THE FARKAS LEMMA OF SHIMIZU, AIYOSHI AND KATAYAMA

CHARLES SWARTZ

Shimizu, Aiyoshi and Katayama have recently given a finite dimensional generalization of the classical Farkas Lemma. In this note we show that a result of Pshenichnyi on convex programming can be used to give a generalization of the result of Shimizu, Aiyoshi and Katayama to infinite dimensional spaces. A generalized Farkas Lemma of Glover is also obtained.

In [7], Theorem 2.1, Shimizu, Aiyoshi and Katayama have given a finite dimensional generalization of the classical lemma of Farkas ([2]). In this note we show that an infinite dimensional generalization of the result of Shimizu, Aiyoshi and Katayama can be obtained from a global characterization of a minimum in a convex programming problem due to Pshenichnyi ([6], II.2.1). We also show that a generalized Farkas Lemma due to Glover can be obtained from Pschenichnyi's result ([3], Theorem 1).

We begin by describing the result of Shimizu, Aiyoshi and Katayama. Throughout this paper, let X be a (real) Hausdorff locally convex topological vector space with dual X' and duality form \langle , \rangle . We assume throughout that X' is equipped with the weak* topology from X. Let A and B be compact subsets of X such that 0 is not in the convex hull of A (0 ξ co A). The result of Shimizu, Aiyoshi and

Received 30 November 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

Katayama ([7], 2.1) then states that in a finite dimensional space the following conditions are equivalent:

- (1) $\max\{\langle x', b \rangle : b \in B\} \leq 0$ implies $\max\{\langle x', a \rangle : a \in A\} \geq 0$;
- (2) there exist $x_0 \in \operatorname{co} A$, $x_1 \in \operatorname{co} B$ and $t \leq 0$ such that $x_0 = tx_1$.

If *E* is a subset of *X*, let $S(\cdot|E)$ be the support functional of *E*, $S(x'|E) = \sup\{\langle x', x \rangle : x \in E\}$ for $x' \in X'$ ([1], 2.1.3). Note that $S(\cdot|E) = S(\cdot|\overline{co}|E)$, where $\overline{co}|E|$ is the closed convex hull of *E*. Using the notation of support functional, (1) becomes:

 $S(x'|B) \leq 0$ implies $S(x'|A) \geq 0$.

Now the support functional is always convex so this suggests replacing condition (1) by the condition:

(1') $h(x) \leq 0$ implies $f(x) \geq 0$,

where h and f are convex functions defined on X. We then need to obtain an appropriate generalization of (2) for this situation. This is given in Theorem 2 (also Corollary 3).

We now fix the notation and terminology which will be used. Let hand f be real valued convex functions defined on X. The subgradient of f at x_0 is $\partial f(x_0) = \{x' \in X' : f(x) - f(x_0) \ge \langle x', x - x_0 \rangle$ for $x \in X\}$ ([6], I.1.1; [4], 6D). If f is continuous at x_0 , then $\partial f(x_0)$ is a non-void, weak* compact subset of X' ([4], 14B). A similar statement holds if f is a lower semicontinuous sublinear function (f is sublinear if $f(x+y) \le f(x) + f(y)$ and f(tx) = tf(x) for $x, y \in X$ and $t \ge 0$); that is, $\partial f(x_0)$ is a non-void weak* compact subset of X' ([10], Proposition 1 and [1], .4).

If Ω is a subset of X and $x_0\in\Omega$, then the cone of feasible directions to Ω at x_0 is

 $F(\Omega, x_0) = \{e : \text{there exists } \alpha > 0 \text{ such that } x_0 + te \in \Omega \text{ for } 0 \le t \le \alpha\}$ ([6], II; [4], 14E). For a convex set,

446

$$F(\Omega, x_0) = \{t(x-x_0) : t \ge 0, x \in \Omega\}$$
.

If $\mathcal{C} \subseteq X$ then the dual cone of \mathcal{C} is given by

$$C^* = \{x' \in X' : \langle x', x \rangle \ge 0 \text{ for all } x \in C\}$$

([6], I, p. 30).

Psheninchnyi gives a necessary and sufficient condition for a convex programming problem to have a solution in terms of subgradients and the feasible direction cone ([6], II.2.1; [4], 14E). If f is a convex function with $\partial f(x_0)$ a non-void, weak* compact subset, then f attains its minimum at $x_0 \in \Omega$ if and only if $F(\Omega, x_0)^* \cap \partial f(x_0) \neq 0$. (Pshenichnyi proves this result for f continuous but the continuity is only used to guarantee that $\partial f(x_0)$ is weak* compact and non-empty; actually Pshenichnyi's proof applies to the class of quasi-differentiable functions with $\partial f(x_0)$ weak* compact ([6], 3.1).)

Set $\Omega = \{x : h(x) \leq 0\}$ and let $x_0 \in \Omega$ be such that $h(x_0) = 0$. Concerning the cone $F(\Omega, x_0)$, we have that the inclusion $F(\Omega, x_0)^* \supseteq \mathbb{R}_{\partial h}(x_0)$ holds always, where \mathbb{R}_{d} is the set of non-positive real numbers ([6], 2.2; [4], 14E). Concerning the equality, we make the following constraint qualification.

DEFINITION 1. The function h is regular at x_0 if and only if $F(\Omega, x_0)^* = \mathbb{R}_{\partial h}(x_0)$.

A sufficient condition for h to be regular at x_0 is that hsatisfy Slater's condition; that is, there exists $x_1 \in \Omega$ such that $h(x_1) < 0$ ([6], II.2.2; [4], 14E).

From Pshenichnyi's condition given above, we have

THEOREM 2. Let h be regular at x_0 and let f be such that $\partial f(x_0)$ is weak* compact and non-void. The following conditions are equivalent:

(3) $h(x) \leq 0$ implies $f(x) \geq f(x_0)$;

(4) there exist $x'_0 \in \partial f(x_0)$, $x'_1 \in \partial h(x_0)$ and $t \le 0$ such that $x'_0 = tx'_1$.

Proof. If (3) holds, x_0 solves the convex programming problem min $\{f(x) : x \in \Omega\}$. By Pshenichnyi's condition and the regularity assumption, (4) follows immediately.

If (4) holds and $x \in \Omega$, then

$$f(x) - f(x_0) \ge \langle x'_0, x - x_0 \rangle = t \langle x'_1, x - x_0 \rangle.$$

But $0 \ge h(x) - h(x_0) \ge \langle x_1', x - x_0 \rangle$ so $f(x) - f(x_0) \ge 0$, and (3) holds. (This implication does not require regularity.)

This result is given in [4], 14E, under the assumption that f is continuous and Slater's condition is satisfied.

We now indicate haw an infinite dimensional version of the result of Shimizu, Aiyoshi and Katayama can be obtained from Theorem 2. Let A and B be weak* compact subsets of X' with A and B such that $\overline{\operatorname{co}} A$ and $\overline{\operatorname{co}} B$ are also weak* compact (this condition is automatically satisfied if X is barrelled ([5], 3.6.2)). Set $h = S(\cdot|B) = S(\cdot|\overline{\operatorname{co}} B)$ and $f = S(\cdot|A) = S(\cdot|\overline{\operatorname{co}} A)$, where we compute these support functionals in the duality between X and X'. Note that both f and h are lower semicontinuous and sublinear with $\partial f(0) = \overline{\operatorname{co}} A$. From Theorem 2 we obtain the following generalization of the result of Shimizu, Aiyoshi and Katayama ([7], 2.1).

COROLLARY 3. Suppose $0 \notin \overline{co} B$. The following conditions are equivalent:

- (5) $h(x) \leq 0$ implies $f(x) \geq f(0) = 0$;
- (6) there exist $x'_0 \in \overline{co} A$, $x'_1 \in \overline{co} B$ and $t \leq 0$ such that $x'_0 = tx'_1$.

Proof. Since $0 \notin \overline{\operatorname{co} B}$, by the Hahn-Banach Theorem there is an $x_0 \notin X$ such that $h(x_0) = \max\{\langle x', x_0 \rangle : x' \notin B\} < 0$; that is, h satisfies Slater's condition. Since $\partial h(0) = \overline{\operatorname{co} B}$ and $\partial f(0) = \overline{\operatorname{co} A}$, Theorem 2 gives the result.

Shimizu, Aiyoshi and Katayama treat the case when $X = \mathbb{R}^n$ is finite dimensional. In this case the weak* topology on $X' = \mathbb{R}^n$ coincides with the norm topology and if $A, B \subseteq \mathbb{R}^n$ are compact, then co A and co B are also compact. Thus, in this case, condition (6) can be stated in stronger form:

(6') there exist $x'_0 \in \operatorname{co} A$, $x'_1 \in \operatorname{co} B$ and $t \leq 0$ such that $x'_0 = tx'_1$.

Condition (6') is clearly equivalent to condition (3) of Shimizu, Aiyoshi and Katayama ([7]).

The classical finite dimensional version of the Farkas Lemma corresponds to the case when B is finite and A is a singleton.

The Farkas result of Shimizu, Aiyoshi and Katayama for locally convex spaces has also been obtained by somewhat different methods in [8].

We now also show that a generalized Farkas Lemma of Glover can be obtained from Pshenichnyi's result. Let $f: X \to \mathbb{R}$ be a lower semicontinuous sublinear function. Let Y be a locally convex space, $S \subseteq Y$ a closed convex cone and $g: X \to Y$ S-sublinear (that is, g(tx) = tg(x)for $t \ge 0$ and $-g(tx+(1-t)y) + tg(x) + (1-t)g(y) \in S$ for $0 \le t \le 1$, $x, y \in X$). We assume that g is such that y'g is lower semicontinuous on X for each $y' \in S^*$ (weakly S^* -lower semicontinuous in Glover's terminology). Glover's result ([3], Theorem 1) is given by

THEOREM 4. Let $x' \in X'$. The following conditions are equivalent: (7) $-g(x) \in S$ implies that $f(x) \ge \langle x', x \rangle$; (8) $x' \in \partial f(0) + \overline{\bigcup_{s' \in S^*} \partial (s'g)(0)}$.

Proof. If $\Omega = g^{-1}(-S)$, then (7) is equivalent to the fact that 0 is a solution of the convex program: $\min\{(f-x')(x) : x \in \Omega\}$. By Pshenichnyi's condition, since $\partial(f-x')(0) = \partial f(0) - x'$, (7) is equivalent to $(\partial f(0)-x') \cap F(\Omega, 0)^* \neq 0$. But Ω is a convex cone so $F(\Omega, 0) = \Omega$, and by Lemma 1 of [3], $F(\Omega, 0)^* = -\frac{1}{0} \frac{\partial(s'g)(0)}{\partial(s'g)(0)}$. Thus, by $s' \in S^*$

Pshenichnyi's condition, (7) and (8) are equivalent.

References

- F. Clarke, Optimization and nonsmooth analysis (John Wiley & Sons, New York and London, 1983).
- [2] J. Farkas, "Über die Theorie der einfachen Ungleichen", J. Reine Angew. Math. 124 (1902), 1-24.
- [3] B.M. Glover, "A generalized Farkas lemma with applications to quasidifferential programming", Z. Oper. Res. Ser. A 26 (1982), 125-141.
- [4] Richard B. Holmes, Geometric functional analysis and its applications (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [5] John Horváth, Topological vector spaces and distributions, Volume I (Addison-Wesley, Reading, Massachusetts; Palo Alto; London; 1966).
- [6] B.N. Pshenichnyi, Necessary conditions for an extremum (Marcel Dekker, New York, 1971).
- [7] K. Shimizu, E. Aiyoshi and R. Katayama, "Generalized Farkas' theorem and optimization of infinitely constrained problems", J. Optim. Theory Appl. 40 (1983), 451-462.
- [8] Charles Swartz, "A general Farkas lemma", J. Optim. Theory Appl. (to appear).
- [9] C. Zalinescu, "A generalization of the Farkas lemma and applications to convex programming", J. Math. Anal. Appl. 66 (1978), 651-678.
- [10] C. Zalinescu, "On an abstract control problem", Numer. Funct. Anal. Optim. 6 (1980), 531-542.

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA.