, 2019).

Whole-brain, voxel-wise analyses suggested that the
greatest differences in neuronal activity between SZs and
HCs were in activity within the task-negative or default mode
network (Raichle et al., 2001). These findings support prior
work suggesting that patients fail to suppress default mode
network activity during task engagement, particularly among
cognitively impaired individuals (Zhou et al., 2016). Notably,
our results do not suggest that patients were simply disen-
gaged with the task overall. We found no significant
differences in activity within the task-positive network,
including the specific ROIs targeted, and no differences in
inverted-U-shaped (quadratic) activity.

Limitations

A counterargument to the proposed conditional performance
analysis strategy might claim that different levels of task dif-
ficulty are qualitatively different. That is, although load
manipulations are common in clinical studies, some view dis-
tinct load conditions as measures of different and unique sub-
constructs (Ragland et al., 2002). In previous work, we have

shown that the psychometric dimensionality of the N-back
task is well explained by the signal detection model
(Thomas, Brown, Patt, & Duffy, 2020). But even so, psycho-
metric dimensionality and neuronal response dimensionality
are not one and the same (Brown, Thomas, & Patt, 2017).
Shifts in strategy and learning over time are additional con-
cerns (Juvina & Taatgen, 2007); although these can some-
times be managed with proper counterbalancing of load
conditions, changing in strategy and learning are likely to
add error to brain and cognitive measures. Another concern
is that our results demonstrated the use of conditional perfor-
mance analysis using a single behavioral paradigm.
Additional studies are needed to determine whether the utility
of this approach applies to other tasks and constructs. Also,
although all participants denied recent marijuana use, we did
not record positive urine screens for marijuana, and thus it is
possible that marijuana use could have impacted group
differences in cognitive performance or neuronal activity.
Finally, it should be noted that there is a growing concern
about the replicability of findings from small sample studies
in the fMRI literature (Turner, Paul, Miller, & Barbey, 2018).
To counter this concern in the current study, we chose a
hypothesis-based ROI approach, performed multiple runs
of our task, and used a cognitive paradigm with high individ-
ual differences reliability; all strategies that should improve
the replicability of our findings (Nee, 2019; Poldrack,
Mumford, & Nichols, 2011). Given these choices, we ulti-
mately had enough power to detect differences in model fit
that were equivalent to an increase in variance explained of

Fig. 5. (A) Results from whole-brain, voxel-wise analyses comparing average activity across all working memory load conditions to a low-
level baseline (fixation cross). Colors indicate effect sizes presented as Cohen’s d. Redder colors indicate relative greater BOLD signal relative
to baseline. Bluer colors indicate relative lesser BOLD signal relative to baseline. Only voxels surviving false-positive rate correlation (ETAC)
are shown in color. (B) Results from whole-brain, voxel-wise analyses for group differences in average activity across all working memory
load conditions to a low-level baseline (fixation cross). Colors indicate effect sizes presented as Cohen’s d. Red colors indicate relative greater
BOLD signal in patients diagnosed with schizophrenia. Blue colors indicate relative lesser BOLD signal in patients diagnosed with schizo-
phrenia. Only voxels surviving false-positive rate correlation (ETAC) are shown in color. Neurological orientation: left side of figure = left
hemisphere and right side of figure = right hemisphere.
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just .02 (i.e., small). Additionally, as shown in Supplemental
Figure 2, the false discovery rate-corrected p values in the
current study followed a bimodal distribution, where the
majority of nonsignificant values were far above the nominal
cutoff of .05.

Summary

Results confirm the inverted-U-shaped theory of brain activa-
tion as a function of task difficulty. They further suggest that
interpretations of neuronal activity differences between clini-
cal and healthy comparison groups can be flawed when not
considered within the contexts of individual and group
differences in ability and task difficulty. While future
research is needed to determine whether conditional perfor-
mance analysis is applicable across cognitive domains, the
results of this study—at a minimum—suggest that research-
ers should consider the use of conditional performance analy-
sis to completement more traditional analysis strategies used
in task-based fMRI research. The approach is particularly rel-
evant to populations that differ in cognitive functioning. As
demonstrated here, conditional performance analysis can be
implemented for both ROI and whole-brain, voxel-wise
analyses. Moreover, the results underscore the importance
of cautious interpretation of brain activation differences
between groups that differ on ability and call into question
previous theories that use performance data to interpret the
meaning of more or less neuronal activity in individuals with
cognitive disorders.
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