A CHARACTERIZATION OF THE QUADRATIC IRRATIONALS

TOM C. BROWN

ABSTRACT. Let α be a positive irrational real number, and let $f_{\alpha}(n) = [(n + 1)\alpha] - [n\alpha] - [\alpha], n \ge 1$, where [x] denotes the greatest integer not exceeding x. It is shown that the sequence f_{α} has a certain 'substitution property' if and only if α is the root of a quadratic equation over the rationals.

1. Introduction. The astronomer J. Bernoulli [1] considered the sequence $([(n+1)\alpha + 1/2] - [n\alpha + 1/2] : n \ge 1)$, for positive irrational numbers α , and gave (without proof) an explicit description of the terms of this sequence, based on the simple continued fraction expansion of α .

A. A. Markov [5] proved the validity of Bernoulli's description, and did this by first describing the terms of the sequence $f_{\alpha} = (f_{\alpha}(n) : n \ge 1)$, where $f_{\alpha}(n) = [(n+1)\alpha] - [n\alpha] - [\alpha]$. A beautiful exposition (about 2 pages long) of Markov's proof is given by B. A. Venkov [8].

K. B. Stolarsky [7] gave a different description of the sequence f_{α} , for certain values of α . A. S. Fraenkel, M. Mushkin, and U. Tassa [3] gave a very short and polished proof which extended Stolarsky's result to all positive α , including rational values. Both [7] and [3] contain extensive lists of references.

Stolarsky gave two proofs of his result. In his second proof, he used Markov's theorem to show that if $\alpha = [0, k, k, ...] = \frac{1}{k+1} \frac{1}{k+1} \frac{1}{k+1} \dots$, then the sequence f_{α} , which is a sequence of 0's and 1's, is invariant under the substitution $0 \rightarrow B_1 = 0^{k-1}1, 1 \rightarrow B_2 = 0^{k-1}10$. To say that f_{α} is invariant under this substitution means that if each 0 in f_{α} is replaced by the block B_1 , and each 1 is replaced by B_2 , then the resulting sequence is identical with f_{α} . Here 0^{k-1} indicates a block of k - 1 consecutive 0's, and if k = 1 then 0^{k-1} is the empty block. (If k = 3, the substitution is $0 \rightarrow 001, 1 \rightarrow 0010$.)

In this note we give a simple proof, which does not use Markov's theorem, of a generalization of Stolarsky's result. Our main results are based on the fact that if α is any quadratic irrational, then the simple continued fraction for α is periodic.

Throughout, we use the standard notation $[a_0, a_1, a_2, ...]$ for the simple continued fraction $a_0 + 1/(a_1 + 1/(a_2 + ...))$.

We show that if $\alpha = [0, \overline{a_1, \ldots, a_m}] = [0, a_1, \ldots, a_m, a_1, \ldots, a_m, \ldots] = [0, a_1, \ldots, a_m + \alpha]$ then there are blocks B_1 and B_2 (not both of length 1) such that f_α is invariant under the substitution $0 \rightarrow B_1, 1 \rightarrow B_2$.

Partially supported by NSERC.

Received by the editors June 21, 1989, revised May 3, 1990.

AMS subject classification: 10L10.

[©] Canadian Mathematical Society 1991.

We also show that such blocks B_1 and B_2 cannot be found for *all* quadratic irrationals α .

However, we show that it is true that for every quadratic irrational α , f_{α} is invariant under a substitution of the following kind. There always exist blocks s, t, C_1, C_2 of 0's and 1's (where C_1 is longer than s or C_2 is longer than t) such that f_{α} may be written as a sequence of s's and t's, C_1 and C_2 may be written as blocks of s's and t's, and f_{α} is invariant under the substitution $s \to C_1, t \to C_2$.

Finally, we show that if f_{α} is invariant under a substitution in the above sense, then α is a quadratic irrational. Thus the 'substitution property' of f_{α} characterizes quadratics among the irrationals.

2. **Results.** We will make use of the sequence $g_{\alpha} = (g_{\alpha}(n) : n \ge 1)$, the characteristic function of the sequence $([n\alpha] : n \ge 1)$, where $g_{\alpha}(n) = 1$ if $n = [k\alpha]$ for some k, and $g_{\alpha}(n) = 0$ otherwise. We will also use the fact (from the definition of f_{α}) that if j is any integer with $0 \le j < \alpha$, then $f_{\alpha} = f_{\alpha-j}$.

It will be convenient to use the notation 1/b = [0, b], 1/(a + 1/b) = [0, a, b], etc., for positive real numbers a, b.

We begin with a fact which is mentioned by Fraenkel, Mushkin, and Tassa [3]:

LEMMA 1. For any irrational $\alpha > 1$, $g_{\alpha} = f_{1/\alpha}$.

PROOF. It is straightforward to show from the definitions of g_{α} and $f_{1/\alpha}$ that $g_{\alpha}(n) = 1 \Rightarrow f_{1/\alpha}(n) = 1$ and $g_{\alpha}(n) = 0 \Rightarrow f_{1/\alpha}(n) = 0$.

DEFINITION. Let $k \ge 1$ be fixed, and let w be any block of 0's and 1's or any sequence of 0's and 1's. Then $h_k(w)$ is obtained from w by applying the substitution $0 \to 0^{k-1}1, 1 \to 0^{k-1}10$, where 0^{k-1} is a block of k-1 consecutive 0's. That is, $h_k(w)$ is obtained from w by replacing each 0 in w by $0^{k-1}1$, and each 1 by $0^{k-1}10$. If k = 1 the substitution is $0 \to 1, 1 \to 10$.

LEMMA 2. Let $k \ge 1$ and α be given, where α is irrational and $0 < \alpha < 1$. Then $h_k(f_{\alpha}) = g_{k+\alpha} = f_{1/(k+\alpha)}$.

PROOF. By definition,

$$f_{\alpha} = f_{\alpha}(1)f_{\alpha}(2)\dots f_{\alpha}(j)\dots,$$

where

$$f_{\alpha}(j) = [(j+1)\alpha] - [j\alpha], j \ge 1,$$

and

$$h_k(f_\alpha) = D_1 D_2 \dots D_q D_{q+1} \dots,$$

where

$$D_j = h_k(f_\alpha(j)), j \ge 1.$$

Note that each block D_j contains exactly one "1", which is in the *k*th position, and has length either *k* or k + 1.

Consider $h_k(f_\alpha)$ now as a sequence of 0's and 1's, and let *n* be the position in this sequence of the $(q + 1)^{\text{st}}$ "1", that is, the 1 in the block D_{q+1} . Then

$$n = L(D_1 D_2 \dots D_a) + k,$$

where $L(D_1D_2...D_q)$ denotes the *length* of $D_1D_2...D_q$.

Since the block D_j has length k if $f_{\alpha}(j) = 0$ and has length k + 1 if $f_{\alpha}(j) = 1$, it follows that

$$L(D_1D_2\dots D_q) = qk + f_\alpha(1) + \dots + f_\alpha(q)$$

Since $f_{\alpha}(j) = [(j+1)\alpha] - [j\alpha]$, and $[\alpha] = 0$, the sum telescopes to

$$L(D_1D_2\ldots D_q) = qk + [(q+1)\alpha].$$

Thus *n*, the position of the $(q + 1)^{\text{st}}$ "1" in the sequence $h_k(f_\alpha)$, satisfies

$$n = qk + [(q+1)\alpha] + k = [(q+1)(k+\alpha)].$$

Thus $[h_k(f_\alpha)(n) = 1] \Leftrightarrow [n = [(q+1)(k+\alpha)]$. for some $q \ge 0] \Leftrightarrow [g_{k+\alpha}(n) = 1]$. That is, $h_k(f_\alpha) = g_{k+\alpha}$.

Using Lemma 1, this gives

$$h_k(f_\alpha) = g_{k+\alpha} = f_{1/(k+\alpha)}.$$

THEOREM 1. Let $\alpha = [0, \overline{a_1, \dots, a_m}]$. Then f_{α} is invariant under the substitution

$$0 \longrightarrow B_1 = h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}(0)$$

$$1 \longrightarrow B_2 = h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}(1),$$

where \circ denotes composition.

PROOF. By Lemma 2, we have $h_{a_m}(f_{\alpha}) = f_{1/(a_m+\alpha)} = f_{[0,a_m+\alpha]}, h_{a_{m-1}} \circ h_{a_m}(f_{\alpha}) = f_{1/(a_{m-1}+[0,a_m+\alpha])} = f_{[0,a_{m-1},a_m+\alpha]}, \dots, h_{a_1} \circ h_{a_2} \circ \dots \circ h_{a_m}(f_{\alpha}) = f_{\beta}, \text{ where } \beta = [0,a_1,a_2,\dots,a_m+\alpha] = \alpha.$

REMARK. The blocks $B_1 = h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}(0)$ and $B_2 = h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}(1)$ can be described as follows. Let $S_0 = 0$, $S_1 = 0^{a_1-1}1$, and for $2 \le j \le m$, let $S_j = (S_{j-1})^{a_j}S_{j-2}$. Then $B_1 = S_m$, and $B_2 = S_mS_{m-1}$. This can be seen by induction on m.

COROLLARY. For any block w of 0's and 1's, let H(w) be obtained from w by replacing each 0 by B_1 , and each 1 by B_2 . (That is, $H = h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}$.) Then f_{α} can be generated by starting with $w = f_{\alpha}(1)$ and repeatedly replacing w by H(w).

PROOF. Let $E_1 = f_{\alpha}(1)$ and for $k \ge 1$ let $E_{k+1} = H(E_k)$. Then by the Theorem and induction, each E_k is an initial segment of f_{α} .

THEOREM 2. Let $\beta > 0$ be any quadratic irrational. Since $f_{\beta} = f_{\beta-\lfloor\beta\rfloor}$, assume without loss of generality that $0 < \beta < 1$, so that (for suitable a_i, b_j) $\beta = [0, b_1, \dots, b_q, \overline{a_1, \dots, a_m}]$. Let

$$s = h_{b_1} \circ h_{b_2} \circ \cdots \circ h_{b_q}(0)$$

$$t = h_{b_1} \circ h_{b_2} \circ \cdots \circ h_{b_q}(1),$$

and

$$C_1 = h_{b_1} \circ h_{b_2} \circ \cdots \circ h_{b_q} \circ h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}(0)$$

$$C_2 = h_{b_1} \circ h_{b_2} \circ \cdots \circ h_{b_q} \circ h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}(1).$$

Then f_{β} , C_1 , C_2 can be written as sequences of s's and t's, and f_{β} is invariant under the substitution $s \rightarrow C_1$, $t \rightarrow C_2$.

PROOF. Let $\alpha = [0, \overline{a_1, ..., a_m}]$, so that $\beta = [0, b_1, b_2, ..., b_q + \alpha]$. Let $H_1 = h_{b_1} \circ h_{b_2} \circ \cdots \circ h_{b_q}$, $H_2 = h_{a_1} \circ h_{a_2} \circ \cdots \circ h_{a_m}$, $B_1 = H_2(0)$, $B_2 = H_2(1)$. Then we have $s = H_1(0)$, $t = H_1(1)$, and $C_1 = H_1(B_1)$, $C_2 = H_1(B_2)$, so that C_1 , C_2 can be written as blocks of s's and t's.

By the proof of Theorem 1, $H_1(f_\alpha) = f_\beta$, so that f_β can be written as a sequence of s's and t's, and $H_2(f_\alpha) = f_\alpha$. Note that $H_1(f_\alpha) = f_\beta$ is obtained from f_α by applying the substitution $0 \rightarrow s, 1 \rightarrow t$, and $H_2(f_\alpha) = f_\alpha$ is obtained by applying the substitution $0 \rightarrow B_1, 1 \rightarrow B_2$.

Therefore we can transform f_{β} into f_{β} by successively applying the substitutions $[s \rightarrow 0, t \rightarrow 1]$, $[0 \rightarrow B_1, 1 \rightarrow B_2]$, and $[B_1 \rightarrow C_1, B_2 \rightarrow C_2]$, which transform f_{β} into f_{α}, f_{α} into f_{α} , and f_{α} into f_{β} respectively.

THEOREM 3. Let $\beta = [0, 5, 1, 1, 1, ...]$. Then there do not exist non-trivial blocks B_1, B_2 of 0's and 1's such that f_β is invariant under the substitution $0 \rightarrow B_1, 1 \rightarrow B_2$.

PROOF. Let $\alpha = [0, 1, 1, ...] = (\sqrt{5} - 1)/2$. Then $f_{\alpha}(1) = 1$, and by Theorem 1, f_{α} is invariant under $0 \rightarrow 1, 1 \rightarrow 10$, so $f_{\alpha} = 10110...$ By the proof of Theorem 1, $h_5(f_{\alpha}) = f_{\beta}$, so $f_{\beta} = tstts...$, where s = 00001, t = 000010. Thus

$$f_{\beta} = 000010\ 00001\ 000010\ 000010\ 00001\ 000010\ 00001\ 000010\ \dots$$
$$= t \quad s \quad t \quad t \quad s \quad t \quad s \quad t \quad \dots$$

It was shown by Karhumaki [4] that the sequence $f_{\alpha} = 10110...$ does not contain any 4th power. That is, f_{α} contains no non-empty block of the form *DDDD*. (See also [2] and [6].) Thus also the sequence $f_{\beta} = tsttstst...$, when regarded as a sequence of s's and t's, contains no non-empty block of the form *DDDD*, where D is a block of s's and t's.

Now suppose that f_{β} is invariant under $0 \rightarrow B_1$, $1 \rightarrow B_2$, and for any block or sequence w of 0's and 1's, let H(w) be the result of applying this substitution to w. Note that $f_{\beta} = H(f_{\beta}) = B_1 B_1 B_1 B_1 B_2 \dots$, so that B_1 is some initial segment of f_{β} .

Our goal is to show that B_1 can be written as a block of s's and t's, which form an initial segment of f_β , when f_β is regarded as a sequence of s's and t's. Since $f_\beta = B_1B_1B_1B_1...$, this will contradict Karhumaki's result, and the proof will be finished.

To this end, first note that the block B_1 must contain at least one "1," since otherwise, by the Corollary to Theorem 1, f_β would be identically 0. Note also that f_β consists of blocks of either 4 or 5 consecutive 0's separated by single 1's. This implies that the block B_1 ends either with 1 or with 10, since otherwise $f_\beta = H(f_\beta) = B_1B_1...$ would contain a block of more than five consecutive 0's. (For example if $B_1 = C100$, then since C = 00001D (which is true since B_1 is an initial segment of $f_\beta = 000010...$), we would have

$$f_{\beta} = H(f_{\beta}) = B_1 B_1 \dots = C100 C100 \dots = C100 00001 D100 \dots,$$

with too many consecutive 0's.)

Suppose now that B_1 fails to be an initial segment of s's and t's in f_β (when f_β is regarded as a sequence of s's and t's).

If B_1 ends in 0, then $B_1 = Cs0$, where Cs is an initial segment of s's and t's in f_β (when f_β is regarded as a sequence of s's and t's). Note that C = 00001D. Then since Cs is an initial segment of f_β , we have $f_\beta = Cs00001...$, but also we have

$$f_{\beta} = H(f_{\beta}) = B_1 B_1 \ldots = Cs_0 Cs_0 \ldots = Cs_0 0000 1 Ds_0 \ldots,$$

a contradiction.

If B_1 ends in 1, then $B_1 = C00001$, where Ct is an initial segment of s's and t's in f_β (when f_β is regarded as a sequence of s's and t's). Note again that C = 00001D. Then since Ct is an initial segment of f_β , we have $f_\beta = Ct \dots = C000010\ 00001$..., but also we have

 $f_{\beta} = H(f_{\beta}) = B_1 B_1 \dots = C00001 C00001 \dots = C00001 \underline{0000} 1 D00001 \dots,$

a contradiction.

Thus we have shown that if f_{β} is invariant under a substitution $0 \rightarrow B_1, 1 \rightarrow B_2$, then B_1 can be written as a block of s's and t's, which form an initial segment of f_{β} , when f_{β} is regarded as a sequence of s's and t's. This gives the desired contradiction to Karhumaki's result, and completes the proof.

THEOREM 4. Let α be a positive irrational real number, and let f_{α} be written as a sequence on s, t, where s, t are blocks of 0's and 1's. Let C_1 , C_2 be blocks of s's and t's such that f_{α} is invariant under the non-trivial substitution $s \rightarrow C_1$, $t \rightarrow C_2$. Then α is a quadratic irrational.

PROOF. First consider the case where $0 < \alpha < 1$ and s = 0, t = 1. Suppose that C_1 contains a 0's and b 1's, and that C_2 contains c 0's and d 1's.

For any block w of 0's and 1's, let H(w) denote the word obtained from w by replacing each 0 by C_1 and each 1 by C_2 . Let $E_1 = H(f_{\alpha}(1))$ and for $p \ge 1$ let $E_{p+1} = H(E_p)$. Let e_p denote the number of 1's which occur in the block E_p . Since the number of 1's which occur in the block $f_{\alpha}(1)f_{\alpha}(2) \dots f_{\alpha}(n)$ is $f_{\alpha}(1) + f_{\alpha}(2) + \dots + f_{\alpha}(n)$, which equals $[(n+1)\alpha]$, we have $e_p = [(L(E_p)+1)\alpha]$. Also, $e_{p+1} = e_p d + (L(E_p) - e_p)b$, and $L(E_{p+1}) = e_p (c+d) + (L(E_p) - e_p)(a+b)$, so that

$$\frac{e_{p+1}}{L(E_{p+1})} = \frac{\frac{e_{p}d}{L(E_{p})} + \left(1 - \frac{e_{p}}{L(E_{p})}\right)b}{\frac{e_{p}(c+d)}{L(E_{p})} + \left(1 - \frac{e_{p}}{L(E_{p})}\right)(a+b)}$$

Taking the limit as $p \to \infty$, we obtain

$$\alpha = \frac{\alpha d + (1 - \alpha)b}{\alpha (c + d) + (1 - \alpha)(a + b)},$$

so that α is a quadratic irrational.

The general case can be handled similarly. We omit the details.

REFERENCES

- 1. J. Bernoulli III, Sur une nouvelle espece de calcul, Recueil pour les astronomes, Vols. 1, 2, Berlin, 1772.
- 2. J. Berstel, *Mots de Fibonacci*, Seminaire d'Informatique Theorique, L. I. T. P. Université Paris VI et VII, Année 1980/81, 57–58.
- **3.** A. S. Fraenkel, M. Mushkin, and U. Tassa, *Determination of* $[n\theta]$ *by its sequence of differences*, Canad. Math. Bull. **21**(1978), 441–446.
- **4.** J. Karhumaki, On cube-free ω-words generated by binary morphisms, Discrete Appl. Math. **5**(1983), 279–297.
- 5. A. A. Markoff, Sur une question de Jean Bernoulli, Math. Ann. 19(1882), 27-36.
- 6. A. Restivo, Permutation properties and the Fibonacci semigroup, Semigroup Forum 38(1989), 337–345.
- 7. K. B. Stolarsky, *Beatty sequences, continued fractions, and certain shift operators*, Canad. Math. Bull. **19**(1976), 473–482.
- B. A. Venkov, *Elementary Number Theory*, Translated and edited by Helen Alderson, Wolters-Noordhoff, Groningen, 1970, 65–68.

Department of Mathematics and Statistics Simon Fraser University Burnaby, BC V5A 1SA