ON THE TRIAD EXCISION THEOREM
OF BLAKERS AND MASSEY

SHORO ARAKI

The purpose of the present paper is to give a new proof to the triad ex-
cision theorem of Blakers and Massey [1], in case m>2 and #=2, by the aid
of path spaces and in connection with a recent work of J. P. Serre [2].

1. Preliminary. Let X, A, B be topological spaces such that XDA, B.
By 2. 5(X) we denote the totality of paths in X which start A and terminate
in B; an element (g, I)E 2,4 5(X) is represented by a continuous map ¢: I->X
of the closed unit interval I into X such that o(Q)E€ A and s(L)&B. Then
24,8(X) is topologized by the compact open topology.

Let ps be the projection of 24,5(X) to A such that for (g, I)E 24,5(X)
ps(a, I) =0(0), and let p: : 2. 2(X)~ B be the projection such that pi(s, I)
=o(1) for (o, I)E L24,5(X).

In the sequel, it is assumed that for a triad (X ; A, B, x¢) and for spaces
of paths such as £4,3(X), 24,:(X), and so on, X, A, B, AN B, and spaces of
paths are all arcwise connected, and that a reference point of any spaces of
paths used, is taken to be an element represented by a constant map e : I-> x,.

The following relations are obvious:

(a) -1 2z, (X}, e} =il X, %) for all i1,
() mi-1(24,2(X), e)=mil(X, A, %) Sfor all ix1,
(¢) A is a deformation-retract of 24,x(X),

(d) 7i-1(28,5(X), Qanr.x(A), e)=ni(X; A, B, %)  for all i22

where (X ; A, B, %) is a triad.

The above isomorphisms (@), () and (d) are referred to as canonical iso-
morphisms.

Let (X, A) be a pair of topological spaces, i.e., X DA. Suppose that X is
p-connected for p=1 and (X, A, %) is g-connected for g=1, then 2., ,(X) is
(g —1)-connected. (£24,x(X), p1» X) has a fibred structure in the sense of J. P.
Serre, the fibre of which is 24,%(X). Considering this fibre space, we have
the following exact homology sequence with respect to integer coefficients,
following J. P. Serre, [2] Chap. IIL prop. 5 p. 468;
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3k
Hpra(@a, (XD Hy oo 22X 20 Hyo o X)Z5 Hyr gt (24,1 ( X)) —> . . .
. .——)Hx(QA,x,(X))-——>H1(~Q.4,x(x))-—)Ilr:(X)—ﬂ)

where D" is transgression.
Now, we define homomorphisms

cff P Hi(24,(X) ;s G)V—Hen(X, A; G) for all k=1

by constructing chain maps, where G is an arbitrary coefficient group. For this
we use singular cubical homology groups as homology groups defined by J. P.
Serre, [2] p. 440.

Let (#*, ¢) be a singular cube of 24,.(X), then ¢ defines a map

¢ Ix w—X,
which gives a singular cube (Ix u*, ¢) of X. By the correspondence
e : (uf, 9)—>(Ixu*, @)
and by linearity we get a chain homomorphism
¢k Cr(24,7(X))—> Crri(X). -
From the following calculations
doc(u®, ¢) =d(Ixu*, 9)
= (é}( — 1) Ix (Xu* - 2uf) —0x w*+1xu", ?)
—(Ixdu®, @) — (0Oxu* @)+ xuf, §)
—cod(u®, ¢) — (0xu*, @)

1l

where (1x 4", @) is a degenerate cube and ¢(0x %*)C A, and from the fact that
if (4*, ¢) is degenerate cube, (Ixu*, ¥) is also degenerated, it is concluded
that ¢p induces the following homomorphism

et Hi(24,5(X) 3 G)—> Hrri(X, A ; G).

LemMMa 1. Let (X, %) be p-connected for p=1, and let (X, A, %) be g-con-
nected for q=1. Then

i) c¢& are isomorphisms onto for B<p+q—1,

ii) cpiq ts a homomorphism onto.

Proof. We consider the following diagram
h* 2 Do s
Hpi o 4, 2(X)) 25 Hpo( 2.4, x( X)) 25> Hpr o ( X) = Hprg-1(24, 2,0 X)) > . . .

i c;+q . I)_p.;k - R (* - ¢ c;+q—1 .
Hprg-1(X, A) 25 HprglA) 25 HpolX) 25 Hpg(X, A) 25 ...
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.. -:"-)HI(I-QA,J:“(X))—%Hl(QA,X(X))—‘)Hl(X)-——)O.
def R Q
ce— H(X, A) — H(A) — H/(X)—0.
Let
(uiﬂ, ‘,-") (S Ci+1(.QA,x(X))
be given, then we have
fop(u'*!, @) = (0x u'™", §) € Cirr(A) C Ciri( X),
Pe(ut @) = (1xu't, g)e Cin(X),
dIxa'*, @)= — (Ixdu'™, @) — (Ox ', )
+ (1 x#t @),
This proves
i*opsd = %o pf. (a)
Next, given
(', )& Ci(QA,x,(X)),
then we have
2oc(u’, ©) =d(Ixu’, ¢)
= —cod(u', ¢) - (0xu’, @)
= —psohla’, ©) —codlu’, ¢).
Thus the identity
o oc* = —pton* 8
is established.

By J. P. Serre, [2] p. 469, we get the following equivalent homology se-
quences :

}Iiﬂ(-QA,x,,(X))-——-)f{iﬂ(-QA,x(X))—)I{Hl(.QA,x(X), nQA,xo(X))
Q 2? N pi*
H;i1(84,2,( X)) —>Hi+1(2.4,x(X)) —> Hi(X))

2 HA(@a2,( X)) —> Hi(24,x(X))
P R
25 Hi(Q4,5(X))—> Hi( 24, x(X))

for l=i=p+q—1, i.e., we have D" =0%op}" ",
We now consider the following diagram:

H;1(24,x(X), 24,4(X))

g/ . \a*
Hi(X) —’—‘—» }Ii(QA,xo(X))
]*\ el
}Iii'l(X: A)
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Let
2;( w1, 0) € Zina(Qa,x(X), 24,2,(X))

be given, then we have
U, 9)) =1 x4, §) € Zin(X),
a(;(::;‘-“, ¢i)) = 3duj’", ¢)) € Zi(04,5,(X)),
cod(Sh™, ¢7)) = SIx duij™, F) € Zini( X, A).
Consider the following chain
2Ix ", 7)) € Cinal X),
we have

ASIxuit, @) = = S(Ixauit’, §5) — 0x uf™, §7) + D1 x u™, &)
J 2 2 J

I

— (coa—p) (™, ¢)) = 20X ui™, F)),
J J

where E(OXu'}”, ¢;) € Ci+1(A). This proves
J

j*°p§*=c*°a*, (T)
so that

c¥o D) = o * (0)
has been established.

(a). (8) and (0) show that it holds some commutativity or anti-commutativity
in each tetragon of the firstly mentioned diagram. As ps is isomorphism onto
by (¢) and as ¢* is isomorphism onto induced by identity map, by using “five
lemma,” we get the first conclusion of this lemma.

(a), (8) and (r) show that the following diagram is commutative or anti-
commutative :

ok

Hpq+1(24,x(X), 24,2( X)) Hp+q(84,2(X))
{ p;,*p-raﬂ e \ Cz(+q
Hpiqr(X) AN Hpign(X, A)

jr*

I B2, (XS Hyo o 20, 2(X), 24,2, (X))
o R DS, pra " 8Dt pra
e Hp+q(A) —_ Hp+q(X).

By J. P. Serre, [2] Chap. III prop. 5 cor. 1 p. 469, we have
(e) Pt¥s+q is an isomorphism onto, and Di*piq+1 is @ homomorphism onto.

Then, by using a “partial conclusion of five lemma,” we get the second con-
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clusion of this lemma. (ged.)

As a collorary of this lemma, we can easily prove the Hurewicz theorem
in the relative case.

Lemma 2. Let (X, A, B, %) be a triple, then
mi{24,2(X), 28,2(X), e)=mi(A, B, %)  for all ix1.

Proof. Let us consider the following diagram

.. .—)ﬂi(.QA,xo(X))—j—’—)ﬂ'i(g,q,xo(X), .QB,x,,(X))—?:)Z'{-l(-QB,xD(X))
Q kg Vs _ Qka
e (X, A 2 @A, B L z(X, B)

LAV TING o) B
) Xk
X, A)> ..
.. "-)HI(QA,XU(X))-)ﬂl(QA,xD(X)’ QB,xO(X))——> WO(QB,xa(X))—-‘)Fo(g,tl,xo(X )),

QR 2 QR Q
co— m(X, A) — m(A, B) — m(X, B) — m(X, A),

where the upper sequence is a homotopy sequence of the pair (2.4,,(X), 25 (X))
and the lower sequence is a homotopy sequence of the triple (X, A, B, xy). k,
and kp are canonical isomorphisms and ps denotes also the homorphism induced
by the projection ps.

Firstly, we prove that (%4, ps, kg) is a homomorphism of the sequences,
i.e., that 0ok = psoj!, tops= kpod’, jokg=ksot'.

The identity jokp= k4ot is obvious.

Let a € 7i(24,5,(X)) be given such that a map 1 : (E', E')—>(24,5(X), €
represents a, then

kiof=F: (E'x1, E'x0, E'x1U E'xI)—(X, A, %)
is defined by f canonically. The map
dokaof =FI(E'x0, E'x0)—>(A, ) C (A, B)
is identical to the map psoj’f, which proves the identity
Ooks=psoj.
Secondly, if B € 7i(24,7(X), 25,4(X)) is represented by a map
g: (E7'X I, E™'%0, E'X1U EF ' % I)—> (24, x,(X), 25,5(X), e),

g defines canonically a map
g (E7'%IXI, E7'xIx 0, E7'x0x 0,
E7'%1IxIPUE ' XIxV U E ' xIxI)—>(X, A, B, x,).
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Then iopscg and kzed'og are the following restrictions of g respectively :
iopsog=g (E % Ix0, E'%0x 0, B 'x1x0 U E'xIx0)
—>(4, B, x) C (X, B, xy),
kpod'og=g| (BT x0x I', ET'x0x (¢, E'x0x 1 U E'x0x I')
—(X, B, x,).
A homotopy between two maps zcpscg and kz°d'°g will be given in (E'!
> IxI') as follows:
Co(E- X Ix 1) — EI (E’:><t><20t) 0=0=1/2,
SHE™'x(2-20)txt) 1/2=0<=1.

This proves the identity
ioﬁs = kB"a’.
It follows that (&4, ps, kp) is a homomorphism of the sequences. Since &,
and kp are isomorphisms and since (k4, ps, k) is a homomorphism of the se-

quences it is concluded in virtue of “five lemma” that ps also is isomorphism.

(g.e.d.)

Let (X; A, B, %) be a triad, then (Qx,x(X) ; 24,x(X), 2p,(X), €) is

also a triad, where 24,%,(X) N 25,£,(X) = 4.5,%(X). The following lemma can

be proved easily by considering homotopy sequences of each triads and by the
above lemma and by “five lemma.”

Lemma 3. Let (X ; A, B, xo) be triad, then
(X A B, x)=aiQu,x(X) 5 24,(X), 25,x(X), ) for all ix2.

Lemva 4. Let (X5 A, B, x0) be a triad such that
X=nt A)UUnt B), and let (A, A\ B) be n-connected (nx1), then (X,
B) is n-connected.

Proof. Let a € n(X, B) be represented by a map
i (E™ E™ J"hH—5(X, B, x),

where m=n. If we put U=f""(Int A) and V=f"'(Int B), then {U, V} is an
open covering of E™.

We subdivide E™ simplicially such that the mesh of this subdivision is
smaller than the Lebesgues number of {U, V}. Let K and L be maximal
subcomplexes contained in U and V respectively. Let us put L=L,+E™"
+J" ' and M =KL, then we have K\JL =E™ Let

g: (K, M)—>(A, ANB)

be a restriction of f. As K is m-dimensional, m<n, and as (A, AN B) is n-
connected, g is deformable into A N B relative to M. Denoting this deforma-
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tion by g, we have
g‘) =g9
s(K)CA N B,
g\M=g\M for 0=t=1.
We define a deformation f: of f as follows:

filK=g for 0zt <1,

StlL=fIL for 0=t=1.
This gives a deformation of f into B relative to L, which establishes the lemma.
(qe.d.)

2. Proof of the triad excision theorem of Blakers and Massey.
Now we proceed to prove a theorem of A. L. Blakers and W. S. Massey,
[11 p. 192, in case m, n=2. The theorem is stated as follows.

TueoreMm. Let (X ; A, B, %) be a iriad which satisfies the following con-

ditions :
(@) X={(Int A)U(Int B):
(b} (A, A\UB) is m-connected, m=2, and (B, AN B)

is m-connected, n=2;
then the triad (X ; A. B) is {m+ n)-connected.

A triad with the condition (a) is said to be proper by a denomination of
S. Eilenberg and N. E. Steenrod, [3] p. 34. From Lemma 4 (X, A) is n-con-
nected, n>2, and (X, B) is m-connected, m 2. Therefore 2x,x(X), 24, x(X),
2p,x(X) and 24.p,x(X) are all arcwise connected. If (X ; A, B, %) is proper,
it is obvious that (2x,x,(X) ; 2.4,%(X), @5+(X). e) isalso a proper triad. Thus,
from Lemma 3 it is sufficient for us to consider the triad (2x,x(X); 24,x(X),
Qr,«(X), e) instead of the given triad. As £y,z(X) is contractible, it is suf-
ficient to prove the theorem in a special case where X is contractible.

Proof. As (X, A) is n-connected from Lemma 4, and as X is contractible,
A is (#—1)-connected. Thus, by Lemma 1 it is seen that

(1) cf 1 Hi(Qu4np,x(A); ZY=H;1(A, ANB; 2)
for 0<igm+n-2,
(2) C;';Hn—l . Hm+n—1(ﬂAnB,x0(A) N Z)--—)Hmwx(A, ANB; 2)

is @ homowmorphism onto.

As (X, B) is m-connected and X is contractible, we have, from the same

Lemma 1,

(3) et Hi(Q5,x(X); Z)xHin(X, B; Z) for all £>0.
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From (1), (3) and from the excision theorem in homology theory we have
(4) o Hi(Q408,x(A) ; Z)=Hi(25,4(X); Z)
for 0<i=z=m+n-—2.

Next, we consider the following diagram. The commutativity of this dia-
gram is easily seen:

7 ,
Hm+n-1(9,4,,3,xo(A) 3 Z) mr"‘:IEni»n—x(.Qn,x,,(X) 3 Z)
{ C;';Hn—l QR C:r::n—l

Huin(A, ANB; 2) ™" Hun(X, B; Z)

Since em.n is an excision isomorphism, and since cim:»-1 is an isomorphism
by (2) and since cmin-; iS 2 homomorphism onto by (2), we have

(5) byonot Hpin-i{R405,x(A) 3 Z)> Hnin-1(2n,x(X) ; Z)

is a homomorphism onto.

By (4) and (5), and by considering the homology sequence of the pair
(24,+(X), Raon, +(A)) we can prove

(6) Hi(98,4(X), 2405,x(A); Z)=0 for 0<i€m+mn-—-1.

From (6) and from the Hurewicz theorem in the relative case where

7 (20, (X)) =, 7 La0p,x,(A)I=T, (2p,5(X), Lunny(A), e) is (m+n--1)-con-
nected. This is equivalent to the fact that (X ; A, B, xy) is (m+ n)-connected.
(q.e.d.)

In an analoguous way as above we can also prove the theorem correspond-
ing to the case where m=2, n=1, and (A, AN\ B) is {m+1)-simple. But it is
unnecessarily too long for us to put down here the proof, so that it is omitted.

We can also prove quite analogously as above a generalization of the triad
excision theorem, which has been announced by J. C. Moore [4].
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