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Curvature Estimates in Asymptotically Flat
Lorentzian Manifolds

Felix Finster and Margarita Kraus

Abstract. We consider an asymptotically flat Lorentzian manifold of dimension (1, 3). An inequality

is derived which bounds the Riemannian curvature tensor in terms of the ADM energy in the general

case with second fundamental form. The inequality quantifies in which sense the Lorentzian manifold

becomes flat in the limit when the ADM energy tends to zero.

1 Introduction

In general relativity, space-time is modeled by a Lorentzian manifold (N, g) of signa-
ture (− + + + ). Gravity is described geometrically by Einstein’s equations

Ric − 1

2
sg = −8πT,

where R is the curvature corresponding to the Levi–Civita connection ∇ on N , Ric

is the Ricci curvature and s the scalar curvature. Here T is the energy-momentum
tensor; it tells about the distribution of matter in space-time and gives a local concept
of energy and momentum. The fact that the local energy density should be positive
is expressed by the dominant energy condition, saying that for each p ∈ N and each

timelike vector u ∈ TpN ,

(1.1) Tαβ uβ is timelike and T(u, u) ≤ 0.

We choose a spacelike hypersurface M ⊂ N and let (g, h) be the induced Riemannian
metric and the second fundamental form on M, respectively. In many physical sit-
uations, matter is localized in a bounded region of space, and the gravitational field

falls off at large distance from the sources. This leads to the definition of asymptotic
flatness; for simplicity we consider only one asymptotic end.

Definition 1.1 M is asymptotically flat if there is a compact set K ⊂ M and a diffeo-

morphism Φ which maps M \ K to the region R
3 \ Br(0), outside a ball of radius r.

Under this diffeomorphism, the metric and second fundamental form should be of
the form

(Φ∗g)i j = δi j + O(r−1), ∂k(Φ∗g)i j = O(r−2), ∂k∂l(Φ∗g)i j = O(r−3)(1.2)

(Φ∗h)i j = O(r−2), ∂k(Φ∗h)i j = O(r−3).(1.3)
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In asymptotically flat manifolds, one can introduce the ADM energy and momen-
tum, which have the interpretation as the total energy and momentum of space-

time.

Definition 1.2 The ADM energy and momentum (E, P) are defined by

E =
1

16π
lim

R→∞

3
∑

i, j=1

∫

SR

(∂ j(Φ∗g)i j − ∂i(Φ∗g) j j ) dΩ
i(1.4)

Pk =
1

8π
lim

R→∞

3
∑

i=1

∫

SR

((Φ∗h)ki −
3

∑

j=1

δki(Φ∗h) j j) dΩ
i,(1.5)

where dΩ
i
= ν i du, du is the area form, and ν is the normal vector to SR ⊂ R

3.

This definition is indeed independent of the the choice of Φ [1].
It is a major problem of mathematical relativity to understand the relation be-

tween (E, P) and the geometry of space-time. A particular aspect of this problem is
the question whether and in which sense E and P control the Riemannian curvature

tensor. In [4] this question was addressed in the time-symmetric case (i.e., when
h ≡ 0). L2-estimates for the Riemannian curvature tensor were derived on M \ D,
where D is an “exceptional set” of small volume. In [5] these estimates were general-
ized to higher dimensions. In the present paper we treat the physically relevant case

with second fundamental form. This is our main result:

Theorem 1.3 We choose L ≥ 3 such that

(Lα − 1)2 ≥ C
4πE + ‖h‖2

k2(k + 24‖h‖3)2
‖|h|2 + |∇h|‖3

where

α =

(

1 + 24
‖h‖3

k

)−1

.

Then there is a set U with measure bounded by

µ(U )1/3 ≤ c1

L6

k2
(4πE + ‖h‖2

2)

such that on M \U the following inequality holds,
∫

M\U

η|RM |2dµ ≤ c2 sup
M

(

|∆η| + |∇η||h| + η(|R| + |h|2 + |∇h|
)

E

+ c3L sup
M

(

η(|∇RM | + |h||RM |)
)
√

E

+ c4

√
L + 1

k
(sup

M

η)
√

∥

∥ |h|2 + |∇h|
∥

∥

6

5

∥

∥|∇RM | + |h||RM

∥

∥

5

12

√
E.

Here c1, . . . , c4 are numerical constants (independent of L and the geometry), η ∈
C2(M) is a positive test function, RM is the Riemannian curvature tensor of N restricted

to M, and k is the isoperimetric constant k = inf A/V
2

3 .
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For the proof we use Witten’s solutions of the hypersurface Dirac equation [8, 9]
and consider second derivatives of the spinors. In order to control the Weyl tensor,

we work similar as in [5] with the spinor operator Π, which is built up of a whole
family of solutions of the hypersurface Dirac equation. The presence of the second
fundamental form leads to the difficulty that the function |Ψ|2 is no longer subhar-
monic, making it impossible to estimate the norm of the spinor with the maximum

principle. In order get around this difficulty, we first construct a barrier function F,
which is a solution of a suitable Poisson equation. We then derive Sobolev estimates
for F, and these finally give us control of ‖|Ψ|2 − 1‖L6(M).

2 Basic Facts about Spinors and the Hypersurface Dirac Operator

In this section we recall some basic facts about spinors and the Dirac operator on
Lorentzian spin manifolds; for details the reader is referred to [3, 6].

Let (N, g) be a Lorentzian spin-manifold with spin structure QN → N . Let

κ : Spin(1, n − 1) → ∆1,n−1 denote the spinor representation and

ΣN = QN ×κ ∆1,n−1

the associated spinor bundle. We denote the Clifford multiplication of a tangent
vector X with a spinor ψ by µ(X, ψ) =: X · ψ. On ∆1,n−1 there exists an indefinite

scalar product 〈 · , · 〉 of signature (2, 2), which is invariant under Spin+(1, n−1) and
is unique up to a constant. This inner product induces on ΣN an indefinite scalar
product, which we again denote by 〈 · , · 〉. For a timelike vector field ν, the inner
product

(2.1) (φ, ψ) := 〈φ, ν · ψ〉

is positive.

The scalar products ( · , · ) and 〈 · , · 〉 also define scalar products on the fibres of
the bundles of k-forms Λ

kT∗N ⊗ ΣN and the bundle of k-linear mappings

(

k
⊗

T∗N ⊗ ΣN

)

by

(η, ξ)p :=
∑

i1,...,ik

(η(ei1
, . . . , eik

), ξ(ei1
, . . . , eik

))p

and analogously

〈η, ξ〉p :=
∑

i1,...,ik

〈η(ei1
, . . . , eik

), ξ(ei1
, . . . , eik

)〉,

where e1, . . . , en is an orthonormal frame. The Levi–Civita connection on N induces
a covariant derivative ∇ on ΓΣN .
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This covariant derivative is isometric with respect to 〈 · · · 〉, i.e.,

X〈ϕ, ψ〉 = 〈∇Xϕ, ψ〉 + 〈ϕ,∇Xψ〉

for all sections ϕ, ψ in ΣN . Its curvature tensor R
Σ ∈ Ω

2(N,ΣN) is defined by

R
Σ

(X,Y )ψ = (∇2
ψ)(X,Y ) − (∇2

ψ)(Y,X),

where (∇2
ψ)(X,Y ) = ∇X∇Y − ∇∇XY . It is related to the curvature tensor R of the

Lorentzian manifold (N, g) by the formula

(2.2) R
Σ
ψ =

1

4

n
∑

α,β=1

〈Reα, eβ〉eα · eβ · ψ.

The Dirac operator on the Lorentzian manifold N is defined by the composition of
the covariant derivative ∇ with the Clifford multiplication µ,

D : ΓΣN
∇−→ Γ(T∗N ⊗ ΣN )

µ−→ ΓΣN ,

where the cotangent bundle T∗N has been identified with the tangent bundle TN via
the metric. In a local orthonormal frame (e1, . . . , en), the Dirac operator is given by

D =

n
∑

α=1

eα · ∇eα .

We point out that, in contrast to the Riemannian case, the Dirac operator on a

Lorentzian manifold is not elliptic.
In what follows, we restrict attention to the physically relevant case of a 4-di-

mensional Lorentzian manifold with a given 3-dimensional asymptotically flat space-
like hypersurface M ⊂ N . We choose a normal unit vector field ν on M and consider

the corresponding positive definite scalar product (2.1). We set |ψ| = (ψ, ψ)
1

2 .
The covariant derivative ∇ is not compatible with ( · , · ), but

X(ϕ, ψ) = (∇Xϕ, ψ) + (ϕ,∇Xψ) + (ϕ, ν · ∇Xν · ψ)

holds for spinor fields ϕ, ψ ∈ Γ(ΣN |M). Using the definition of the second funda-
mental form

hi j = −〈ei,∇e j
ν〉

for an orthonormal frame (e1, e2, e3) on M, this formula can be written as

(2.3) ei(ϕ, ψ) = (∇ei
ϕ, ψ) + (ϕ,∇ei

ψ) − hi j(ϕ, ν · e j · ψ).

This leads us to define the adjoint of ∇ by ∇∗

Xψ = −∇Xψ − ν · ∇Xν · ψ or, in an
orthonormal frame,

∇∗

ei
ψ = −∇ei

ψ + hi jν · e j · ψ.
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On a spacelike hypersurface, there exists an intrinsic Riemannian Dirac operator, but
we shall not consider it here. Instead, we will only be concerned with the so called

hypersurface Dirac operator DM ,

DM := D|M : ΓΣN |M → ΓΣN |M.

It is the restriction of the Dirac operator of the Lorentzian manifold N to M; more

precisely,

Γ(ΣN |M)
∇−→ Γ(T∗M ⊗ ΣN |M) −→ Γ(ΣN |M),

where∇ denotes the covariant derivative in direction M. According to [8], the square
of the hypersurface Dirac operator satisfies the Weitzenböck formula

(2.4) D
2

M = ∆
s

+ ℜ.

Here ∆
s

is the Laplacian ∆
s
ψ = ∇∗∇ψ = tr(−∇2−ν ·∇ν ·∇ψ) or, in an orthonor-

mal frame,

∆
s
ψ = −

∑

i, j

(

∇e j
∇e j

ψ −∇∇e j
e j
ψ − hi jν · ei · ∇e j

ψ
)

,

and ℜ is the curvature expression ℜ =
1
4
(s + 2Ric(ν, ν) + 2

∑3

i=1 Ric(ν, ei)(ν · ei).

The dominant energy condition (1.1) yields that ℜ ≥ 0.
In the coordinates induced by the diffeomorphism φ of Definition 1.1, we choose

a constant spinor ψ0 of norm one in the asymptotic end and consider the boundary
value problem

(2.5) DMψ = 0, lim
|x|→∞

ψ(x) = ψ0 with |ψ0| = 1 .

The existence and uniqueness of a solution of (2.5) is proven in [8]. The solution

decays at infinity as

ψ = ψ0 + O(r−1), ∂ jψ = O(r−2), ∂klψ = O(r−3).

Using the Weitzenböck formula (2.4), it is shown in [8] that for a solution of (2.5),

(2.6) ‖∇ψ‖2
L2(M) = 4π

(

E |ψ0|2 + (ψ0, P · ψ0)
)

− (ψ,ℜψ)

≤ 4π (E + (ψ0, P · ψ0)) ,

where P = Pk · ek is the momentum as defined by (1.2). If we choose ψ0 such that
(ψ0|P · ψ0) = −|P|, we obtain the positive mass theorem [8, 9]

(2.7) 0 ≤ 4π (E − |P|).

For general ψ0, (2.6) and (2.7) give rise to an L2-bound of ∇ψ,

(2.8) ‖∇ψ‖2
L2(M) ≤ 4π (E + |P|) ≤ 8πE.
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3 A Priori Estimates for Harmonic Spinors

In what follows, we let ψ ∈ ΓΣN |M be a solution of the boundary value problem
(2.5). We refer to ψ as a harmonic spinor. We begin by deriving an upper bound for
the measure of the set where a harmonic spinor is large. For any L ≥ 1, we introduce

the set ΩL = ΩL(ψ) by

(3.1) ΩL(ψ) = {x ∈ M : |ψ(x)| ≥ L}.

Lemma 3.1 For any harmonic spinorψ and every L ≥ 1, the volume of ΩL is bounded

by

µ(ΩL)
1

3 ≤ 192

(Lα − 1)2

4πE + ‖h‖2
2

k2
,

where the exponent α is

(3.2) α =

(

1 + 24
‖h‖3

k

)−1

.

The proof uses the the following Sobolev inequality, which is derived in [5].

Lemma 3.2 Let M be an asymptotically flat manifold of dimension n ≥ 3. Then

every non-negative function g ∈ C∞(M) ∩ H1,2(M) with lim|x|→∞ g(x) = 0 satisfies

the inequality

‖g‖q ≤
q

k
‖∇g‖2 with q =

2n

n − 2

and k the isoperimetric constant.

Proof of Lemma 3.1 Applying the Schwarz inequality in (2.3), we obtain for every
α ∈ R,

|∇|ψ|α| ≤ α|ψ|α−2
(

|∇ψ||ψ| + |h||ψ|2
)

.

We take the square and use the inequality (x + y)2 ≤ 2(x2 + y2),

|∇|ψ|α|2 ≤ 2α2
(

|∇ψ|2|ψ|2α−2 + |h|2|ψ|2α
)

.

Choosing x ∈ ΩL and α ∈ (0, 1], the factor |ψ(x)|2α−2 < 1, and thus at x,

|∇|ψ|α|2 ≤ 2α2
(

|∇ψ|2 + |h|2|ψ|2α
)

.

We integrate over ΩL and apply Lemma 3.2 as well as (2.8),

∥

∥ |ψ|α − 1
∥

∥

2

L6(ΩL)
≤ 72α2

k2
(8πE +

∥

∥ |h|2|ψ|2α
∥

∥

L1(ΩL)
).

The last inequality has the disadvantage that the spinor also appears on the right.
Therefore, we apply the inequality |ψ|2α ≤ 2(|ψ|α − 1)2 + 2 and Hölder to obtain

∥

∥ |ψ|α − 1
∥

∥

2

L6(ΩL)
≤ 72α2

k2

(

8πE + 2‖h‖2
3‖(|ψ|α − 1)‖2

L6(Ω1) + 2‖h‖2
2

)

.
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Now we can combine the terms involving the spinors,

(3.3)
[

1 − 122α2

k2
‖h‖2

3

]

∥

∥ |ψ|α − 1
∥

∥

2

L6(ΩL)
≤ 122α2

k2

(

4πE + ‖h‖2
2

)

.

We choose α according to (3.2). Then the second term in the square brackets
in (3.3) is bounded by

122α2

k2
‖h‖2

3 ≤ 1

4
,

and thus
∥

∥ |ψ|α − 1
∥

∥

2

L6(ΩL)
≤ 192

α2

k2

(

4πE + ‖h‖2
2

)

.

We finally apply the estimate

µ(ΩL)
1

3 ≤ 1

(Lα − 1)2

∥

∥ |ψ|α − 1
∥

∥

2

L6(ΩL)
.

In the time-symmetric case, Lemma 3.1 reduces to the inequality

(3.4) µ(ΩL)
1

3 ≤ 192

(L − 1)2

4πE

k2
,

showing that for large L, µ(ΩL) decays at least ∼ L−6. On the other hand, it was

shown in the time-symmetric case [4] that the function |ψ|2 is subharmonic, and
thus the maximum principle gave the bound

(3.5) |ψ|2 ≤ 1.

This shows that if h ≡ 0, µ(ΩL) is indeed zero for all L > 1. We conclude that the
estimate (3.4) is certainly not optimal if h ≡ 0. We shall now improve Lemma 3.2

such that in the time-symmetric case we recover (3.5). We let (e1, e2, e3) be an or-
thonormal frame in a neighborhood of x with (∇ie j)(x) = 0. Then the Laplacian of
|ψ|2 at x is computed as follows,

∆|ψ|2 =

3
∑

j=1

∂ j

(

(∇ jψ, ψ) + (ψ,∇ jψ) + (ψ, ν · ∇ jν · ψ)
)

= 2|∇ψ|2 + 2Re(∇ j∇ jψ, ψ) + 2(∇ jψ, ν · ∇ jν · ψ)

+ (ψ, ν · ∇ jν · ∇ jψ) + (ψ,∇ j(ν · ∇ jν · ψ)) − |∇ jν|2|ψ|2

= 2|∇ψ|2 − 2Re(∇∗∇ψ, ψ) + 2Re(∇ jψ, ν · ∇ jν · ψ) + (ψ, ν · ∇2

j, jν · ψ)).

Using the Weitzenböck formula, we obtain for a harmonic spinor the inequality

|∆|ψ|2| ≥ 2Re(ℜψ, ψ) + 2|∇ψ|2 − 2|∇ψ||ψ||∇ν| − |ψ|2 ·
(

3
∑

j=1

|∇2

j, jν|
)

,
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where we set

|∇ν|2 =

∑

i, j

h2
i j and |∇2

j, jν| = 3
√

∑

k

(∂ j h jk)2.

Using the short notation

|h| := |∇ν| and |∇h| :=

3
∑

j=1

|∇2

j, jν|,

we can write the last inequality in the compact form

∆|ψ|2 ≥ 2Re(ℜψ, ψ) + 2|∇ψ|2 − 2|∇ψ||ψ||h| − |ψ|2|∇h|

≥ 2Re(ℜψ, ψ) −
( 1

2
|h|2 + |∇h|

)

|ψ|2.

In the special case h ≡ 0, we recover that |ψ|2 is subharmonic, and the maximum
principle gives (3.5). Our method for treating the general case is to construct a bar-
rier function F by solving the Poisson equation and to estimate F using Sobolev tech-

niques and the volume bound of Lemma 3.1.

Proposition 3.3 Suppose that L > 1 is chosen so large that

(3.6) (Lα − 1)2 ≥ C
4πE + ‖h‖2

k2(k + 24‖h‖3)2

∥

∥ |h|2 + |∇h|
∥

∥

3

with α as in Lemma 3.1 and C = 6 · 482, a numerical constant. Then the harmonic

spinor ψ is bounded on ΩL by

∥

∥ |ψ|2 − 1
∥

∥

L6(ΩL)
≤ 72

k2
(L + 1)

∥

∥ |h|2 + |∇h|
∥

∥

L6/5
.

Proof We set ρ = −(|h|2 + |∇h|) and let g be the solution of the Poisson equation
∆g = ρ|ψ|2 with boundary conditions limx→∞ g(x) = 0 (For the existence of this
solution see [2, Theorem1.7]). Then ∆(|ψ|2 − g) ≥ 0, and the maximum principle

yields that

(3.7) |ψ|2 ≤ 1 + g.

The Sobolev inequality of Lemma 3.2, Gauss’ theorem, and the Hölder inequality
give

‖g‖2
6 ≤ 36

k2
‖∇g‖2

2 =
36

k2

∫

M

|ρ||ψ|2g dM ≤ 36

k2
‖ρ|ψ|2‖ 6

5

‖g‖6

and thus

(3.8) ‖g‖6 ≤ 36

k2
‖ρ|ψ|2‖ 6

5

.
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Combining (3.7) and (3.8), we obtain for any L ≥ 1,

∥

∥ |ψ|2 − 1
∥

∥

L6(ΩL)
≤ ‖g‖L6(ΩL) ≤

36

k2
‖ρ|ψ|2‖ 6

5

≤ 36

k2

(

L‖ρ‖L6/5(M\ΩL) + ‖ρ|ψ|2‖L6/5(ΩL)

)

≤ 36

k2

(

L‖ρ‖L6/5(M\ΩL) + ‖ρ(|ψ|2 − 1)‖L6/5(ΩL) + ‖ρ‖L6/5(ΩL)

)

≤ 36

k2

(

(L + 1)‖ρ‖ 6

5

+ ‖ρ‖L3/2(ΩL)‖|ψ|2 − 1‖L6(ΩL)

)

.

We collect all the terms which involve
∥

∥ |ψ|2 − 1
∥

∥

L6(ΩL)
:

(

1 − 36

k2
‖ρ‖L3/2(ΩL)

)
∥

∥ |ψ|2 − 1
∥

∥

L6(ΩL)
≤ 36

k2
(L + 1)‖ρ‖ 6

5

.

This inequality gives a bound for
∥

∥ |ψ|2 − 1
∥

∥

L6(ΩL)
only if the prefactor is bounded

away from zero. Thus we want to arrange that

(3.9)
36

k2
‖ρ‖L3/2(ΩL) ≤

1

2
.

The Hölder inequality gives

‖ρ‖L3/2(ΩL) ≤ ‖ρ‖3µ(ΩL)
1

3 .

Substituting in the volume bound of Lemma 3.1, one sees that (3.6) indeed guaran-
tees that (3.9) holds.

4 Estimates of the Spinor Operator

We choose an orthonormal basis of constant spinors (ψi
0)i=1,...,4, (ψi

0, ψ
j
0) ≡ δi j at

the asymptotic end and denote the corresponding solutions of the boundary prob-
lems (2.5) by (ψi)i=1,...,4.

For every x ∈ M we introduce the spinor operator Πx by

Πx : ΣN,x → ΣN,x, ψ 7→
4

∑

i=1

(ψi(x), ψ)ψi (x).

At infinity, (ψi) goes over to an orthonormal basis, and thus

lim
|x|→∞

Πx = id.

The next elementary lemma bounds the spinor operator in terms of the |ψi|.
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Lemma 4.1 The sup-norm of Πx is bounded by

1

4

4
∑

j=1

|ψi
x|2 ≤ |Πx| ≤

4
∑

j=1

|ψi
x|2.

Proof Since Πx is positive,

|Πx| ≥
1

4
tr Πx =

1

4

4
∑

j=1

|ψi
x|2.

This is the lower bound.

In order to derive the upper bound, we define the matrix A by

A = (ai j)i=1,...,4
j=1,...,4

with ai j = (ψi
x, ψ

j
x).

By definition, A is Hermitian and all eigenvalues of A are real and nonnegative. Let
v := (v1, . . . , v4)T ∈ C

4, |v|2 = 1. Then ψ := Σviψ
i is a solution of the boundary

problem (2.5) with ψ0 = Σviψ
i
0. Then

4
∑

i, j=1

viv jai j = |ψx|2 ≤
4

∑

j=1

|ψi
x|2 =: λ.

Therefore the eigenvalues of A must be smaller or equal to λ.
Now let φ be an arbitrary spinor at x ∈ M. We let ψ := Σviψ

i
x be the orthonormal

projection of φ onto the span of (ψ1
x , . . . , ψ

4
x ) and set vT

= (v1, . . . , v4). Then

|Πxφ|2 =

4
∑

i, j=1

(φ, ψi
x)(ψi

x, ψ
j
x)(ψ j

x , φ) = (Av)TA(Av)

≤ λ2TvAv = λ2|ψx|2 ≤ λ2|φ|2

and thus |Πxφ| ≤ λ|φ|.

Next we derive an estimate for the Hilbert–Schmidt Norm ‖ · ‖ of the operator
‖1 − Πx‖.

Lemma 4.2 For every L ≥ 3 and ε ∈ (0, 1) there is a subset U ⊂ M with

µ(U )
1

3 ≤ 48

k2
(4πE + ‖h‖2

2)
L2(4 + L2)2

ε2

such that for all x ∈ M \U ,
‖1 − Πx‖ < ε.
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Proof We set p(x) = ‖1 − Πx‖2. Then the same calculation as in [5, Lemma 4.2],
shows that

p(x) = 4 − 2

4
∑

i=1

(ψi
x, ψ

i
x) +

4
∑

i, j=1

|(ψi
x, ψ

j
x)|2.

Differentiation gives

∇p = −4

4
∑

i=1

Re(∇ψi , ψi) + 4

4
∑

i=1

Re(∇ψi ,Πψi)

− 2

4
∑

i=1

(ψi , ν · ∇ν · ψi) + 2

4
∑

i=1

(

ψi,Π(ν · ∇ν · ψi)
)

.

We define the function p̂ by truncating p,

p̂ = min
(

p,
( L2

4
− 2

) 2)

.

Then ∇p̂(x) vanishes unless p(x) ≤
(

L2

4
− 2

) 2
. In this case, we have

( L2

4
− 2

) 2

≥ p(x) ≥ (‖Πx‖ − ‖1‖)2

and thus ‖Πx‖ ≤ L2

4
. According to Lemma 4.1, this implies that |ψi | ≤ L for all

i = 1, . . . , 4. We conclude that

∇p̂(x) 6= 0 =⇒ |ψi(x)| ≤ L.

The last inequality allows us to estimate ∇p̂ as follows:

|∇p̂| ≤ 4L

4
∑

i=1

|∇ψi | + L3

4
∑

i=1

|∇ψi | + 8L2|h| + 2L4|h|

with |h|2 =
∑

i,k

h2
ik. Integration gives

‖∇p̂‖2
2 ≤ 2L2(4 + L2)2

(

4
∑

i=1

‖∇ψi‖2
2 + 4L2‖h‖2

2

)

= 8L2(4 + L2)2(4πE + ‖h‖2
2).

The Sobolev inequality yields

‖p̂‖2
6 ≤

48L2(4 + L2)2

k2
(4πE + ‖h‖2

2).

Hence p̂(x) < ε except for x ∈ U , where the measure of U is bounded by

µ(U )1/3 ≤ 48L2(4 + L2)2

ε2k2
(4πE + ‖h‖2

2).

Clearly, on M \U , also p(x) < ε.
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5 Estimates of the Curvature Tensor

We denote the curvature tensor of ΣN restricted to M by

R
Σ

M := i∗R
Σ ∈ Ω

2(M, End(ΣN )),

where i is the natural inclusion i : M → N . Recall that R
Σ

is related to the Rieman-
nian curvature tensor R by (2.2). We denote the pull-back of R to M by RM and define
its norm by

|RM |2 =

3
∑

i, j=1

3
∑

α,β=0

(Ri jαβ)2.

We now derive a pointwise estimate for the curvature tensor in terms of the system
of Dirac spinors ψi .

Lemma 5.1

(1 − ‖1 − Π‖)|RM |2 ≤ 8

4
∑

i=1

|∇2
ψi |2⊗2.

Proof The identity R
Σ

M(v,w)ψ = ∇2
ψ(v,w) −∇2

ψ(w, v) immediately yields that

|RΣ

Mψ|2⊗2 ≤ 4|∇2
ψ|2⊗2.

In order to estimate the term on the left, we choose for given x ∈ M an orthonormal
frame (ν, e1, e2, e3) with ∇ei(x) = 0 and an orthonormal basis (φa)a=1,...,4 of ΣN,x.
Then for any linear map A ∈ End(ΣN,x),

Tr(AΠ)(x) =

4
∑

a=1

(φa,AΠxφa)(x) =

4
∑

i=1

(ψi(x),Aψi(x)).

Thus

(5.1)

4
∑

i=1

|RΣ

Mψ
i |2 =

4
∑

i=1

3
∑

j,k=1

(ψi ,R
Σ∗
M (e j , ek)R

Σ

M(e j , ek)ψi)

=

3
∑

j,k=1

Tr(R
Σ∗
M (e j , ek)R

Σ

M(e j , ek)Π)

≥
3

∑

j,k=1

(

‖R
Σ

M(e j , ek)‖2 − ‖R
Σ

M(e j , ek)R
Σ∗
M (e j , ek)‖‖1 − Π‖

)

.

https://doi.org/10.4153/CJM-2005-028-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-028-6


720 F. Finster and M. Kraus

Next we compute the appearing Hilbert-Schmidt norms.

R
Σ∗
M (ei , e j)R

Σ

M(ei , e j)

=
1

16

(

−
3

∑

k,l,m,n=1

Ri jklRi jmnek · el · em · en + 2

3
∑

k,l,m=1

Ri j0kRi jlmν · ek · el · em

+ 2

3
∑

k,l,m=1

Ri jklRi j0mek · el · ν · em + 4

3
∑

k,l=1

Ri j0kRi j0mν · ek · ν · em

)

=
1

8

(

3
∑

k,l=1

Ri jklRi jkl + 2

3
∑

k,l,m=1

Ri j0kRi jlmν · ek · el · em + 2

3
∑

k=1

Ri j0kRi j0k

)

.

Since the trace of the second term vanishes, we conclude that

(5.2)

3
∑

j,k=1

‖R
Σ

M(e j , ek)‖2
=

1

2
|RM |2.

Moreover,

(5.3)

3
∑

j,k=1

‖R
Σ

M(e j , ek)R
Σ∗
M (e j , ek)‖ ≤

3
∑

j,k=1

‖R
Σ

M(e j , ek)‖2 ≤ 1

2
|RM |2.

Substituting (5.2) and (5.3) into (5.1) gives the result.

6 Integration by Parts

In this section we derive an L2 bound for the second derivative of a solution of the
boundary value problem (2.5). The argument is similar to that given in [4].

Lemma 6.1 Suppose that L satisfies the hypothesis of Proposition 3.3. Then any solu-

tion Ψ of the boundary value problem (2.5) satisfies the inequality

∫

M

η|∇2ψ|2 dµ ≤ c1 sup
M

(

|∆η| + |∇η||h| + η(|R| + |h|2 + |∇h|
)

E

+ c2L sup
M

(

η(|∇RM | + |h||RM |)
)
√

E

+ c3

√
L + 1

k
(sup

M

η)
√

∥

∥ |h|2 + |∇h|
∥

∥

6/5

∥

∥ |∇RM | + |h||RM

∥

∥

5/12

√
E.
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Proof A calculation similar to the one following (3.5) yields that

|∇2
ψ|2 =

∑

j,i

Re(∇∗

j ∇
2

j,iψ,∇iψ)(6.1)

+
1

2
∆|∇ψ|2(6.2)

− 1

2

∑

j,i

(∇iψ, ν · ∇
2

j, jν · ∇iψ)(6.3)

−
∑

j,i

Re(∇2

j,iψ, ν · ∇ jν · ∇iψ),(6.4)

where (e1, . . . , en) is a smooth orthonormal frame on M.

In order to estimate the integral
∫

M
η|∇2

ψ|dµ with a positive test function η ∈
C2(M), we consider the summands in the above equation separately. Integrating by
parts in (6.2) and using the decay properties of ψ, we obtain

1

2

∫

M

η∆|∇ψ|2dµ =
1

2

∫

M

∆η|∇ψ|2dµ ≤ 4π sup
M

∆ηE.

To estimate (6.3) and (6.4), we first calculate

1

2
∇ j(∇iψ, ν · ∇ jν · ∇iψ) =

1

2
∇ j〈∇iψ,∇ jν · ∇iψ〉

= Re(∇2

j,iψ, ν · ∇ jν · ∇iψ) +
1

2
(∇iψ, ν · ∇

2

j, jν · ∇iψ).

Therefore, integration by parts gives

∣

∣

∣

∑

i, j

∫

M

η
( 1

2

(

∇iψ, ν · ∇
2

j, jν · ∇iψ
)

+ Re
(

∇2

j,iψ, ν · ∇ jν · ∇iψ
)

)

dµ
∣

∣

∣

≤ 1

2

∑

i, j

∫

M

∣

∣(∂ jη)
(

∇iψ, ν · ∇ jν · ∇iψ
)
∣

∣ dµ ≤ 4π sup
M

(

|∇η||h|
)

E.

It remains to control (6.1). Commuting the covariant derivatives, we obtain, as

in [4, eqns. (31)–(35)],

∇∗

j ∇
2

j,iψ = ∇i(∇
∗∇ψ) +

1

2
∇∗

j

(

R
Σ

(e j , ei)ψ
)

+ Ric(ei , ek)∇kψ − 1

2
R

Σ
(e j , e j)∇ jψ + ν · ∇2

i, jν · ∇ jψ,

where Ric denotes the Ricci curvature of the hypersurface M ⊂ N . If ψ is a solution
of (2.5), the first term can be simplified with the Weitzenböck formula. Using the
Gauss equation, we thus obtain

(

∇∗

j ∇
2

j,iψ,∇iψ
)

≤ c̃1

(

|R| + |h|2 + |∇h|
)

|∇ψ|2 + c̃2

(

|∇Ri| + |h||Ri|
) (

ψ,∇iψ
)

,
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with suitable constants c̃1 and c̃2 which are independent of the geometry. Now we
choose L > 0 as in Proposition 3.3 and calculate

∫

M

η Re(∇∗

j ∇
2

j,iψ,∇iψ) dµ ≤ c̃3 sup
M

(η(|R| + |h|2 + |∇h|)E + c̃2

(

∫

M\ΩL

+

∫

ΩL

)

× η
(

|∇∗
RM | + |h||RM |

)

|ψ||∇ψ| dµ

≤ c̃3 sup
M

(η(|R| + |h|2 + |∇h|)E

+ c̃4L sup
M

(

η(|∇RM)| + |h||RM|)
)
√

E

+ c̃5

∫

ΩL

η
(

|∇RM | + |h||RM |
)
√

|ψ|2 − 1|∇ψ| dµ,

where we have used the inequality |ψ| ≤
√

|ψ|2 − 1 + 1. In the last integral, we apply
Hölder’s inequality,

∫

ΩL

η
(

|∇RM | + |h||RM |
)
√

|ψ|2 − 1|∇ψ| dµ

≤ sup
M

η
∥

∥|∇RM | + |h||RM |
∥

∥

5

12

∥

∥|ψ|2 − 1
∥

∥

1

2

L6(ΩL)
‖∇ψ‖2.

Finally, the factor ‖|ψ|2 − 1‖L6(ΩL) is controlled by Proposition 3.3.

Proof of Theorem 1.3 For L as in Proposition 3.3 and ε =
1
2
, we choose U as in

Lemma 4.2 to obtain

∫

M\U

η|RM | dµ ≤ 2

∫

M\U

η(1 − ‖1 − Π‖)|RM | dµ.

We now apply Lemma 5.1,

∫

M\U

η|RM | dµ ≤ 16

∫

M

η

4
∑

i=1

|∇2
ψi |2⊗2 dµ.

Lemma 6.1 completes the proof.
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