A CHARACTERIZATION OF THE QUADRATIC IRRATIONALS

TOM C. BROWN

Abstract

Let α be a positive irrational real number, and let $f_{\alpha}(n)=$ $[(n+1) \alpha]-[n \alpha]-[\alpha], n \geq 1$, where $[x]$ denotes the greatest integer not exceeding x. It is shown that the sequence f_{α} has a certain 'substitution property' if and only if α is the root of a quadratic equation over the rationals.

1. Introduction. The astronomer J. Bernoulli [1] considered the sequence $([(n+1) \alpha+1 / 2]-[n \alpha+1 / 2]: n \geq 1)$, for positive irrational numbers α, and gave (without proof) an explicit description of the terms of this sequence, based on the simple continued fraction expansion of α.
A. A. Markov [5] proved the validity of Bernoulli's description, and did this by first describing the terms of the sequence $f_{\alpha}=\left(f_{\alpha}(n): n \geq 1\right)$, where $f_{\alpha}(n)=[(n+1) \alpha]-$ $[n \alpha]-[\alpha]$. A beautiful exposition (about 2 pages long) of Markov's proof is given by B. A. Venkov [8].
K. B. Stolarsky [7] gave a different description of the sequence f_{α}, for certain values of α. A. S. Fraenkel,M. Mushkin, and U. Tassa [3] gave a very short and polished proof which extended Stolarsky's result to all positive α, including rational values. Both [7] and [3] contain extensive lists of references.

Stolarsky gave two proofs of his result. In his second proof, he used Markov's theorem to show that if $\alpha=[0, k, k, \ldots]=\frac{1}{k+} \frac{1}{k+} \frac{1}{k+} \ldots$, then the sequence f_{α}, which is a sequence of 0 's and 1 's, is invariant under the substitution $0 \rightarrow B_{1}=0^{k-1} 1,1 \rightarrow B_{2}=0^{k-1} 10$. To say that f_{α} is invariant under this substitution means that if each 0 in f_{α} is replaced by the block B_{1}, and each 1 is replaced by B_{2}, then the resulting sequence is identical with f_{α}. Here 0^{k-1} indicates a block of $k-1$ consecutive 0 's, and if $k=1$ then 0^{k-1} is the empty block. (If $k=3$, the substitution is $0 \rightarrow 001,1 \rightarrow 0010$.)

In this note we give a simple proof, which does not use Markov's theorem, of a generalization of Stolarsky's result. Our main results are based on the fact that if α is any quadratic irrational, then the simple continued fraction for α is periodic.

Throughout, we use the standard notation $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ for the simple continued fraction $a_{0}+1 /\left(a_{1}+1 /\left(a_{2}+\ldots\right)\right)$.

We show that if $\alpha=\left[0, \overline{a_{1}, \ldots, a_{m}}\right]=\left[0, a_{1}, \ldots, a_{m}, a_{1}, \ldots, a_{m}, \ldots\right]=[0$, $\left.a_{1}, \ldots, a_{m}+\alpha\right]$ then there are blocks B_{1} and B_{2} (not both of length 1) such that f_{α} is invariant under the substitution $0 \rightarrow B_{1}, 1 \rightarrow B_{2}$.

[^0]We also show that such blocks B_{1} and B_{2} cannot be found for all quadratic irrationals α.

However, we show that it is true that for every quadratic irrational α, f_{α} is invariant under a substitution of the following kind. There always exist blocks s, t, C_{1}, C_{2} of 0 's and 1's (where C_{1} is longer than s or C_{2} is longer than t) such that f_{α} may be written as a sequence of s 's and t 's, C_{1} and C_{2} may be written as blocks of s 's and t 's, and f_{α} is invariant under the substitution $s \rightarrow C_{1}, t \rightarrow C_{2}$.

Finally, we show that if f_{α} is invariant under a substitution in the above sense, then α is a quadratic irrational. Thus the 'substitution property' of f_{α} characterizes quadratics among the irrationals.
2. Results. We will make use of the sequence $g_{\alpha}=\left(g_{\alpha}(n): n \geq 1\right)$, the characteristic function of the sequence $([n \alpha]: n \geq 1)$, where $g_{\alpha}(n)=1$ if $n=[k \alpha]$ for some k, and $g_{\alpha}(n)=0$ otherwise. We will also use the fact (from the definition of f_{α}) that if j is any integer with $0 \leq j<\alpha$, then $f_{\alpha}=f_{\alpha-j}$.

It will be convenient to use the notation $1 / b=[0, b], 1 /(a+1 / b)=[0, a, b]$, etc., for positive real numbers a, b.

We begin with a fact which is mentioned by Fraenkel, Mushkin, and Tassa [3]:
LEMMA 1. For any irrational $\alpha>1, g_{\alpha}=f_{1 / \alpha}$.
PROOF. It is straightforward to show from the definitions of g_{α} and $f_{1 / \alpha}$ that $g_{\alpha}(n)=$ $1 \Rightarrow f_{1 / \alpha}(n)=1$ and $g_{\alpha}(n)=0 \Rightarrow f_{1 / \alpha}(n)=0$.

DEFINITION. Let $k \geq 1$ be fixed, and let w be any block of 0 's and 1 's or any sequence of 0 's and 1's. Then $h_{k}(w)$ is obtained from w by applying the substitution $0 \rightarrow 0^{k-1} 1,1 \rightarrow 0^{k-1} 10$, where 0^{k-1} is a block of $k-1$ consecutive 0 's. That is, $h_{k}(w)$ is obtained from w by replacing each 0 in w by $0^{k-1} 1$, and each 1 by $0^{k-1} 10$. If $k=1$ the substitution is $0 \rightarrow 1,1 \rightarrow 10$.

LEMMA 2. Let $k \geq 1$ and α be given, where α is irrational and $0<\alpha<1$. Then $h_{k}\left(f_{\alpha}\right)=g_{k+\alpha}=f_{1 /(k+\alpha)}$.

Proof. By definition,

$$
f_{\alpha}=f_{\alpha}(1) f_{\alpha}(2) \ldots f_{\alpha}(j) \ldots,
$$

where

$$
f_{\alpha}(j)=[(j+1) \alpha]-[j \alpha], j \geq 1
$$

and

$$
h_{k}\left(f_{\alpha}\right)=D_{1} D_{2} \ldots D_{q} D_{q+1} \ldots
$$

where

$$
D_{j}=h_{k}\left(f_{\alpha}(j)\right), j \geq 1
$$

Note that each block D_{j} contains exactly one " 1 ", which is in the k th position, and has length either k or $k+1$.

Consider $h_{k}\left(f_{\alpha}\right)$ now as a sequence of 0 's and l's, and let n be the position in this sequence of the $(q+1)^{\text {st " }} 1$ ", that is, the 1 in the block D_{q+1}. Then

$$
n=L\left(D_{1} D_{2} \ldots D_{q}\right)+k
$$

where $L\left(D_{1} D_{2} \ldots D_{q}\right)$ denotes the length of $D_{1} D_{2} \ldots D_{q}$.
Since the block D_{j} has length k if $f_{\alpha}(j)=0$ and has length $k+1$ if $f_{\alpha}(j)=1$, it follows that

$$
L\left(D_{1} D_{2} \ldots D_{q}\right)=q k+f_{\alpha}(1)+\cdots+f_{\alpha}(q) .
$$

Since $f_{\alpha}(j)=[(j+1) \alpha]-[j \alpha]$, and $[\alpha]=0$, the sum telescopes to

$$
L\left(D_{1} D_{2} \ldots D_{q}\right)=q k+[(q+1) \alpha] .
$$

Thus n, the position of the $(q+1)^{\text {st } " 1 " ~ i n ~ t h e ~ s e q u e n c e ~} h_{k}\left(f_{\alpha}\right)$, satisfies

$$
n=q k+[(q+1) \alpha]+k=[(q+1)(k+\alpha)] .
$$

Thus $\left[h_{k}\left(f_{\alpha}\right)(n)=1\right] \Leftrightarrow[n=[(q+1)(k+\alpha)]$. for some $q \geq 0] \Leftrightarrow\left[g_{k+\alpha}(n)=1\right]$. That is, $h_{k}\left(f_{\alpha}\right)=g_{k+\alpha}$.

Using Lemma 1, this gives

$$
h_{k}\left(f_{\alpha}\right)=g_{k+\alpha}=f_{1 /(k+\alpha)}
$$

Theorem 1. Let $\alpha=\left[0, \overline{a_{1}, \ldots, a_{m}}\right]$. Then f_{α} is invariant under the substitution

$$
\begin{aligned}
& 0 \rightarrow B_{1}=h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}(0) \\
& 1 \rightarrow B_{2}=h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}(1),
\end{aligned}
$$

where \circ denotes composition.
Proof. By Lemma 2, we have $h_{a_{m}}\left(f_{\alpha}\right)=f_{1 /\left(a_{m}+\alpha\right)}=f_{\left[0, a_{m}+\alpha\right]}, h_{a_{m-1}} \circ h_{a_{m}}\left(f_{\alpha}\right)=$ $f_{1 /\left(a_{m-1}+\left[0, a_{m}+\alpha\right]\right)}=f_{\left[0, a_{m-1}, a_{m}+\alpha\right]}, \ldots, h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}\left(f_{\alpha}\right)=f_{\beta}$, where $\beta=\left[0, a_{1}\right.$, $\left.a_{2}, \ldots, a_{m}+\alpha\right]=\alpha$.

REMARK. The blocks $B_{1}=h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}(0)$ and $B_{2}=h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}(1)$ can be described as follows. Let $S_{0}=0, S_{1}=0^{a_{1}-1} 1$, and for $2 \leq j \leq m$, let $S_{j}=\left(S_{j-1}\right)^{a_{j}} S_{j-2}$. Then $B_{1}=S_{m}$, and $B_{2}=S_{m} S_{m-1}$. This can be seen by induction on m.

COROLLARY. For any block w of O's and 1 's, let $H(w)$ be obtained from w by replacing each 0 by B_{1}, and each 1 by B_{2}. (That is, $H=h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}$.) Then f_{α} can be generated by starting with $w=f_{\alpha}(1)$ and repeatedly replacing w by $H(w)$.

Proof. Let $E_{1}=f_{\alpha}(1)$ and for $k \geq 1$ let $E_{k+1}=H\left(E_{k}\right)$. Then by the Theorem and induction, each E_{k} is an initial segment of f_{α}.

Theorem 2. Let $\beta>0$ be any quadratic irrational. Since $f_{\beta}=f_{\beta-[\beta]}$, assume without loss of generality that $0<\beta<1$, so that (for suitable a_{i}, b_{j}) $\beta=\left[0, b_{1}, \ldots, b_{q}\right.$, $\left.\overline{a_{1}, \ldots, a_{m}}\right]$. Let

$$
\begin{aligned}
s & =h_{b_{1}} \circ h_{b_{2}} \circ \cdots \circ h_{b_{q}}(0) \\
t & =h_{b_{1}} \circ h_{b_{2}} \circ \cdots \circ h_{b_{q}}(1)
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{1}=h_{b_{1}} \circ h_{b_{2}} \circ \cdots \circ h_{b_{q}} \circ h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}(0) \\
& C_{2}=h_{b_{1}} \circ h_{b_{2}} \circ \cdots \circ h_{b_{q}} \circ h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}(1) .
\end{aligned}
$$

Then f_{β}, C_{1}, C_{2} can be written as sequences of s's and t 's, and f_{β} is invariant under the substitutions $\rightarrow C_{1}, t \rightarrow C_{2}$.

Proof. Let $\alpha=\left[0, \overline{a_{1}, \ldots, a_{m}}\right]$, so that $\beta=\left[0, b_{1}, b_{2}, \ldots, b_{q}+\alpha\right]$. Let $H_{1}=$ $h_{b_{1}} \circ h_{b_{2}} \circ \cdots \circ h_{b_{q}}, H_{2}=h_{a_{1}} \circ h_{a_{2}} \circ \cdots \circ h_{a_{m}}, B_{1}=H_{2}(0), B_{2}=H_{2}(1)$. Then we have $s=H_{1}(0), t=H_{1}(1)$, and $C_{1}=H_{1}\left(B_{1}\right), C_{2}=H_{1}\left(B_{2}\right)$, so that C_{1}, C_{2} can be written as blocks of s 's and t 's.

By the proof of Theorem 1, $H_{1}\left(f_{\alpha}\right)=f_{\beta}$, so that f_{β} can be written as a sequence of s 's and t 's, and $H_{2}\left(f_{\alpha}\right)=f_{\alpha}$. Note that $H_{1}\left(f_{\alpha}\right)=f_{\beta}$ is obtained from f_{α} by applying the substitution $0 \rightarrow s, 1 \rightarrow t$, and $H_{2}\left(f_{\alpha}\right)=f_{\alpha}$ is obtained by applying the substitution $0 \rightarrow B_{1}, 1 \rightarrow B_{2}$.

Therefore we can transform f_{β} into f_{β} by successively applying the substitutions $[s \rightarrow$ $0, t \rightarrow 1],\left[0 \rightarrow B_{1}, 1 \rightarrow B_{2}\right]$, and $\left[B_{1} \rightarrow C_{1}, B_{2} \rightarrow C_{2}\right]$, which transform f_{β} into f_{α}, f_{α} into f_{α}, and f_{α} into f_{β} respectively.

Theorem 3. Let $\beta=[0,5,1,1,1, \ldots]$. Then there do not exist non-trivial blocks B_{1}, B_{2} of 0 's and l's such that f_{β} is invariant under the substitution $0 \rightarrow B_{1}, 1 \rightarrow B_{2}$.

Proof. Let $\alpha=[0,1,1, \ldots]=(\sqrt{5}-1) / 2$. Then $f_{\alpha}(1)=1$, and by Theorem 1 , f_{α} is invariant under $0 \rightarrow 1,1 \rightarrow 10$, so $f_{\alpha}=10110 \ldots$ By the proof of Theorem 1, $h_{5}\left(f_{\alpha}\right)=f_{\beta}$, so $f_{\beta}=t s t t s \ldots$, where $s=00001, t=000010$. Thus

$$
\begin{array}{rlrllllllll}
f_{\beta} & =000010 & 00001 & 000010 & 000010 & 00001 & 000010 & 00001 & 000010 & \ldots \\
& = & t & s & t & t & s & t & s & t & \ldots
\end{array}
$$

It was shown by Karhumaki [4] that the sequence $f_{\alpha}=10110 \ldots$ does not contain any $4^{\text {th }}$ power. That is, f_{α} contains no non-empty block of the form $D D D D$. (See also [2] and [6].) Thus also the sequence $f_{\beta}=t$ tststst \ldots, when regarded as a sequence of s's and t 's, contains no non-empty block of the form $D D D D$, where D is a block of s's and t 's.

Now suppose that f_{β} is invariant under $0 \rightarrow B_{1}, 1 \rightarrow B_{2}$, and for any block or sequence w of 0 's and 1 's, let $H(w)$ be the result of applying this substitution to w. Note that $f_{\beta}=$ $H\left(f_{\beta}\right)=B_{1} B_{1} B_{1} B_{1} B_{2} \ldots$, so that B_{1} is some initial segment of f_{β}.

Our goal is to show that B_{1} can be written as a block of s 's and t 's, which form an initial segment of f_{β}, when f_{β} is regarded as a sequence of s's and t's. Since $f_{\beta}=B_{1} B_{1} B_{1} B_{1} \ldots$, this will contradict Karhumaki's result, and the proof will be finished.

To this end, first note that the block B_{1} must contain at least one " 1, " since otherwise, by the Corollary to Theorem $1, f_{\beta}$ would be identically 0 . Note also that f_{β} consists of blocks of either 4 or 5 consecutive 0 's separated by single 1 's. This implies that the block B_{1} ends either with 1 or with 10 , since otherwise $f_{\beta}=H\left(f_{\beta}\right)=B_{1} B_{1} \ldots$ would contain a block of more than five consecutive 0 's. (For example if $B_{1}=C 100$, then since $C=00001 D$ (which is true since B_{1} is an initial segment of $f_{\beta}=000010 \ldots$), we would have

$$
f_{\beta}=H\left(f_{\beta}\right)=B_{1} B_{1} \ldots=C 100 C 100 \ldots=C 10000001 D 100 \ldots,
$$

with too many consecutive 0 's.)
Suppose now that B_{1} fails to be an initial segment of s 's and t 's in f_{β} (when f_{β} is regarded as a sequence of s 's and t 's).

If B_{1} ends in 0 , then $B 1=C s 0$, where $C s$ is an initial segment of s 's and t 's in f_{β} (when f_{β} is regarded as a sequence of s 's and t 's). Note that $C=00001 D$. Then since $C s$ is an initial segment of f_{β}, we have $f_{\beta}=C s \underline{00001} \ldots$, but also we have

$$
f_{\beta}=H\left(f_{\beta}\right)=B_{1} B_{1} \ldots=C s 0 C s 0 \ldots=C s \underline{000001 D s 0 \ldots,}
$$

a contradiction.
If B_{1} ends in 1 , then $B_{1}=C 00001$, where $C t$ is an initial segment of $s ' s$ and t 's in f_{β} (when f_{β} is regarded as a sequence of s 's and t 's). Note again that $C=00001 D$. Then since $C t$ is an initial segment of f_{β}, we have $f_{\beta}=C t \ldots=C 00001000001 \ldots$, but also we have

$$
f_{\beta}=H\left(f_{\beta}\right)=B_{1} B_{1} \ldots=C 00001 C 00001 \ldots=C 00001 \underline{00001 D 00001 \ldots,}
$$

a contradiction.
Thus we have shown that if f_{β} is invariant under a substitution $0 \rightarrow B_{1}, 1 \rightarrow B_{2}$, then B_{1} can be written as a block of s 's and t 's, which form an initial segment of f_{β}, when f_{β} is regarded as a sequence of s's and t 's. This gives the desired contradiction to Karhumaki's result, and completes the proof.

THEOREM 4. Let α be a positive irrational real number, and let f_{α} be written as a sequence on s, t, where s, t are blocks of 0's and l's. Let C_{1}, C_{2} be blocks of s's and t's such that f_{α} is invariant under the non-trivial substitution $s \rightarrow C_{1}, t \rightarrow C_{2}$. Then α is a quadratic irrational.

Proof. First consider the case where $0<\alpha<1$ and $s=0, t=1$. Suppose that C_{1} contains $a 0$'s and $b 1$'s, and that C_{2} contains $c 0$'s and $d 1$'s.

For any block w of 0 's and 1's, let $H(w)$ denote the word obtained from w by replacing each 0 by C_{1} and each 1 by C_{2}. Let $E_{1}=H\left(f_{\alpha}(1)\right)$ and for $p \geq 1$ let $E_{p+1}=H\left(E_{p}\right)$. Let e_{p} denote the number of 1 's which occur in the block E_{p}. Since the number of 1's which occur in the block $f_{\alpha}(1) f_{\alpha}(2) \ldots f_{\alpha}(n)$ is $f_{\alpha}(1)+f_{\alpha}(2)+\cdots+f_{\alpha}(n)$, which equals
$[(n+1) \alpha]$, we have $e_{p}=[(L(E p)+1) \alpha]$. Also, $e_{p+1}=e_{p} d+\left(L\left(E_{p}\right)-e_{p}\right) b$, and $L\left(E_{p+1}\right)=$ $e_{p}(c+d)+\left(L\left(E_{p}\right)-e_{p}\right)(a+b)$, so that

$$
\frac{e_{p+1}}{L\left(E_{p+1}\right)}=\frac{\frac{e_{p} d}{L\left(E_{p}\right)}+\left(1-\frac{e_{p}}{L(E p)}\right) b}{\frac{e_{p}(c+d)}{L\left(E_{p}\right)}+\left(1-\frac{e_{p}}{L\left(E_{p}\right)}\right)(a+b)} .
$$

Taking the limit as $p \rightarrow \infty$, we obtain

$$
\alpha=\frac{\alpha d+(1-\alpha) b}{\alpha(c+d)+(1-\alpha)(a+b)},
$$

so that α is a quadratic irrational.
The general case can be handled similarly. We omit the details.

References

1. J. Bernoulli III, Sur une nouvelle espece de calcul, Recueil pour les astronomes, Vols. 1, 2, Berlin, 1772.
2. J. Berstel, Mots de Fibonacci, Seminaire d'Informatique Theorique, L. I. T. P. Université Paris VI et VII, Année 1980/81, 57-58.
3. A. S. Fraenkel, M. Mushkin, and U. Tassa, Determination of $[n \theta]$ by its sequence of differences, Canad. Math. Bull. 21(1978), 441-446.
4. J. Karhumaki, On cube-free ω-words generated by binary morphisms, Discrete Appl. Math. 5(1983), 279297.
5. A. A. Markoff, Sur une question de Jean Bernoulli, Math. Ann. 19(1882), 27-36.
6. A. Restivo, Permutation properties and the Fibonacci semigroup, Semigroup Forum 38(1989), 337-345.
7. K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19(1976), 473-482.
8. B. A. Venkov, Elementary Number Theory, Translated and edited by Helen Alderson, Wolters-Noordhoff, Groningen, 1970, 65-68.

Department of Mathematics and Statistics
Simon Fraser University
Burnaby, BC V5A ISA

[^0]: Partially supported by NSERC.
 Received by the editors June 21, 1989, revised May 3, 1990.
 AMS subject classification: 10 L 10 .
 (c) Canadian Mathematical Society 1991.

