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Introduction. Any finite group of linear transformations on n variables 
leaves invariant a positive definite Hermitian form, and can therefore be ex­
pressed, after a suitable change of variables, as a group of unitary transforma­
tions (5, p. 257). Such a group may be thought of as a group of congruent trans­
formations, keeping the origin fixed, in a unitary space Un of n dimensions, in 
which the points are specified by complex vectors with n components, and the 
distance between two points is the norm of the difference between their corre­
sponding vectors. 

In the real case we have a group of orthogonal transformations in Euclidean 
space En. Among such groups the groups generated by reflections have been the 
object of considerable study (6; 9; 10). The concept of a reflection has recently 
been extended to unitary space by Shephard (24). A reflection in unitary space 
is a congruent transformation of finite period that leaves invariant every point 
of a certain prime, and it is characterised by the property that all but one of the 
characteristic roots of the matrix of transformation are equal to unity. The 
remaining root, if the reflection is of period m, is a primitive rath root of unity, 
and the reflection is then said to be ra-fold. Shephard, in the paper just quoted, 
has considered a particular class of unitary groups generated by reflections which 
possess properties closely analogous to those of the real orthogonal groups 
considered by Coxeter. 
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This paper is divided into two parts. In the first part we determine all finite 
unitary groups generated by reflections. To save constant repetition we shall 
abbreviate the italicised words to 'u.g.g.r.', the qualification 'finite' being 
understood throughout. Since any finite group of unitary transformations is 
either irreducible or completely reducible (5, p. 263), it suffices to determine the 
irreducible groups; in fact, if a u.g.g.r. is reducible, it is necessarily the direct 
product of its irreducible components, each of which is itself a u.g.g.r. This is 
accomplished in §§1-4. The method employed depends on the fact that, with 
each u.g.g.r. © in Un we can associate a collineation group ©' in projective space 
of n — 1 dimensions which is generated by homologies, and that conversely, 
from each such group ©' a finite number (generally only one) of u.g.g.r. can be 
derived. We are thus able to draw on the considerable literature which exists 
on collineation groups generated by homologies. In fact all the collineation 
groups we require are well known except the imprimitive ones, and these, as we 
shall see, can be determined without difficulty. 

In the second part of the paper we place on record some curious properties of 
these groups, which are enunciated in the form of theorems in §5. These extend 
and generalise the results obtained by Coxeter (10) for the special type of 
u.g.g.r. which consists of real orthogonal transformations. The next five sections 
of the paper are devoted entirely to the proofs of these theorems. The last section 
gives abstract definitions for those groups in Un which are generated by n 
reflections. 

I . DETERMINATION OF ALL THE FINITE IRREDUCIBLE UNITARY GROUPS 

GENERATED BY REFLECTIONS 

1. The associated collineation group ©'. Let © be a u.g.g.r. in Un. The 
matrices which correspond to the operations of © can be regarded as collineation 
matrices in projective space Sn-.\ of n — 1 dimensions, and the corresponding 
collineations form a group ©' which is isomorphic to the quotient group of © 
by the cyclic subgroup 3 which consists of the elements of © represented by 
scalar matrices. To the ra-fold reflections of © correspond collineations of finite 
period m leaving fixed all points of a prime of Sn-\. Such collineations are known 
as homologies, and thus ©' is generated by homologies. 

Conversely, suppose ©' is a collineation group in Sn-i generated by homologies. 
The matrix of any such homology has a set of characteristic roots of the form 
(X, X, . . . , X, n) with X^ /z , X/x^0. U n > 2 this matrix can be normalised in a 
unique way (by multiplying by X-1) so that it has all but one of its characteristic 
roots equal to unity, while if n = 2 this can be done in two ways (the other 
multiplier being fx~1) ; and such a normalised matrix is equivalent to a reflection. 
Thus from any group ©' generated by homologies we can construct, in at most a 
finite number of ways, a group © generated by reflections. More precisely, this 
can be done in a unique way provided that n > 2 and that the cyclic subgroups 
generated by the homologies in ©' are all conjugate in ©'. As we shall soon see, 
these subgroups are conjugate when n > 2 except in a very few cases. But when 
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w = 2 a variety of cases arise which need separate discussion. When n = 1, © is 
evidently a cyclic group generated by a reflection, and ©' is trivial. 

2. Imprimitive u.g.g.r. in Un. The groups @ and ©' are clearly both 
primitive or both imprimitive. In this section we shall determine the irreducible 
u.g.g.r. in Un which are imprimitive. 

For any imprimitive group © it must be possible to arrange the transforma­
tion variables in sets which are either unchanged or permuted among themselves 
by every operation of ©. If © is irreducible, these sets of variables must be 
permuted transitively, so that each set contains the same number, n± say, of 
variables. The number of sets is then k where kni = n. If we consider the corre­
sponding collineation group ©' in 5n_i, there are then k linear spaces of dimen­
sion ti\ — 1, whose join is Sn-u which are permuted among themselves by the 
collineations of ©'. Now ©' is generated by homologies, and in any homology, a 
space of dimension r > 0 which is not invariant under the homology meets its 
transform in a space of dimension r — 1. It follows that, for an irreducible 
imprimitive group generated by homologies in Sn-u we must have rt\ = 1, 
k = n, and therefore there are n distinct isolated points which are permuted by 
the collineations of ©'. These n points define a simplex (which we naturally take 
as the simplex of reference) and the group ©' then consists of monomial sub­
stitutions of the form: 
2.1 T: %i — diXffd) 

where (o-(l), o-(2), . . . , <r(n)) is a permutation <r of (1, 2, . . . , n). If all the 
characteristic roots of this, save one, are equal to unity, the transformation 
must be of one or other of the forms 

Zi.ct X% ==: tlXjy Xj = = U Xï) Xjç = = X]$ \K 5*^ ^ij)y 

or 
2.3 Xi = <t>xu x/ = Xj (j 7* i ) , 

where <j> is a root of unity. Since © is a u.g.g.r., it is generated by transformations 
of these two types, and since © is irreducible, transformations of the former 
type certainly occur. 

The correspondence T —> a where T is the typical transformation 2.1 of ©, 
determines a homomorphism 0 of © into the symmetric group ©n of permuta­
tions of the suffixes of the variables. Let § be the image of © under 9. Then, 
since © is irreducible, § is a transitive subgroup of ©w. It must be generated by 
the permutations corresponding to reflections in ©. Now 2.2 is mapped onto the 
transposition (ij) of ©n, while 2.3 is mapped onto the identity. It follows that 
§ is generated by transpositions, and since it is transitive, § must coincide with 
©n, and 6 is a homomorphism of © onto ©n. 

Consider the subgroup @* of © generated by the reflections 2.2. Since ©*, like 
©, is mapped homomorphically onto ©n by 9, the subgroups of @* which keep 
n — 2 variables fixed are all conjugate in ©*. The linear group induced on the 
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remaining variables, since it leaves the simplex of reference invariant, must be 
dihedral, of order 2m say. It follows that ©* is generated by transformations 2.2 
where 6 is a primitve mth root of unity, and ©* is the group, of order inn~ln\, of 
transformations of the form 
2.4 x{ = BVi xa(i) 

where 
2.5 ]T î  = 0 (mod m). 

If, in addition, ® contains a transformation of the type 2.3, this must transform 
the subgroup ©* into itself. By considering the effect of 2.3 on the transforma­
tions of @* keeping fixed all the variables except xt and xjy it follows that 0 is a 
power of 6. Thus if 2.3 is a ç-fold reflection, so that 0 is a primitive qth root of 
unity, q must divide m. Conversely, if m = pq, the set of transformations 2.4, 
where 6 is a primitive mth root of unity and 

2.6 T,vt = 0 (modp) 

determine a u.g.g.r. of order qmn~ln\ containing, in addition to the 2-fold reflec­
tions 2.2, g-fold reflections of type 2.3. This group may be denoted by G(m, p, ri). 
It is defined for all integral m, n (m > 0, n > 1) and any divisor p of m. But, if 
m = 1, the group leaves fixed the prime J2xt — 0> and hence is reducible. We 
therefore suppose that m > 1. 

G (m, p, ri) is the symmetry group of a complex polytope which may be denoted 
by lyn

m in analogy with the notation of (24, p. 378). It has qmn~l — mn/p 
vertices : 

(fl9l,0",...,69*), 2 > i = 0(mod/>). 

Thus G(m, l,ri) is the symmetry group of 7/*, and G(m, m, ri) is [1 1; n — 2]m 

in > 2) in the notation of (24). G(m, m, 2) is the dihedral group of order 2m, 
being the symmetry group of the polygon ^y2

m = {m}, the real regular m-gon 
(24, p. 378). 

We have now proved that the only irreducible imprimitive u.g.g.r. are the 
groups G(rn, p,ri). 

3. Primitive u.g.g.r. in Un (n 9e 2). We now consider the primitive groups. 
When n = 1 it is clear that the only possibility is a cyclic group generated 
by a single reflection. When n = 2 we are led to a number of complications 
peculiar to this dimension which it will be convenient to discuss separately in the 
next section. Here we shall consider only the cases in which n exceeds two; these 
cases are characterised by the fact that the matrix of a homology in Sn-\ can be 
normalized in a unique way to give a reflection matrix in Un. 

There is one simple general case in which ® is the symmetric group of order 
(n + 1) !, the complete symmetry group of the regular simplex in En. The col-
lineation group ®' in this case is simply isomorphic to ®. 

Apart from this, there are only a finite number of irreducible primitive groups 
generated by homologies. These groups are all known, and many of them have 
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been extensively studied. We shall list them here, together with the u.g.g.r. 
to which they give rise. A suffix will be used to denote the order of the group. 

When n = 3, the groups ©' generated by homologies are of orders 60, 168, 
216 or 360 (18, ch. XI I ) : 

©'60 is isomorphic with the alternating group on five symbols, and the corre­
sponding group @, of order 120, is [3, 5], the symmetry group of the regular 
icosahedron. 

®'i68 is Klein's simple group (14) and leads to a u.g.g.r. of order 336 containing 
21 2-fold reflections. 

©;2i6 is the Hessian group which leaves invariant the configuration of inflec­
tions of a cubic curve. This group is generated by homologies of period 3, belong­
ing to 12 cyclic subgroups, and in addition contains nine homologies of period 2 
which generate an imprimitive subgroup. A u.g.g.r. corresponding to this col-
lineation group must contain 3-fold reflections, and may, in addition, contain 
2-fold reflections corresponding to the homologies of period 2. There are in fact 
two such groups; one, of order 648, contains only 3-fold reflections and is the 
symmetry group of the complex regular poly tope 3(2 4) S(2%)3 (in the notation 
of Shephard (23)) and the other, of order 1296, containing both 3-fold and 2-fold 
reflections, is the symmetry group of the regular complex polytope 3(24)3(18)2 
(or its reciprocal). 

©'360 is the collineation group first found by Valentiner (28) and shown by 
Wiman (29) to be isomorphic with the alternating group of degree six. It leads 
to a u.g.g.r. of order 2160 generated by 45 2-fold reflections. 

The primitive collineation groups in four variables have been given by 
Blichfeldt (3), Bagnera (1) and Mitchell (20). Those which are generated by 
homologies are of orders 576, 1920, 7200, 11520 and 25920: 

©'576 is the collineation group leaving fixed a pair of associated sets of desmic 
tetrahedra, and the corresponding u.g.g.r. is Euclidean of order 1152, namely 
[3, 4, 3], the symmetry group of the regular 24-cell (9). 

©'7200 also gives rise to a Euclidean group, namely [3, 3, 5], of order 14400, 
the symmetry group of regular 120-cell (9). 

©'11520 is the group leaving invariant Klein's 6O15 figure, and ©'1920 is a sub­
group of this leaving fixed a set of five of the 15 fundamental tetrahedra. To 
these correspond u.g.g.r. of orders 46080 and 7680 respectively, namely the 
symmetry groups of the complex polytopes (J734)"1"1 and ( JT3 4 ) + 1 . The latter is 
the group [2 1; l ] 4 in Shephard's notation (24, p. 373). 

©'25920 is unique among the quaternary groups in that all its homologies are of 
period three, and it gives rise to a u.g.g.r. of order 155,520, the symmetry group 
of the complex regular polytope 3(24)3(24)3(24)3 (23). 

The primitive groups generated by homologies in more than four variables 
were determined by Mitchell (21). There are five of them, which fall into two 
sets. The first set comprises groups in 55, SQ and £7 respectively of orders 72.6!, 
4.9! and 96.10! to which correspond Euclidean groups of orders 72.6!, 8.9! and 
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192.10! which are the symmetry groups of the polytopes 22i, 32i and 42i respec­
tively (6). The remaining two groups, of orders 36.6! and 18.9! in 5 4 and S5 

(2; 12; 25) correspond to u.g.g.r. (in £/5 and UQ respectively) of orders 72.6! 
and 108.9!, they are the groups [2 1; 2]3 and [2 1; 3]3 in the notation of Shep-
hard (24, p. 373). 

4. Primitive u.g.g.r. in U2. The enumeration of the primitive u.g.g.r. in 
Z72 is complicated by the fact that any collineation (other than the identity) of 
finite period m can be regarded as a homology, and its matrix can be normalised 
in two ways so as to give a reflection matrix. As far as the collineation groups are 
concerned the matter is simple enough : the only primitive collineation groups in 
Si are the tetrahedral, octahedral and icosahedral groups. To each of these, 
however, correspond several u.g.g.r. in £/2. 

Let ® be one of these u.g.g.r. and let ®' be the corresponding collineation 
group. Let Z be a generator of the cyclic subgroup £ °f ® defined in §1; then 
£ is an invariant subgroup of ® and ®' = ®/£. Thus if k denotes the period 
of Z, k operations of ® correspond to any collineation S' of ®', and if 5 is any 
one of these, the whole set is given by SZT (r = 0, 1, . . . , k — 1). 

Let S be an ra-fold reflection, with matrix S, so that its characteristic roots 
are (1, 6m) where 6m is a primitive mth root of unity, and let Z be the matrix 
corresponding to Z. Then, if 0k is the primitive &th root of unity such that 
Z = 0*1, the characteristic roots of SZ r are (0/, 6m6k

r). If this is a reflection 
then either 0 / = 1 (i.e., r = 0) or 0m0/ = 1. This latter case occurs if and only 
if dm is a power of 6k, i.e., if m is a factor of k. Hence, if S' is an operation of 
period m in ®' which corresponds to an m-fold reflection in ®, there are either one 
or two such reflections corresponding to S' according as k is not, or is, multiple of 
my where k is the order of the subgroup £ of ® represented by scalar matrices. 

If T' is an operation of @' conjugate to S', then among the operations of ® 
which correspond to T' is one conjugate to S. Hence if one operation of a con­
jugate set in ®' has one (or two) corresponding reflections in ®, then the same 
is true of every operation of the set. 

The operation S~l of ® clearly corresponds to (Sf)~l in ®'. Suppose now that 
S' and its inverse are conjugate in ®', and that m > 2 (the theory that follows 
being trivial if m = 2). Then, among the operations 5 _ 1 Z r is one conjugate to S 
in ®. This is a reflection (since it is conjugate to the reflection S) and is distinct 
from 5 _ 1 , since the characteristic roots of S _ 1 are (1, 6m~l) and are different 
from those of S. Consequently 

If S' is an operation of period m {m > 2) in ®r conjugate to its inverse, which 
corresponds to an m-fold reflection S, then there are two reflections in ® which corre­
spond to S' and so (by the last result proved) m is a factor of k. 

The method of constructing all u.g.g.r. corresponding to ®' is then as follows. 
We start from the abstract definition of ®' in the well-known form 

52 = t* = {st)v = 1 

(p = 3, 4, 5 according as ®' is tetrahedral, octahedral or icosahedral). We then 
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take a representation @i of @ by unitary matrices, for instance, Klein's represen­
tation by unimodular matrices (15, ch. 2). If Si and Ti are a pair of matrices 
corresponding to s and t, then Si2, TV and (SiTi)p are all scalar matrices. Any 
u.g.g.r. corresponding to @' will then have, as corresponding matrices to s and t, 
scalar multiples of Si and Ti. These multiples are to be chosen in such a way 
that @ contains reflection matrices and is generated by them. The sets of 
possible multipliers are finite in number and can be determined without difficulty. 
We give explicit results below, but suppress the details of the work involved. It 
should be noted that here (as elsewhere) we do not regard the group @ as distinct 
from its conjugate @ (in which every matrix is replaced by its complex conju­
gate). 

In order to save space, we shall arrange the results in tabular form. For each 
collineation group @' we give explicit forms for Klein's generators Si, Ti and 
SiTi of the corresponding linear group, together with the values of Si2, Ti3, 
(SiTi)27 and the characteristic roots of matrices corresponding to a generator of 
each cyclic subgroup of ©'. The corresponding u.g.g.r. will then be generated by 
matrices S = XSi, T = ^Ti (where X, JJL are suitably chosen roots of unity) and 
will have an abstract définition of the form 

s2 = zk\ r3 = zk\ (STY = zk\ zs = sz, ZT = TZ, zk = 1. 
The table giving the details of the u.g.g.r. corresponding to each collineation 
group lists, in its first eight columns, the serial number of the group in the com­
plete list in Table VII, the order of the group, and the values of X, M> &I> k2, kz, 
k. Then follow columns giving the number rg of g-fold reflections in @, for 
various values of q. Typical reflections may easily be identified by considering 
the characteristic roots of the products of S, T, (ST)y with powers of Z. The 
multipliers X, /x have been chosen so that Z is always represented by the matrix 
exp(2iri/k) I. 

The groups obtained are of two kinds according as they can be generated by 
two reflections, or require three. When © can be generated by two reflections it 
is the symmetry group of a complex regular polygon, whose symbol (in the 
notation of (23)) is given in the table, together with explicit expressions for a 
pair of generating reflections. These are not necessarily the simplest pair, but 
have been chosen in such a way as to verify a property of these groups given 
later (see 5.4). 

Groups derived from the tetrahedral group. 

Sl = (*" J . T, - ^ (; %), SiTi = - L (;; :;) (e = exp (2W8)). 

Sx2 = Ti3 = - I , (SiTi)3 = I. 

The characteristic roots of Si, Ti, SiTi are (i, —i), (-co, -co2), (a>, co2) res­
pectively. 

The four corresponding groups © are shown in Table I. 
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TABLE I 

Pair of 
No. Order X M kl k2 kz * r2 . rz Polygon generating 

reflections 

4 24 - 1 -co 1 2 2 2 8 3(24)3 ST, T 
5 72 — CO -co 1 6 6 6 16 3(72)3 T, (ST)-1 

6 48 i — CO 4 4 1 4 6 8 3(48)2 SZ\ T 
7 144 ice — CO 8 12 3 12 6 16 

Groups derived from the octahedral group. 

Sl * 2̂ (-1 -) ' Tl " ^ (!• lO • SlTl - C ' e5) <« = «* »«/8)). 
Sx2 = T\3 = (SiTO4 = - I . 

The characteristic roots of Si, Ti, SiTi, (SiTi)2 are (i, —i), (-co, -co2), 
(e3, e5), (i, — ̂ ) respectively. 

The eight corresponding groups ® are shown in Table II. 

TABLE II 

Pair of 
No. Order X M ki k2 k* k r2 Tz 7-4 Polygon generating 

reflections 

8 96 e3 1 1 2 4 4 6 12 4(96)4 TS, ST 
9 192 i e 8 7 8 8 18 12 4(192)2 S,ST 

10 288 e7co2 -co 7 12 12 12 6 16 12 4(288)3 ST, (TZ*)-i\ 
11 576 i eco 24 21 8 24 18 16 12 
12 48 i 1 2 1 1 2 12 
13 96 i i 4 1 2 4 18 
14 144 i -co 6 6 5 6 12 16 S (144)2 SZ\ T 
15 288 i ice 12 3 10 12 18 16 

It should be noticed that the two groups (8) and (13), of the same order 96 
are not isomorphic, for the squares of the operations of period eight (e.g. S) in 
the former group belong to the central, while the squares of the operations of 
period eight (e.g. ST) in the latter do not. Similarly the groups (10) and (15), 
each of order 288, are distinct abstract groups (being isomorphic with the 
direct products of the two former groups with a cyclic group of order three). 
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Groups derived from the icosahedral group. 

c _ 1 / V ~~ v v2 - v \ T 1 (v2 - ^ *?4 - M Q T ( ~yz ) 
Ol — ~JZ\ 2 3 4 / , l l = ~~/J\ -, 3 / , O l l l = V 2 I 

(rj = exp (2wi/5)). 

Sx2 = - I, I V = I, (SxTO5 = - I. 

The characteristic roots of Si, Ti, SiTi are (i, — i), (co, w2), ( — r;3, — T)2) 
respectively. 

The seven corresponding groups @ are shown in Table III. 

TABLE III 

Pair of 
No. Order X M £ i &2 kz * r<i rz r$ Polygon generating 

reflections 

16 600 - , « 1 7 10 10 10 48 5(600)5 (ST)-\(TS)-A 
17 1200 i it]z 20 11 20 20 30 48 5(1200)2 (ST)-\(SZ™)~\ 
18 1800 — cor;3 

CO2 11 30 30 30 40 48 5(1800)3 TZ2\(ST)~l 

19 3600 iœ iyf 40 33 40 60 30 40 48 
20 360 1 CO2 3 6 5 6 40 3(360)3 ST-lS-\T~l 

21 720 i CO2 12 12 1 12 30 40 3(720)2 T~\S~l 

22 240 i 1 4 4 3 4 30 

This completes our determination of all the irreducible u.g.g.r. A complete 
list appears in Table VII on page 301. 

II. SOME PROPERTIES OF FINITE UNITARY GROUPS GENERATED BY REFLECTIONS 

5. Statement of results to be proved. The next five sections (§§6-10) of 
this paper are devoted to establishing the following propositions: 

5.1 Let @ be a finite group, of order g, of unitary transformations on n variables. 
Then the following properties are equivalent : 

(a) @ is a u.g.g.r. 
(b) & possesses a set of n algebraically independent invariant forms Ii, I2, . . . , In 

of degrees mi + 1, m2 + 1, . . . , mn + 1, such that 

ft (fnt + 1) = g. 
1 = 1 

(c) There exists a set of n algebraically independent invariant forms of @ such 
that every invariant form of @ is expressible as a polynomial in the forms of the 
set. (Such a set of forms will be called a basic set.) 

The integers Wi, m2, . . . , mn, which we shall call the exponents of the group, 
are determined uniquely. The degrees of the forms of any basic set satisfy the 
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condition (b), and any set of n algebraically independent forms which satisfies 
(b) is a basic set. The number of reflections in ® is Sra*. 

It will be convenient in what follows to suppose that 

mi < m2 < . . . < mn. 

5.2 If & is a u.g.g.r. in Un, then the Jacobian of the n forms of a basic set with re­
spect to the variables xi, x2, . . . , xn factorises into the product of the reflecting primes, 
the prime corresponding to a p-fold reflection counting with multiplicity p — 1. 

5.3 If @ is a u.g.g.r. in Uni the number of operations which leave fixed all the 
points of some linear space of dimension n — k is the coefficient of tk in the product 

ft (1 + m4) 
2 = 1 

where mh m2, . . . , mn are the exponents of the group. 

5.4 If ® is an irreducible u.g.g.r. in Un which is generated by n reflections, then 
these reflections can be chosen and ordered in such a way that their product has 
period h — mn + 1, and so that the characteristic roots of this product are 

exp {2-ïïimr/h) (r = 1, 2, . . . , n), 

where the mt are the exponents of the group. 

Before proceeding to the proofs of these propositions it is convenient to discuss 
them in more detail. 

Of these theorems, 5.1 is perhaps of the greatest theoretical interest since it 
gives a characterisation of the u.g.g.r. in terms of their invariants. In the real 
case, when the transformations are orthogonal, Coxeter has shown (10) that 
(a) implies (b), and that any invariant form of @ can be expressed rationally 
in terms of n forms satisfying condition (b). But it does not appear from Cox-
eter's argument that this expression is necessarily integral. Coxeter also obtains 
2W; for the number of reflections in the real case. Our proof of 5.1, which occupies 
§§6-8, runs along the following lines. It is clear that condition (a) implies (b) for 
a reducible u.g.g.r. if it does so for each irreducible component. Since, from 
Coxeter's results, it holds for the Euclidean groups, it is sufficient to verify it 
for each of the irreducible unitary g. g. r. which are not equivalent to orthogonal 
groups. This verification occupies §6, and is based either on explicit construction 
of a set of invariant forms, or upon known results for the associated collineation 
groups. Next, in §7, we prove that (b) implies (c) by showing that any set of n 
invariant forms which satisfy (b) is necessarily basic. Since the degrees of the 
invariant forms of a basic set are evidently unique, this establishes the invariance 
of the exponents mt. Finally, in §8, we prove that (c) implies (a), and show in the 
course of the proof that the number of reflections of ® is 2m t. 

It is of interest to note, in this connection, that Frame has shown (10a) how 
these basic invariant forms may be used to compute the character table of the 
group. 

Coxeter gives (10), for the real case, a deduction of 5.2 from the first part of 
the proof of 5.1 by a very simple argument due to Racah. This argument extends 
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a t once to the uni tary groups; the additional complication due to multiplicities 
greater than uni ty if the group contains ^?-fold reflections with p > 2 is no t 
serious. We omit details of this proof. 

Theorem 5.3 implies tha t the number of reflections in @ is Xntf and tha t the 
order of @ is II (ra* + 1), both of which results are implicit in 5.1. We have been 
unable to extend the argument to deduce the remaining properties expressed by 
5.3 from 5.1. Since 5.3 holds for reducible groups if it holds for each irreducible 
component, it is enough to verify the result for each of the irreducible groups 
listed in Table VI I . This is done in §9 and Table V I I I . 

The result expressed by 5.4 is in a somewhat different category. In the first 
place it only applies to a restricted class of u.g.g.r., since both the condition of 
irreducibility and the condition of being generated by n reflections (and not 
n + 1) are relevant. In the real case, a more precise result has been given by 
Coxeter (6; 10), who shows tha t the various products formed from n generating 
reflections arranged in different orders are all conjugate in ©, and therefore have 
the same characteristic roots. His argument (6, p . 602) depends upon the fact 
t ha t the graph (9, p. 84) of any real reflection group is a tree, i.e., contains no 
circuits. When the group is uni tary the graph must contain (24, p. 368) either a 
circuit or a numbered node (i.e., a ^>-fold reflection with p > 2) and so Coxeter 's 
argument is no longer valid. In general, therefore, the various products of 
generators of a uni tary g. g. r. in different orders are not necessarily conjugate, 
and it is necessary to select the appropriate generators and their order. Conse­
quently, to establish 5.4 we write down a set of generating reflections which 
have the required property. This is done in §10. 

For a real group the exponents occur in pairs such t h a t 

mr + mn^r = h (r = 1, 2, . . . , [%n]). 

This is not t rue for uni tary groups in general, nor is the corollary 2Wi = \nh 
(10, p . 772). 

6. The invariants of the irreducible u.g.g.r. In this section we consider 
in turn the irreducible u.g.g.r. which are not expressible as groups of orthogonal 
transformations in Euclidean space, and show t h a t in each case we can find an 
algebraically independent set of invariants, the product of whose degrees is 
equal to the order of the group ®. The groups are numbered as in Table VI I . 

(2) Reference to the explicit form of the operations of G(m, p, n) in §2 shows 
tha t a suitable set of invariants consists of the elementary symmetric functions 
of Xiw, X2m, . . . , xn

m of degrees 1, 2, . . . , n — 1, together with (xix2 . . . xn)
Q. 

(3) The cyclic group of order m in U\ is generated by a single m-fold reflection, 
and so there is clearly a single invariant, which may be taken to be Xim. 

Consider next the groups in U2. The invariant theory of the binary linear 
groups is given in detail by Klein (15). For each of the three collineation groups 
(tetrahedral, octahedral, icosahedral) there are three invariant forms which 
may be denoted by f, h, t; h is the Hessian of/, and / the Jacobian of / and h. 
Any invariant of the collineation group is expressible integrally and rationally 
in terms of/, h and /, and there is a syzygy expressing t2 as a polynomial i n / and 
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h. These forms are relative invariants of any linear group which has this col-
lineation group associated with it. The determination of the absolute invariants 
is easily accomplished by examining the effect on the various forms of a pair of 
generating operations of @. 

For the tetrahedral group/, h, t are of respective degrees 4, 4, 6, and t2 is a 
linear combination of fz and hz. Under the generating transformations Si and 
T\ of the binary tetrahedral group given in §4, the forms/, h, t are absolutely 
unaltered by Si, and receive factors co2, co, 1 respectively under the operation T\. 
(Precisely this means that if T\ is represented as a transformation x' — Tx, 
thenf(x\, x'2) = w2/(#i, #2) and so on). We now examine each of the groups of 
Table I which have the tetrahedral group as the corresponding collineation 
group and note the effect on / , h, t of the generators S, T of the u.g.g.r. Hence 
we may pick out the invariant forms of the group. The results are listed in 
Table IV. 

TABLE IV 

Group Order Sf Sh St Tf Th Tt Invariants Degrees 

4 24 1 1 1 1 GO2 1 /• t 4, 6 
5 72 CO CO 1 1 CO2 1 f\ t 12, 6 
6 48 1 1 - 1 1 CO2 1 /, t> 4, 12 
7 144 CO CO - 1 1 CO2 1 p, t* 12, 12 

The columns headed Sf, Sh, St, Tf, Th, Tt give the factors by which the forms 
/ , h, t are multiplied under operation by S or T. 

For the octahedral group, f,h,t have respective orders 6, 8, 12, and under 
Si and T\ are multiplied by ( —1, 1, —1) and (1, 1, 1) respectively. Hence the 
results for the groups associated with the octahedral group are as listed in 
Table V. 

TABLE V 

Group Order Sf Sh St Tf Th Tt Invariants Degrees 

8 96 — i 1 L 1 1 1 h, t 8, 12 
9 192 1 1 - ] — i 1 - 1 h, t2 8, 24 

10 288 — i co L 1 CO2 1 h\ t 24, 12 
11 576 1 1 - ] — i co2 - 1 h\ t2 24, 24 
12 48 1 1 - ] L 1 1 1 / , h 6, 8 
13 96 1 1 - ] L - 1 1 1 f\ h 12, 8 
14 144 1 1 - ] L 1 CO2 1 / , t2 6, 24 

' 15 288 1 1 - ] L - 1 CO2 1 f\ t2 12, 24 
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For the icosahedral group, / , A, / have respective orders 12, 20, 30 and are 
absolute invariants under Si and T\. Hence the results for the remaining groups 
in U2 are as listed in Table VI, in which 77 = exp (2W/5). 

TABLE VI 

Group Order Sf Sh St Tf Th Tt Invariants Degrees 

16 600 V 1 1 1 1 1 A, / 20,30 
17 1200 1 1 - 1 V 1 - 1 h,t2 20, 60 
18 1800 V CO2 1 1 co 1 h\t 60,30 
19 3600 1 CO2 - 1 V 1 - 1 h\t2 60, 60 
20 360 1 1 1 1 CO 1 f,t 12, 30 
21 720 1 1 - 1 1 CO 1 f , t 2 12, 60 
22 240 1 1 - 1 1 1 1 f,h 12, 20 

The results for the u.g.g.r. in Un with n > 2 are obtained (with one exception, 
the group of order 108.9! in J/6) as follows. Each such group © corresponds to a 
collineation group ©' whose invariants have been determined explicitly (we 
shall give precise references below). To determine the invariants of © it is there­
fore sufficient to examine the behaviour of these invariants of ©' under the 
generating reflections of @. These operations correspond to homologies in ©' 
which form a single conjugate set of cyclic subgroups (except in the case of the 
Hessian group, where there are two sets of homologies). Since conjugate opera­
tions of © have the same effect on any relative invariant, and since the conjugate 
cyclic subgroups corresponding to the homologies in ©' determine conjugate 
cyclic subgroups corresponding to the reflections in @, it is sufficient to consider 
the behaviour of the forms for a single reflection in © [or for a single reflection of 
each of the two types in the case of the symmetry group of 3(24)3(18)2]. The 
classical expressions for these groups in each case possess a homology whose 
equations are given by a matrix of very simple (diagonal or monomial) form, and 
so the necessary verification is almost immediate. It seems unnecessary to give 
further details. 

(24) The invariants of the collineation group of order 168 in S2 consist (14) 
of a quartic, its Hessian (a sextic), a covariant of degree 14, and the Jacobian of 
these, which breaks up into the 21 axes of the homologies in the group. For the 
corresponding u.g.g.r. of order 336 in £/3, the forms of degrees 4, 6, 14 are 
absolute invariants, while their Jacobian changes sign for half the operations of 
the group (5; 18). 

(25) and (26) The Hessian group of order 216 in S2 is the collineation group 
that leaves invariant the nine inflections of a pencil of cubic curves in the plane. 
The invariant forms of this collineation group comprise a sextic / ( 6) , a form /(9) 
of degree 9 representing the harmonic polars of the inflections, and two forms 
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/(i2), /'(12) representing respectively the four degenerate cubics and the four 
equianharmonic cubics in the pencil. A syzygy connects 7(i2)

3 with 7(6), 7(9) and 
I'(i2) (16; 18, p. 253). For the two corresponding u.g.g.r. in £/3 of order 648 and 
1296 respectively, the invariant forms may be taken to be 7(6), 7(9), I'(u) and 
7(6), I'(12), 7(i8) respectively, where 

7(i8) = 432 7(9)2 — 7(6)3 + 37(6)7 (12). 

The Jacobian of 7(6), 7(9), 7'(i2) is a multiple of the square of I(u)\ that of 7(6), 
7/(i2), 7(i8) is a multiple of the product 7(9)7(i2)

2. 
(27) The collineation group of order 360 in S2 has invariant forms of degrees 

6, 12, 30 with a Jacobian of degree 45 (29; 18, p. 254), related in the same way as 
the forms corresponding to the group of order 168. These forms, of degrees 6, 12, 
30 are invariant for the corresponding u.g.g.r. of order 2160 in Uz. 

(29) and (31) The invariant forms for the collineation group of order 11520 
in S3 are of degrees 8, 12, 20, 24 and 60, the latter form being the Jacobian of the 
first four and having reducible square. The form of degree 24 can be taken to 
be the product of six quartic forms, and the collineation group of order 1920 in 
53 is the group keeping one of these forms fixed ; its fundamental system consists 
of invariants of degrees 4, 8, 12, 20 together with their Jacobian (of degree 40). 
The forms of degrees 8, 12, 20, 24 are invariants for the group (31), and those of 
degrees 4, 8, 12, 20 for (29) (16). 

(32) For the collineation group of order 25920 in S3, Maschke (17) obtains 
invariants of degrees 12, 18, 24 and 30, the Jacobian of these being the square 
of a form of degree 40 representing the primes of the 40 homologies of period 
three contained in the group. These forms of degrees 12, 18, 24, 30 are invariant 
for the corresponding u.g.g.r. (32). 

(33) For the collineation group of order 25920 in S4 Burkhardt (4) obtains 
invariants of degrees 4, 6, 10, 12, 18. These forms are invariants for the corre­
sponding u.g.g.r. of order 51840. Their Jacobian, of degree 45, consists of the 
invariant primes of the 45 homologies in ®'. 

(34) Finally, the group [2 1; 3]3 of order 108.9! in £/6 possesses a system of 
invariants of degrees 6, 12, 18, 24, 30, 42 whose Jacobian is of degree 126. The 
existence of these forms was indicated by Todd (26) and the slight reservation 
expressed there about their possible interdependence can be settled by a calcula­
tion like that made by Coxeter (10, p. 777) showing that for a certain special set 
of values of the variables the Jacobian of these forms does not vanish. 

The remaining groups, which are all Euclidean, have been discussed by Coxe­
ter (10). In Table VII we summarise the results, by listing, in the seventh 
column of the table, the degrees of the invariant forms for all the irreducible 
u.g.g.r. It is easily verified that their product is equal to the order of the group 
and so we conclude: 

Any irreducible u.g.g.r. in Un possesses a set of n algebraically independent in­
variant formsy the product of whose degrees is equal to the order of the group. 

The extension of this result to reducible groups is almost immediate. 

https://doi.org/10.4153/CJM-1954-028-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-028-3


288 G. C. SHEPHARD AND J. A. TODD 

7. Basic sets of invariants. In this section we prove that the condition 5.1 
(b) implies 5.1 (c). More precisely, we prove the following: 

Let & be a finite group of linear substitutions on n variables, and suppose that ® 
possesses a set of n algebraically invariant forms Ii, I2j . . . , In of degrees m\ + 1, 
nii + 1, . . . , mn + 1 such that II (m* + 1) = g, the order of @. Then any invariant 
form of ® is expressible rationally and integrally in terms of Ih I2, . . . , In. 

In the first place we show that any invariant form of @ may be expressed 
rationally in terms of Ih I2l . . • , In- This may be done (exactly as in (10)) by 
observing that the solutions of the equations 

Ii(xu x2, . . . , xn) = ct (i = 1 , 2 , . . . , n) 

where the ct are constants, form a single set of conjugate points under & (if the 
constants are sufficiently general). Consequently any invariant of @, necessarily 
an algebraic function of i"i, I2, . . • , In is a single-valued, and hence a rational 
function of these forms. 

Let (£i, £2, • • • , £n) be a point of the space of the n variables (xi, x2, . . . , xn) 
whose transforms under @ are all distinct and which therefore does not make the 
Jacobian of Ji, I2j . . . , In vanish. Let pt = i\(£i, £2, . • . , £«)• Then the system 
of equations 
7.1 Ii(Xiy X2, • • . ,Xn) = fit 

has a system of g — II(m* + 1) distinct solutions, and these solutions are 
isolated, since the Jacobian of A, I2, . . . , In does not vanish for any of them. It 
follows from the general theory of elimination that these exhaust all the solu­
tions of 7.1, and in particular there are no 'infinite' solutions, (i.e., solutions of 
the homogeneous equations 

1 i\Xi, X2, . . . , Xn) = PÎXQ % 

with XQ = 0). Consequently for any finite set of constants au a2, . . . , an the 
equations 
7.2 Ii(xu x2, . . . , xn) = at (i = 1 , 2 , . . . , n) 

have at least one finite solution (no 'infinite solutions' being possible since these 
would also be solutions of 7.1). 

Now suppose that J(xi, x2, . . . , xn) is an invariant of © that is expressible 
rationally, but not integrally, in terms of /1 , I2} . . . , In. We shall show that this 
assumption leads to a contradiction. 

Let <t>(yh y2, • • • , yn) and ^(3^1, y2, . . . , yn) be polynomials with no common 
factor, such that 

7.3 <t>(Ii, 72, • • • , h) = $(Ju I2, . • • , /„) J(xi, x2y . . . , xw) 
identically in Xi, x 2 , . . . , x n . By our assumption \p(yi, y2, . . . , yn) is of degree 
greater than zero, that is, is not a constant. Let ^1(3^1, 3̂ 2, . . . , yn) be an irredu­
cible factor of ^(3^1, y2, . . . , yn) and let ai, a2j . . . , an be any set of constants 
such that 

^ l ( « l , «2, . . . , On) = 0 . 
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Let x'i, xf2, • • • , x'n be a solution (which we have shown exists) of 7.2. Then, for 
Xi = x'i} the right hand side of 7.3 is zero, since \f/i(ai, a2, . . . , an) = 0. Hence 

<t>(ah a2, • • • , a») = 0 
since x'i, #'2, . . . , x'n satisfy 7.2. Thus <j)(ah a2, • . . , an) = 0 whenever 
^i(ai, «2, . . • , a») = 0, and so \pi(yi, y 2, . . . , ?„) is a factor of 0(yi, 3>2, . . . , yn)> 
This is a contradiction. Thus 7.3 can hold only if \f/(yu y21 . . • , yn) is a constant, 
i.e., if J(xi, x2, . . . , #») is a polynomial in /1 , I2, . . . , /w-

8. Characterisation of the u.g.g.r. In this section we complete the proof 
of Theorem 5.1 by proving that (c) implies (a). That is, we prove: 

Any finite group of unitary transformations on n variables which possesses a basic 
set of invariant forms Ii, I2, . . . , In is a u.g.g.r. 

Let © be such a group, g its order, and mt + 1 the degree of It(i == 1 ,2 , . . . ,» ) . 
The proof depends on a theorem of Molien (22; 5, p. 300) which states that, in 
any group of linear transformations, if ar denote the number of linearly in­
dependent invariant forms of @ of order r, then 

? aX s i ? F^^TÂÔTTTcr^^ s i ? |i - sx| 
where cuis, co2

s, . . . , un
s denote the characteristic roots of the operation S of ®, 

and the sums on the right extend over all the operations of the group. 
Now if the invariants 7i, 12, . . . , In form a basic set (so that they are alge­

braically independent, and every invariant can be expressed as a polynomial in 
them) then the linearly independent forms of degree r may be taken to be just 
the power products of /1 , 72, . . . , In of degree r in the variables. Thus the 
function 

n a - x7^1)-1 

is also a generating function for the number of independent invariant forms of a 
given degree and so, 

n 1 1 

8.1 gii -̂z-rT+ry ̂  z jrz-^-x)... (1 _ ^ X ) • 
On the right of 8.1 there is only one term with denominator (1 — X)w, corre­
sponding to the identical element of &. Hence, on multiplying both sides of 8.1 
by (1 — X)n and then putting X = 1 we obtain 

8.2 g = I l (mt + 1). 

This proves, incidentally, that the product of the degrees of a basic set of 
invariant forms is necessarily equal to the order of the group. 

We now subtract (1 — \)~n from each side of 8.1, multiply by (1 — X)w_1 

and again put X = 1. After a brief calculation we find that the left hand side 
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reduces to 12m*. The only terms on the right which can contribute non-zero 
terms to the sum are those whose denominators involve the factor (1 — X)n_1. 
These terms correspond to operations 5 with n — 1 characteristic roots equal to 
unity, i.e., to unitary reflections. Suppose that T is the fixed prime corresponding 
to such a reflection, then the aggregate of all reflections for which ir is the fixed 
prime are the elements (other than the identity) of a cyclic group of some order 
p say, generated by a p-io\A reflection S with n — 1 characteristic roots unity 
and the other one a primitive pth. root of unity. The sum of the corresponding 
terms in the expression under consideration is thus 

(l - or1 + (l - e2rl + ... + (l - f1)-1 = \{p - l) 
where 6 = exp (2TI/P). By summing over all the reflecting primes we obtain 
|SWi = \^{p — 1). Hence the number of reflections in © is equal to Znti. 

Let § be the subgroup of ® generated by these reflections. Then § is a u.g.g.r., 
and consequently, by the results of §§6, 7, possesses a basic set of n invariant 
forms J i , J2y • • • , Jn of degrees /xi + 1, /x2 + 1, . • . , nn + 1, such that 
II(/Xi + 1) = h, the order of £>. Since § possesses this basic set of invariant 
forms, the number of reflections in § is 2/** and so 

8.3 ]C M* = 22 mi-

Now each of the forms Ji, I2, . . . , In, being invariant for ©, is invariant for the 
subgroup § , and is therefore expressible as a polynomial in J i , J2} . . . , Jn 

(since these last forms constitute a basic set for § ) . Hence we may write 

Ii = <l>t(Ju J2, . . . , Jn) (i = 1 , 2 , . . . , n) 

where the 4>t are polynomials. Since each of the sets 7i, I2, . . . , In and 
Ju J2, • • • » Jn are algebraically independent forms in xi, x2,..., xn, the Jacobian 
of Ii , I2, • • . , In with respect to Ji, J2l . . . , Jn is not identically zero. Conse­
quently there is a permutation (0-1, <T2, . . . , an) of ( 1 , 2 , . . . , n) such that the 
term 

dl<r1 dlaa dlffn 

dJ\ dJ2 ' ' ' dJn 

is not zero. This implies 
m,i + l>fit+l (i = 1, 2, . . . , n) 

and so, by 8.3, mai — \ii. Therefore the order n(/z* + 1) of § is equal to the order 
I I (Wi+ 1) of ©, so that § must coincide with @. The group ® is therefore 
generated by the reflections it contains. 

This completes the proof of Theorem 5.1. 

9. Types of operation in u.g.g.r. In this section we prove Theorem 5.3. 
This theorem may be restated in the form 

gr = sr(mi, m2, . . . , mn) 

where gT is the number of operations of @ that leave a space of n — r dimensions 
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invariant, and sr is the value of the elementary symmetric function of degree r 
in the exponents of ®. 

We are unable to give an explanation of this property in general terms, 
except for r = 1, which has already been discussed in §8, and for the trivial case 
r = 0 corresponding to the identity of ©. Consequently it is necessary to verify 
the theorem for each group in Table VII. 

This verification is divided, for convenience, into three parts: 
(a) Groups [3n_1] and G(m, p, n) in Un. 
(b) The u.g.g.r. in £/2. 
(c) The u.g.g.r. in Un (n > 2) except those in (a). 

We proceed to examine each of these in turn. 
(a) The groups [3n-1] and G(m, p, n) in Un. 
The group G(m, p> n) consists (cf. §2) of the transformations 

9.1 x\ = 6Vi xffi 

where (au c2, . . . , an) is an arbitrary permutation a of (1, 2, . . . , n), 6 is a primi­
tive wth root of unity, and 
9.2 vi + v2 + . . . + vn s 0 (mod p). 

As we have seen, the exponents mt for this group take the values 

9.3 rm - 1 (r = 1, 2, . . . , » - 1), no - 1, 

where q = m/p. When m — p — 1, the group reduces to the symmetry group of 
the regular simplex an-\ lying in the prime Sx* = 0. Considered as a group in 
Uni lïXi is a linear invariant and the corresponding exponent w* is zero. (More 
pedantically, G(l, 1, n) is the direct product of [371"-1] with a cyclic group of 
order one in Uu consisting of the identical operation!) Our treatment will 
therefore apply, not only to G(m, p, n) but also to the group [S71^1]. 

Let gr(in, p, n) denote the number of operations of G(w, p, n) which leave 
fixed every point of some space of dimension n — r (r = 0, 1, . . . , n), so that 
go(m, p, n) = 1, and let 

n 

G(m, p, n; 0 s 23 gr(m, p, n) t\ 

Any operation leaving fixed every point of a space of dimension n — r has all 
but r of its characteristic roots equal to unity, and conversely. By forming the 
characteristic equation of the matrix of transformation 9.1 we see that this will 
happen if and only if there are exactly n — r cycles in the permutation a with 
the property that the sum of the corresponding exponents vt is congruent to zero 
(mod m). 

Let us consider a particular permutation a with n — r -{- s cycles, n — r of 
which are designated in advance as the ones for which the exponent sum is 
congruent to zero (mod m). Let pi, p2, . . . , ps be the residues of the exponent 
sums in the remaining s cycles. Then evidently, all but one of the exponents in 
each cycle can be chosen at will ; the last exponent is then completely determined. 
Thus, for given pi, p2, . . . , ps there are mr~s ways of choosing the exponents */*. 
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The residues pi, p2, . . . , ps are subject to the conditions 

Pi ^ 0, p2 5̂  0, . . . , ps yé 0 (mod m), 
Pi + P2 + . . . + ps = 0 (mod £), 

the latter arising from 9.2. Let <j)(s) be the number of solutions of this set of con­
gruences. If pi, p2, . . . , ps_i are given arbitrary values not congruent to zero 
(mod m), then ps is determined modulo p. If pi + P2 + . . • + ps-i ^ 0 (mod p) 
then ps ^ 0 (mod p) and so there are m/p = g possible values for psi while if 
Pi + P2 + • • • + Ps-i = 0 (mod p) then there are only q — 1 possible values 
(since ps = 0 (mod w) is excluded). Consequently 

<Ks) = g(w - l)*-1 - 0(5 - l) 

and, since 0(1) = q — 1, we find that 

</>(*) = 2[(w - I ) 5 - 1 - (m- I)5"2 + . . . + ( - l ) s (m - 1)] - ( - l ) s [q-1], 

= g[(« - I)*"1 - ( « - l ) s - 2 + . . . + ( - I ) 5 " 1 ] + ( - l ) s , 

= q[(m-lY- (-l)s]/m + ( - l ) s , 

It follows that 

«. (-.* ») - g (- - :+ s)--[i-zjr+^-i)-»-»].„W i 

where aT-&(n) is the number of operations in ©n containing exactly ?z — r + 5 
cycles. Hence 

r=o s=o \ ^ / L P J 

and so, upon putting r = s + w, 

•v * A Y * v Y n - * \ u\(m- l)s+ (-l)s(p- 1)1 , , ,s+w 

w=o s=o \ S / L P J 

= ^ r1L±lm-1)t]:i±s^m-t^-\ aM) mU f 
W=0 L P J 

9.4 = I [ j 1 + (» - i) *} g «.(») (rqr^rï) ! )" 

+ (p - 1)(1 - 0"go.(«) ( ï~l)"] • 

Now, from the recurrence relation 

au(n + 1) = au(n) + n au-\{n), 

which may be verified by considering the partitions of ©w which arise by sup-
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pressing a fixed symbol in the permutations of ©n+i» it may be shown by induc­
tion that 

Ê avin) f = fl (1 + rf). 

Hence, from 9.4, 

G(m,p,n\ t) 

M {l + (m-l)t}f[ {l + (m—l)^+rfw/} + Ĉ  —1)(1 —Ofï (1-t+rtnt) 
P L r=l r=l J 

( n u + («« -1 ) '})({i + (»»* -1 ) /} + (/> - Da - o) 
IT [1 + (rm - ! ) / ] . [ ! + («<? - 1) *], 

and so 
n 

9-5 G(m, />, n\ t) = f l (1 + w * 0 , 

where the m* are the exponents of the group in 9.3. Hence Theorem 5.3 is verified 
for these two groups. 

(b) The u.g.g.r. in U2 (nos. (4) to (22) in Table VII). 

The verification of Theorem 5.3 for these groups is trivial, since in enumerating 
the groups in §4 we stated the number of reflections, and in each case this will be 
found to be equal to nt\ + m2 where mi and w2 have the values indicated in 
Table VII. Also, as the order of the group is (mi + l)(m2 + 1), it follows that 
g2 = wiw2. 

(c) The u.g.g.r. in Un {nos. (23) to (37) in Table VII). 

In order to determine the values of the gT for these groups, we employ two 
different methods. 

The first method depends upon examination of a polytope associated with the 
group and upon determining the number of operations of each type from the 
known geometry of the figure. This method can be applied easily only in a small 
number of dimensions (n = 3, 4) after which it is simpler to use the second 
method. In order to explain this it is necessary to make some definitions. 

Let 5 be any operation of the group © and suppose that it leaves invariant a 
linear space of dimension n — r (and no space of higher dimension), then we 
shall call this linear space the axis of S. Thus the axis of a reflection is of n — 1 
dimensions, and the axis of the identity consists of the whole space. All the 
operations of © which leave a particular linear subspace Ln_r invariant (at 
least) form a subgroup § of ® which may be called the subgroup associated 
with that subspace. § is a u.g.g.r. in r dimensions, and gr (computed for § ) , 
which is the number of operations of § which leave no more than a single point 
invariant, is evidently the number of operations of @ which leave only the Ln_r 
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invariant, i.e., have the L„-T as their axis. We call this number the multiplier 
of£ . 

Turning our attention now to the collineation group ®' in Sn-i corresponding 
to ©, we see that, for most of the groups with n > 2, the reflections of ® are in 
1-1 correspondence with the homologies of ©' (§3). The reflections of © that 
leave a space Ln-r invariant correspond to a set of homologies in &' whose 
centres span a subspace 5r_i in Sn-i. Thus to each axis L„_r corresponds a 
subspace of the configuration of centres of homologies of the collineation group, 
and since the latter have been enumerated for many of the larger groups (11; 
12; 13; 25), the determination of the former is straightforward. 

By way of example, consider the group [2 1; 3]3. The associated collineation 
group is of order 6,531,840 and we refer to Miss HamhTs description (12) of the 
configuration formed by the centres of the 126 homologies. The lines of the con­
figuration are of two types: 2835 e-lines, each of which corresponds to an axis L4 

associated with the subgroup which consists of the direct product of two groups 
of order two, and 1680 K-lines each of which corresponds to an axis L4 associated 
with the dihedral group of order six. Considering the planes, spaces, etc. of the 
configuration we may identify and enumerate all the axes of ©. Determination 
of the subgroup associated with each axis from the configuration of vertices 
in Sr-i is straightforward, but it is worth noting that the configurations j3r 

and yr of (13) correspond to axes associated with the groups [31,1,r~2] and [3r] 
respectively, illustrating that 02 and 72 are identical (13, p. 58). 

In Table VIII at the end of this paper we list all the axes of each type for the 
groups (23) to (37) by the method outlined above. The different subgroups § 
associated with the axes are given in the second column of the table, and the 
multipliers in the third. The groups are denoted by the symbols of Table VII, and, 
as usual, the sign X implies that the direct product is to be taken. In addition, 
the symbol [IIW] is used for the symmetry group of the poly tope IIn. 

10. The product of the generators. We now come to the verification of 
Theorem 5.4 which asserts that, in the case where @ is an irreducible u.g.g.r. in 
Un generated by n reflections, these can be chosen in such a way that the period 
of their continued product is h = mn + 1, and the characteristic roots of the 
corresponding matrix are exp (2TrimT/h) (r = 1, 2, . . . , ri), where m* are the 
exponents of the group. 

This has been established for the real groups by Coxeter (10). It is trivial for 
the group generated by a single £-fold reflection in Ui, and in the case of the 
complex regular polygons in C/2 it may be verified that the pairs of generating 
reflections given in §4 have the required property. 

The remaining groups to be considered are G(m,m}n) and G(m, 1, n), the 
groups of orders 336 and 2160 in f/3, the symmetry groups of the regular com­
plex polytopes 

8(24)8(24)3, 8(24)3(18)2, 8(24)3(24)8(24)3 

and the groups [2 1; l]4 , [2 1; 2]3, [2 1; 3]3 = [3 1; 2]3. 
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G(m, 1, n) is the symmetry group of the regular poly tope yn
m and may be gener­

ated (24) by the w-fold reflection 

Q: x[ = dxi, x\ = Xi {i = 2, 3, . . . , n; 0_1 = exp (2iri/m)) 

and by the 2-fold reflections 

Rim. x\ = xi+i, x'i+i = xt (i = 1, 2, . . . , « — 1) 

x^ = x, 0" ^ i, i + 1). 

The product QR1R2 • . . -R»-i is the transformation 

X\ ==: uXni X2 = = Xl> X3 = = X2, . . . , Xn
 = = Xn—\. 

The characteristic equation of the corresponding matrix is 

\n - 6 = 0 

and so the characteristic roots are the n values of 61/n, or 

€ rm—i (r = 1 , 2 , . . . , » ) , 

where e = exp (2iri/mn). 
G(m, m, n) is the symmetry of the polytope ~yn

m and may be generated (24) 
by the reflections Ri together with the 2-fold reflection 

S: xi = 0-1X2, x'2 = dxi, x\ = Xi (i = 3, 4, . . . , »). 

The product SRiR2. . . i^n-i is the transformation 

X 1 = 0 Xi , X2 — c7Xw, X3 = X2, X4 — X3, . . . , X n = X n _ 1 . 

The characteristic equation of the corresponding matrix is 

(x - e-1)^-1 - e) = 0 

and so the characteristic roots are d~l and the values of d1/(-n~1\ or 

^ €m-i (r = 1,2, . . . , » - 1), 

where € = exp (2iri/m{n — 1)). 
The group of order 336 in £/3 (19) contains 2-fold reflections in 21 planes: 

Xi = 0 , Xizk Xj = 0 , aXi =b Xy d= Xfc = 0 , 

where (i, j , &) is any permutation of (1, 2, 3) and a is either root of the equation 
fi - t + 2 = 0. We select 

a = | ( 1 - n / 7 ) = - (£4 + /32 + i8), P = exp (2*i/7), 
so that 

5 = | ( l + n / 7 ) = - (£3 + /35 + /?6). 

The group is generated by the reflections 

/ 1 \ A \ / 1 - 1 _ . \ 
10.1 R,: I l l , R,: I I I, R,: j l - 1 1 - « I 
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in the primes 
%2 ~ Xz — 0 , X3 = 0, Xi + X2 + OLXz = 0, 

respectively. The matrix of the product RiR2Rz is 

Its characteristic equation is 

X3 - â\2 - a\ + 1 = 0, 

and its characteristic roots are f3, f5, f13 where f = exp (2x^/14). 
The group of order 2160 in C/3 (19) contains 2-fold reflections in 45 planes: 

X* = 0, Xt db COX* = 0, X* ± 7Xi ± 72Xfc = 0, 

X* ± co72X;- ± u?yxk = 0, xt ± (1 — co27) X* db coXfc = 0, 

where (i, j , &) is a cyclic permutation of (1, 2, 3) and y is either root of the 
equation t2 + t — 1 = 0. We substitute 

7 = i ( - l + V5) = 2 cos (2TT/5) = r-1, 

where r = | ( 1 + V5) = —2 cos (4TT/5). The group is generated by the re­
flections 

(—1 \ i / ^ — cor — co r~ \ / — co \ 

1 1, R2: U -co2r i -T-1 -co J, R 3 : ( - c o 1 
in the primes Xi = 0, co2rxi + r2x2 + C0X3 = 0, Xi + co2x2 = 0 respectively. The 
matrix of the product RiR2Rz is 

1 
2 

Its characteristic equation is 

X3 + co2r X2 + cor X + 1 = 0 

and its characteristic roots are f5, fn, f29, where f = exp (2wi/30). 
The symmetry group of the polyhedron 8(24)8(24)8 (23) contains 3-fold 

reflections in the 12 planes: 

Xt = 0, Xi + C0;X2 + C0*X3 = 0 (i,j, k = 1, 2 , 3 ) . 

It is generated by the reflections 

10.3 R i : f l \ R 2 : ^ p : 2 H R,(\> ) 
\ c o / \co co co / \ 1 / 

in the planes x3 = 0, xi + x2 + x3 = 0, x2 = 0 respectively. The characteristic 

2 2 2 - i \ 
-co r co co r } 

o)T~ cor — co 

1 r"1
 T I 
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roots of Ri and R3 are (1,1, co2) and of R2 are (1, 1, co). The matrix of the 
product Ri i?2

- 1 Rz is 

i (» 1 "\ 

\I CO CO/ 

Its characteristic equation is 

X3 co2X2 + coX - 1 = 0 , 

and its characteristic roots are f5, f8, fn where f = exp (2wi/12). 
The symmetry group (23) of the regular polyhedron 8(24)3(18)2 (or its 

reciprocal) contains in addition to the above 3-fold reflections, 2-fold reflections 
in the nine planes 

Xt — œkXj = 0 , (i, j , k = 1, 2, 3). 

It is generated by the 3-fold reflections Rh R2 above together with the 2-fold 
reflection 

10.4 S: ( l ) 

in the plane x% — x% = 0. The matrix of the product SR\R2~l is 

V31 
co co co \ 

1 1 CO . 

\ C 0 CO CO/ 

Its characteristic equation is 
X3 + co = 0, 

and its characteristic roots are f5, fu, f17 where f = exp (2^/18). 
The symmetry group of the regular polytope 3(24)3(24)3(24)3 (8; 23) 

contains 80 3-fold reflections in 40 primes: 

Xf = 0, Xi + C0%2 + C0fcX3 = 0, Xl — UjX2 ~ C0*X4 = 0 

Xi — co;x3 + <o*X4 = 0, x 2 — œjXz — œkXA = 0 

( i = 1,2,3,4; jffe = 1,2,3). 

The group is generated by the 3-fold reflections: 

/ i ' •• 2 

Ri: 

10.5 

1 \ [ 0) CO 

1 R . - « : co2 co 
2 , K-2- - 7 5 2 2 

CO I V o \ W W 

1/ V 0 0 

2 
CO 0 \ 

2 
CO 0 
CO 0 ; 
0 *V3/ 

R3: 

\ 

1 / 

, R 4 : 

/ co — co 0 - c o 

— i —co co 0 co 

V3l 0 0 n / 3 0 
\ —co co 0 co ; 
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in the primes x3 = 0, x\ + x2 + x3 = 0, x2 = 0, — x\ + x2 + x4 = 0 respec­
tively. The characteristic roots of Ri, R3 are (1, 1, 1, co2) and of R2, R4 are 
(1, 1, 1, co). The matrix of the product RiR^RzR^1 is 

/ 0 co —co —co \ 

— i | - c o —co —co 0 

\/3 1 CO 0 — CO CO 

\ co —co 0 —co / 

Its characteristic equation is 

X4 - co2 X3 + coX2 - X + co2 = 0 , 

and its characteristic roots are fn, f17, f23, f29, where f = exp (2iri/30). 
The group [2 1 ; l ] 4 can be generated (24, 373) by 2-fold reflections P2 , Pu Qi, 

Ri in the primes x\ + x2 + x3 + x4 = 0, xi — ix2 = 0, xi — x2 = 0, x2 — x3 = 0. 
The matrix of the product P2PiQiRi is 

/ ' * - 1 i - l \ 

: ( 

-*' - 1 
-i 1 

K-i - 1 

-i -1 1 
i - 1 , 
.• 1/ 

Its characteristic equation is 

X4 - *'X3 - X2 + i\ + 1 = 0, 

and its characteristic roots are f3, f7, fn, f19 where f = exp (2^/20). 
The group [2 1; 2]3 can be generated (24, 373) by 2-fold reflections Pu P2 , 

Qi, Ri, R2 in the primes 

x2 — x3 = 0, x3 — X4 = 0, xi — x2 = 0, xi — cox2 = 0, 
Xi + X2 + ^3 + #4 + #5 + #6 = 0 

(using coordinates in six dimensions). The matrix of the product R2R\Q\P\P2 is 

\ / 2co - 1 - 1 2 

- c o - 1 
— co - 1 - 1 0 2 

zco 
- 1 — 1 

1 — co 2 - 1 2 
- c o 

- 1 — 1 
3 — co - 1 2 2 

- c o 
- 1 — 1 

i — œ - 1 - 1 2 
- c o 

2 — 1 

V •1 - 1 -a)2 - 1 2 / 

Its characteristic equation, after division by the extraneous factor 1 — X arising 
from the extra dimension, is 

X5 - coX4 + co2X3 + coX2 - co2X + 1 = 0 , 

and its characteristic roots are f3, f5, f9, fn, f17 where f = exp (27ri/18). 
The group [3 1; 2]3 can be generated (24, 373) by the above five reflections 

together with the 2-fold reflection P 3 in the prime x4 — x5 = 0. The matrix of 
the product R2RiQiPiP2P* is 
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2co - 1 - 1 - 1 - c o 2 - l \ 
- c o - 1 - 1 - 1 2co2 - 1 
- c o 2 - 1 - 1 - c o 2 - 1 

-co - 1 2 - 1 -co2 - 1 " 
-co - 1 - 1 2 -co2 - 1 I 
-co - 1 - 1 - 1 -co2 2/ 

Its characteristic equation is 

X6 - coX5 + co2X4 - X3 + coX2 - co2X + 1, 

and its characteristic roots are f5, fu, fn, f23, f29, f41 where f = exp (2iri/42). 
This completes the verification of Theorem 5.4 for all the irreducible u.g.g.r. 

generated by n reflections. 

11. Abstract definitions of the finite unitary groups generated by n reflec­
tions. We now give, either explicitly or by reference, abstract definitions of 
all the u.g.g.r. which are generated by n reflections. In each case the abstract 
definition takes the form of n generators (corresponding to the n generating 
reflections of the unitary group) and a set of relations that they satisfy. (In 
certain cases it will be convenient to introduce further elements of the group 
into the definition in order to simplify it. Such elements will always be denoted 
by Zt.) 

The definitions of the real groups (G(2, 2, n), G(2, 1, n) and nos. (1), (23), 
(28), (30), (35), (36), (37) of Table VII) have been given by Coxeter (8; 9) who 
shows how they may be read off from the graphical symbol for the spherical 
simplex that forms a fundamental region for the group. 

For the symmetry groups of the regular polygons (nos. (4), (5), (6), (8), (9), 
(10), (14), (16), (17), (18), (20), (21)) the definitions are implicit in the tables 
of §4. 

Shephard (24) has given definitions for G(m, m, n), G{rn, 1, n) and nos. (29), 
(33), (34) by extending Coxeter's graphical notation to these unitary groups 
and reading off the definitions in an analogous manner. 

The abstract definitions of the remaining groups are as follows : 

(24) The operations Ri, R2, Rz of 10.1 satisfy the relations 

JRi2 = R22 = Rz2 = (R1R2)* = (R2RzY = (RsRiY = (RiR2RiRzY = 1, 

and this is an abstract definition for the u.g.g.r. of order 336 in Uz. The sub­
group {RzRi, R1R2} is the simple des, since it is (3, 4 | 4, 3) ~ (3, 3 | 4, 4) in 
the notation of (7, pp. 78, 83). 

(27) The operations Rh R2> Rz of 10.2 satisfy the relations 

Rx* = £22 = £32 = (RxR2y = (R2Rzy = (RzRxy = (RiR&Rt)* = 1, 

and this is an abstract definition for the u.g.g.r. of order 2160 in £/3. The sub­
group {R1R2, R2RZ} is (3, 3 I 4, 5) in the notation of (7, p. 85). 

1 
3 
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(25) The operations Ri, i?2, Ri of 10.3 satisfy the relations 

.Ri* = i?23 = i?s3 = 1, RiR, = RtRi, 
(R1R,Y = Zu ZXRX = R1Z1, ZS = 1, 
(R2R3)

2 = Zit Z2Rz = R2Zit Z2
2 = 1, 

and this is an abstract definition for the symmetry group (of order 648) of the 
regular polyhedron 3(24)3(24)3. 

(26) The operations S, Ru R2 of 10.3 and 10.4 satisfy the relations 

52 = Rf = i?2s = i, SRt = R2S, 
(SRiY = Zlt ZA = RlZ1, Zi3 = 1, 

(RiRt)* = Z2, ZJL2 = R2Z2, Z2
2 = 1, 

and this is an abstract definition for the symmetry group (of order 1296) of the 
regular polyhedron 3(24)3(18)2 or its reciprocal. 

(32) The operations Ri, R2, R3, i?4 of 10.5 satisfy the relations 

Rj* = i?23 = Rt* = J?4* = 1, R& = R,RU RxRi = RtRu R2Rt = i?4i?2) 

(RiRzY = Zu Z& = RiZu ZS = 1, 
(R2Rz)2 = Z2, Z2R2 = i?2Z2, Z2

2 = 1, 
(i?3i?4)

2 = Z3, Zsi?3 = RsZh Z3
2 = 1, 

and this is an abstract definition for the symmetry group (of order 155520) of 
the regular polytope 3{2Jl)3{2Jh)3{24)3. 

Each of the above definitions has been checked by the Todd-Coxeter method 
of enumeration by cosets (27). It is worth noting that the definitions of the 
groups (25), (26) and (32) are what might have been expected by applying the 
rules of (24, p. 374) and the definitions of the groups G(3, 3, 2) and (4) to the 
extended Coxeter graph (24, p. 368). 

The authors wish to thank Professor Coxeter for removing some redundant 
relations. He observes that the definition of (26) still contains one such re­
lation: Zi3 = 1. In fact, the remaining relations imply 

zx
3 = Zi3 Rr* = (Zii^r1)3 = (SRxSy = SRJS = 1. 

Thus a sufficient set of generating relations for this G1296 is 

52 = Rjz = £23 = lf SR2 = R2Sy 

(SRt)* = (RiS)\ 
(R1R2y = (R2R,y = Z, Z2 = 1. 

University of Birmingham University of Cambridge 
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TABLE VII 

LIST OF IRREDUCIBLE U.G.G.R. IN U„ 

No. n Symbol Polytope g g' w, + 1 Reference 

1 n [3-M Otn (n + 1)! (n + 1)! 2,3, . . . ,n + 1 00) 
2 n G(m, p, n) qmn~ln\ mn-in\/d* m, 2m, . . . , (n —\)m,qn §§2, 6 
3 1 

[]m 
m-line m 1 m §§3, 6 

4 2 3(24)3 24 12 4, 6 §4 
5 2 3(72)3 72 12 6, 12 " 
6 2 3(48)2 48 12 4, 12 " 
7 2 144 12 12, 12 " 
8 2 4(96)4 96 24 8, 12 " 
9 2 4(192)2 192 24 8 ,24 " 

10 2 4(288)3 288 24 12,24 " 
11 2 576 24 24 ,24 " 
12 2 48 24 6, 8 " 
13 2 96 24 8, 12 " 
14 2 3(144)2 144 24 6 ,24 " 
15 2 288 24 12, 24 " 
16 2 5(600)5 600 60 2 0 , 3 0 " 
17 2 5(1200)2 1200 60 2 0 , 6 0 " 
18 2 5(1800)3 1800 60 3 0 , 6 0 " 
19 2 3600 60 60 ,60 " 
20 2 3(360)3 360 60 12,30 " 
21 2 3(720)2 720 60 12,60 " 
22 2 240 60 12,20 " 
23 3 [3,5] {3,5} 120 60 2, 6, 10 00) 
24 3 336 168 4, 6, 14 §§3, 6 
25 3 3(24)3(24)3 618 216 6, 9, 12 " 
26 3 3(24)3(18)2 1296 216 6, 12, 18 " 
27 3 2160 360 6, 12, 30 " 
28 4 [3, 4, 3] {3 ,4 ,3) 1152 576 2, 6 , 8 , 12 (10) 
29 4 [2 1;1]< ( \ y ^ 7680 1920 4, 8, 12, 20 §§3, 6 
30 4 [3, 3, 5] {3 ,3 ,5} 14400 7200 2, 12, 20, 30 (10) 
31 4 (è73<)+1 64.6! 11520 8, 12, 20, 24 §§3, 6 
32 4 3(24)3(24)3(24)3 216.6! 36.6! 12, 18, 24, 30 " 
33 5 [2 1; 2]» (h*3)+l 72.6! 36.6! 4, 6, 10, 12, 18 " 
•34 6 [2 1; 3]» (W)+1 103.9! 18.9! 6, 12, 18, 24, 30, 42 " 
35 6 [32 2 1] 2„ 72.6! 72.6! 2, 5, 6, 8, 9, 12 (10) 
36 7 [33.2.1] 3?i 8.9! 4.9! 2, 6, 8, 10, 12, 14, 18 " 
37 8 [34.M] 421 192.10! 96.10! 2, 8, 12, 14, 18, 20, 24, 30 

* m = pq, m > 1, m > 1, d = (p,n). 

The u.g.g.r. in Un are all generated by n reflections except for the following: G(m, p, n) for p ?± 1, m\ the groups in 

U2 (nos. 7, 11, 12, 13, 15, 19, 22) which are not the symmetry groups of regular polygons; and the group of the polytope 

<è734)+1 in U<. 
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