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Abstract

In this paper we introduce and study the notion of dual continuous (d-continuous) modules.
A decomposition theorem for a d-continuous module is proved; this generalizes all known
decomposition theorems for quasi-projective modules. Besides we study the structure of
d -continuous modules over some special types of rings.
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1.

Bass (1960) proved a decomposition theorem for projective modules
over perfect rings. Later Wu and Jans (1967) gave the structure of finitely
generated quasi-projective modules over semiperfect rings, which was used
by Koehler (1971) to prove a structure theorem for quasi-projective modules
over perfect rings. The purpose of this paper is to show that, to some extent,
these decomposition theorems can be obtained by intrinsic properties of the
modules themselves, and are independent of the ring involved. Let M be a
module over any ring R satisfying the following conditions:

(I) For any submodule A of M, M = M, ® M2 such that MXCA and
A n M2 is small in M2,

(II) If for any submodule N of M, M/N is isomorphic to a summand of
M, then N is a summand of M.

A ring R is perfect if and only if every quasi-projective R -module satisfies (I)
and (II) (Theorem 2.3). A module satisfying (I) and (II) is called dual
continuous (d-continuous). Example 2.6 shows that a d-continuous module
over a perfect ring need not be quasi-projective, and Theorem 2.3 shows that,
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[2] Generalizations of decomposition theorems 497

in general, a projective module need not be d-continuous. Let M be a
d-continuous module. Lemma 3.6 shows that for any two summands A and B
of M, if A + B is a summand, then A 0 B is also a summand. This result is
then used to show that M is perfect, in the sense of Miyashita (1966).
Theorem 3.10 gives the structure of the endomorphism ring of M. If
M = N 0 K, then Proposition 4.1 shows that any homomorphism
</>: N —> K/C can be lifted to a homomorphism i//: N —» K. As an immediate
consequence it follows that if N x N is d-continuous, then N is quasi-
projective. In Theorem 4.7, it is proved that M = N + N' where N' is a
summand of M with RadN ' = N ' and N = X , 6 i 0 A , where Af is cyclic
indecomposable, the sum of any finitely many A,'s is a summand of M, and if
A, is not quasi-projective, then A, is not isomorphic to A, for j ^ i G l . In
Section 5, we study the structure of d-continuous modules over some special
rings. Theorem 5.4 gives the structure of a d-continuous module over perfect
rings. Theorem 5.5 shows that a torsion abelian group is d-continuous if and
only if it is quasi-projective.

All rings considered have unities and all modules are unital right
modules. Let M be a module. A submodule A of M is called small in M
(notation A CM) if A + B / M for every proper submodule B of M. The sum
of finitely many small submodules of M is small. RadM will stand for the
Jacobson radical of JVf. It is known that RadM is the sum of all small
submodules of M. If every proper submodule of M is contained in a maximal
submodule (for example if M is finitely generated), then RadM CM. A
submodule B of M is called a dual complement (d-complement) of A in M if
B is minimal with the property A + B = M. N is called a d-complement
submodule of M if N is a d-complement for some submodule K of M.
Miyashita (1966) called a module M perfect if for every pair of submodules N
and K of M with M = N + K, K contains a d-complement of N. M is called
continuous (See Utumi (1965)) if it satisfies the following conditions:

(a) Every submodule of M is large in some summand of M,
(b) If a submodule A of M is isomorphic to a summand of M, then A is

a summand of M.
A ring R is called (right) perfect (resp. semi-perfect) if every R-module (resp.
cyclic R -module) has a projective cover.

2.

In this section characterizations of perfect or semi-perfect rings in terms
of d-continuous modules, are established. The following two lemmas are well
known:
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LEMMA 2.1. Let M and N be modules. Let 4>: M —> N be an epimorphism
such that Ker$ is a fully invariant submodule of M. Then, if A is a summand
of M, 4>(A) is a summand of N.

LEMMA 2.2. Let (f>:M^>N be module homomorphism. If A and B are
submodules of M, then ACB implies <j)(A)C<))(B).

THEOREM 2.3. A ring R is (semi-)perfect if and only if every (finitely
generated) quasi-projective R-module satisfies the following conditions:

(I) For every submodule A of M, M = M,® M2 such that M, CA and
(M2n A)CM2.s

(II) Every exact sequence M —> M'—>0, with M' a summand of M, splits.

PROOF. Let M be a quasi-projective module and let M-^M'^>0 be an
exact sequence with M' a summand of M. Let e denote the natural projection
of M onto M'. Since M is quasi-projective, there exists a homomorphism
g: M —»M such that /g = e. But then fge = e, and so the sequence
M —> M ' ^ 0 splits. This shows that every quasi-projective module (without
any condition on the ring) satisfies condition (II).

Now, assume that R is (semi-)perfect and let M be a (finitely generated)
quasi-projective R -module. Let A be a submodule of M and let

O ^ > M ^ 0 and P-^M/A^Q

be projective covers. Let TT denote the natural projection of M onto Ml A.
We have the row exact diagram

Since v is onto, we get a splitting epimorphism h : Q —»P. Thus

Q = Q,(BO2 with Q, = Kerh and Q: = P.

Further O . C K e r ^ and (Q2 n Ker7r^)CO;. Let ^(O.)=M,, i = 1,2. Since
M is quasi-projective, Ker 4> is a fully invariant submodule of Q (Wu and
Jans (1967), Proposition 2.2). Then we get by Lemma 2.1. that M = M, 0 M2.
Since Qi C Ker TT</>.
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M, = (^(Oi)CKerTj- = A.

Also we have (M, n A ) C <j>(Ker TT(/> D Q2). Then since (Q2 n Ker TT4>) C O2,
we get by Lemma 2.2,

(M, D A)C<f>(Ker7T(|) n Q2)C4>(Q2) = M2.

Hence M satisfies condition (I).
Conversely, assume that every (finitely generated) quasi-projective mod-

ule satisfies condition (I). Let M be any (finitely generated) R -module. There
exists an epimorphism F^M where F is a (finitely generated) free R-
module. As F satisfies condition (I), F = F,Q)F2, where

F, CKera and (F, D Ker a) CF2.

Let a denote the restriction of a to F,. Then it is obvious that F2 —• M —> 0 is a
projective cover. Thus R is (semi-)perfect.

The proof of the above Theorem yields the following

COROLLARY 2.4. A ring R is semi-perfect if and only if RR satisfies
condition (I).

Conditions-(I) and (II) were found to be the dual to the analogous
conditions for continuous rings studied by Utumi (1965) and continuous
modules studied by Mohamed and Bouhy (1977). So we give the following

DEFINITION 2.5. A module M is called dual continuous (for short
d -continuous) if M satisfies conditions (I) and (II) stated in Theorem 2.3.

Theorem 2.3 raises the question whether d-continuous modules over
perfect rings are quasi-projective. The following example rules out this
possibility.

EXAMPLE 2.6. Let K be a Galois field having a proper subfield F.
Consider the matrix ring

R - I
M o F

2 = L o oj -

Let

e, ,= [J °0] and
Let V be any proper subspace of KF, and let M = euR/ei2V. Then we find
that e M R->M—>0isa projective cover. But since e , 2 V^ e,,A for any ideal
A of R, M is not quasi-projective (Wu and Jans (1967), Theorem 3.1).
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However, M is obviously d-continuous. Thus M is an indecomposable
d-continuous module over an artinian ring R, which is not quasi-projective.

By Mohamed and Bouhy (1977), every quasi-injective module is continu-
ous. The dual of this result is not, in general true. This can be easily seen by
Corollary 2.4. In fact Zz, where Z is the ring of integers, is a projective
module which is not d -continuous.

3.

In this section some general results on d-continuous modules are proved.
We show that any d-continuous module is perfect in the sense of Miyashita
(1966). Further the structure of the endomorphism ring of a d -continuous
module is given.

The following Lemma is an immediate consequence of condition (I).

LEMMA 3.1. Let M be a module with condition (I). Then every submodule
A of M is of the form A = N © S, where N is a summand of M and S CM.

LEMMA 3.2. Let M be a module with condition (II). // A and B are
summands, then any exact sequence A —> B —• 0 splits. Any summand of M
satisfies condition (II).

PROOF. Let M = A © A' . Then

B=A /Ker/ = (A © A ')/(Ker/ © A ') = M/(Ker/ © A ').

Then Ker/ © A ' is a summand of M. Hence Ker/ is a summand of A. The
other part is obvious.

Hence we have

THEOREM 3.3. If every finitely generated R-module is d -continuous, then
R is semisimple artinian.

PROOF. Let A be a right ideal of R and let M = R/A. The right
R -module R © M is finitely generated, hence d-continuous. Then A is a
summand of R by the above Lemma. Hence R is completely reducible.

REMARK. If every cyclic R -module is d-continuous, R need not be
semisimple, as an example consider Z/(4), where Z is the ring of integers.

The following is due to Miyashita (1966).

LEMMA 3.4. Let M = A + B where A and B are submodules of M. Then
(i) B is a d-complement of A if and only if (B D A) CB.
(ii) If B is a d-complement of A and if N is a small submodule of M, then

(N (1B)CB.
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PROPOSITION 3.5. A summand of a d -continuous module is d -continuous.

PROOF. Let A be a summand of a d-continuous module M. A satisfies
condition (II) by Lemma 3.2. Let N be a submodule of A. Since M is
d -continuous, M = M, ©M2 where M,CN and (M2 fl N)CM2. Now

A = A fl (M, © M2) = M, © (A n M2).

Since A D M2 is a summand of M and (M2 n N)CM, we get by the above
lemma [(A n M2)n (M,n N)]C(A n M2), that ?s [(A n M2) D N] C(A n
M2). Hence A satisfies condition (I). Therefore A is d -continuous.

LEMMA 3.6. Let M be a module with condition (II). If A, B and A + B are
summands of M, then A D B is a summand of M ; further A + B = A © B' for
some summand B' of B.

PROOF. Let N = A + B. Then N satisfies condition (II) by Lemma 3.2.
Also A and B are summands of N. Let N = B © C for some submodule C of

N. Now

CsJV/B =(A +B)/B s A/(A f l8) .

Hence A D B is a summand of A by Lemma 3.2, and hence a summand of M.
Let B = (A n B) © B'. Then A +B = AQ)B'.

PROPOSITION 3.7. A d -continuous module M is perfect (in the sense of
Miyashita), and every d-complement submodule of M is a summand.

PROOF. Let M = N + L for submodules N and L of M. We will show
that L contains a d-complement of N. By condition (I)

M = A © C ; A C N and ( N n C ) C C .

Thus N = A © ( N n C ) . Also by Lemma 3.1, L=BQ)S, where B is a
summand of M and SCM. So thats

M = N + L = A + B + ( N n C ) + S .

As ( N H C ) + S is small in M, we get M = A + B. Then by Lemma 3.6,

M = A © B '

for some submodule B'CB CL. Define $: C —>B' as follows: given c S C,
write c = a + b' with a G A and b' G B', then let </>(c) = b'. Straightforward
calculations give

C) = N OB'.

But since NDCCC, we get by Lemma 2.2 that N H B ' C B ' . Now since
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M = N + B', B' is a d -complement of N by Lemma 3.4. This proves that M is
a perfect module.

Let D be a d-complement of a submodule K. By Lemma 3.1 D =
D'(£)S, where D' is a summand of M and SCM. Now,

Then minimality of D implies that D = D' . This completes the proof.

REMARK. Let R be a perfect ring which is not artinian. By Miyashita
(1966) every R-module is perfect. Then in view of Theorem 3.3, a perfect
R -module need not be d -continuous.

COROLLARY 3.8. If M is d-continuous, then M/RadM is completely
reducible.

PROOF. M is perfect by the above proposition. Then the result follows by
Miyashita (1966), Proposition 1.13. However, the corollary is also a consequ-
ence of Lemmas 2.1 and 3.1.

COROLLARY 3.9. Let M, be a summand of a d-continuous module M. If
M2 is a d-complement of M,, then M = M, @ M2.

PROOF. By Proposition 3.7, M2 is a summand of M. Since M = M, + M2,
Mi n M2 is a summand of M by Lemma 3.6. However, (M, D M2) CM2 by
Lemma 3.4, and so M, D M2 = 0.

THEOREM 3.10. Let M be a d-continuous module. Let H = HomR(M, M)
and J denote the Jacobson radical of the ring H. Then

(i) HIJ is a (von Neumann) regular ring.
(ii) J ={h <EH:lmhCM}.
(iii) Idempotents modulo J can be lifted.

PROOF. Let I = {h G H: Im h C M}. It is easy to check that J is an ideal of
H. Let A G /. Then ImA CM. Since

s
ImA

we get Im(l + A) = M. Then by Lemma 3.2,

M = Ker(l + A ) © M '

for some submodule M' of M. So that (1 + A) is right invertible. Since I is an
ideal, A G J and hence I CJ.

Let h be an arbitrary element in H. Then by condition (I), there exists an
idempotent e G H such that
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eM ChM and [(1 - e)M n hM] C ( l - e)M.

Hence eh : M —> eM is an epimorphism. Again by Lemma 3.2, Ker(eh) is a
summand of M. Write M = Ker(eh)® T for some submodule T of M. Then
the restriction of eh to T is an isomorphism onto eM. As eM is a summand,
the inverse isomorphism of eM onto T may be extended to an element d EH.
Hence fleh = 1,. Then for every t E T

(h - h d e h ) ( t ) = h ( t ) - h ( d e h ( t ) ) = h ( t ) - h ( t ) = 0 .

And for every x 6 Ker(eh)

(h -h0eh)(x) = h(x).

This proves that

Im(h -hdeh)Ch(KeT(eh)).

Now h (Ker(eh ))C[( l -c)MnftM]CM, Thus Im(h - hBeh) C M, and hence
(h - h6eh)G I. This shows that H/I is a regular ring, so J Cl. Therefore
J = I. This proves (i) and (ii).

Let a be an idempotent modulo /. Then by (i), (a - a ! )MCM. Now
(a - a2)M = aM n (1 - a)M and M = aM + (1 - a)M. Then by 3.^ and 3.9,
there exist orthogonal idempotents g and / of H such that

gMCaM, / M C ( 1 - a ) M and gM©/M = M.

Since fM C(l - a)M, a/M C(a - a2)M C(l - a)M. Thus, for every m EM

(g - a)m = (g - a)(gw + fm ) = gm - agm - afm = (1 - a)gm - afm.

Hence (g - a)M C(l - a)M. Also gM CaM implies that (g - a)M CaM. So
that

(g-a)M C[aM n (1 - a)M] = (a - a2)McM.

Therefore (g — a)E J. This completes the proof.

COROLLARY 3.11. Let M be a d-continuous module. Then M is indecom-
posable if and only if HomR(M, M) is a local ring.

4.

The main purpose of this section is to prove a decomposition theorem for
d -continuous modules (Theorem 4.7). We also show that all known decom-
position theorems for quasi-projective modules over perfect rings are corol-
laries to this theorem.
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PROPOSITION 4.1. / / M © N is a d -continuous module, then for every
submodule A of N any homomorphism </>: M —» NIA lifts to a homomorphism
i//: M - * N.

PROOF. Let L = M © N. Define <£: L -> N/A by

<f> (m + n) =

where TT is the natural homomorphism of N onto N/A. Let X = Ker</>. Given
m £ M , 4>{m)= ir(n) for some n G N. Thus

Hence ( m - n ) G K , and therefore M C(K + N). Hence L = K + N. By
Proposition 3.7, X contains a d-complement P of N. Then

L = P © N

by Corollary 3.9. Given m G M , m = p + n with p G P and n G N, define
ip: M —> N by 41 (m ) = n. Then

Hence we have

COROLLARY 4.2. If M x M is d-continuous, then M is quasi-projective.

REMARK. The above proposition along with Example 2.6 shows that a
direct sum of d-continuous modules need not be d-continuous.

LEMMA 4.3. / / M is an indecomposable d-continuous module, then every
proper submodule of M is small in M; further if Rad M/ M, then M is cyclic.

PROOF. The result follows by Lemma 3.1.

The following is an example of an indecomposable d-continuous module
which coincides with its radical, and is not quasi-projective.

EXAMPLE 4.4. Let p be a prime number. Consider the discrete valuation
ring Z{p) = {alb: a, b integers such that b^ 0 and p does not divide b}. Since
Zlp) is not complete, the field Q of rational numbers is not quasi-projective as
Z(prmodule. Every proper Z,pl-submodule of Q is of the form p"Zip) where n
is an integer, and hence is small in Q. Consequently R a d ( Q ) = Q as
a Z(p,-module. Q is obviously an indecomposable d-continuous Z,pl-module.

Now, we prove

PROPOSITION 4.5. Let M be a d-continuous module. Let A be a cyclic
indecomposable summand and let M\ be a finitely generated summand of M.
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Then either M, + A is a summand ofMorM, + A = M, 0 yR with y E Rad M
and A is isomorphic to a summand of M,.

PROOF. If A CM,, then M, + A = M, and we have nothing to prove. So
assume that A it M,. Let M = M, © M2 for some submodule M2 of M. Then

M, + A = M,©[(M, + A)H M2].

So that

(M, + A) n M2 s (M, + A )/M, s A /(A n M,).

Hence there is an epimorphism <f>: A —>(M, + A) Pi M2. Let x E
[(M, + A ) n RadM], and write x = x , + x2, with x ,EM, and
x2E[(M, + A)nM;] . Then it is clear that XiERadM,, i = 1,2. Let
x2 = <f>(a) for some a E A. If a E Rad A, then x2 = <£(a)E
Rad[(M, + A)nM2]CRad(Ml +A) . Hence

x = x, + x2 E [Rad M, + Rad(M, + A)] = Rad(M, + A).

Now we consider two cases:
(i) For every x E [(M, + A ) n RadM], x =x, + <f>(a) with a ERadA.

Then

[(M, + A) n Rad M] C Rad(M, + A) C[(M, + A) fl Rad M].

Hence Rad(M, + A) = [(M, + A) n Rad M). Now by Lemma 3.1, M, + A =
P + S, where P is a summand of M and SCM. Then

s
S C[(M, + A ) n R a d M ] = Rad(M, + A).

As M, + A is finitely generated, S C (M, + A). So that M, + A = P, a sum-
mand of M.

(ii) For some x E (M, + A)fl Rad M ], x = x, + <f> (a), with a £ Rad A.
Then by Lemma 4.3, aR = A. Hence

(M, + A) n M2 = 4>(A) = <t>(a)R.

Let y = 4> (a). Then y £ Rad M2 C Rad M, and

M, + A = M, © [(M, + A) D M2] = M, © yR.

Let M = A © B for some submodule B of M. Then

M = A © B = M, + A + B = M, + yR + B = (M, + B) + yR.

Since yR C M, M = M, + B. Hence

A s MIB = (M, + B )/B = M,/(M, n B).
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As M, and B are summands of M, M, D B is a summand of M by Lemma 3.6.
This completes the proof.

COROLLARY 4.6. Let A and B be nonzero cyclic indecomposable sum-
mands of a d-continuous module M. If A ( l f i / 0 , then A = B.

PROOF. We may assume that A/ B. So A D B / A and hence
(A OB)CA by Lemma 4.3. By the above theorem, either A +B is a
summand or A s B. If A + B is a summand, then by Lemma 3.6, A D B is
also a summand of M. But then A D B = 0, a contradiction. This completes
the proof.

THEOREM 4.7. Let Mbe a d-continuous module. ThenM = N + N' where
N' is a summand of M with Rad N' = N' and N = 2 i e / ® A, where A, is cyclic
indecomposable, the sum of any finitely many Af 's is a summand of M, and if
Ai is not quasi-projective, then A, is not isomorphic to A, for i^ j G I.

PROOF. If Rad M = M, we have nothing to prove. So assume that
RadM?^ M. Hence M contains a maximal submodule T. By Proposition 3.7,
T has a d -complement T. Obviously, T" is indecomposable and Rad T"V T'.
Then by Lemma 4.3, T' is a cyclic module. Thus M has nonzero cyclic
indecomposable summands. Let {AK: A £ A} be the set of all cyclic indecom-
posable summands of M. By Zorn's Lemma we can find a maximal subset K
of A with the property that 2/(=jA, is a summand of M for any finite subset /
of K. Let N = 2keKAk. Again by Proposition 3.7, N has a d-complement N'
which is a summand of M. We claim that Rad N' = N'. Suppose not. Since N'
is a d-continuous module by Proposition 3.5, then the above argument shows
that N' contains a nonzero cyclic indecomposable summand A. Thus A is also
a summand of M. Since N' is a d-complement of N, (N D N')CM by Lemma
3.4. Thus A £ N and so A ^ Ak for any k E K. Maximally of K then implies
the existence of a finite subset J of K such that {1leJA,)+A is not a
summand. Hence by Proposition 4.5, we get

, A ) + A= Z A©yR

with y G Rad M. Hence N + A = N + yR. Now N' = A ® B for some sub-
module B of N'. Then

Since yRCM, M = N + B. But then minimality of N' implies N' = B. Hence
A = 0, a contradiction. Thus Rad N' = N'.

Now, we show that N is a direct sum of a subfamily of {Ak: fc G X}. By
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Zorn's Lemma, we can find a maximal subset I of K such that 2i6,Aj is
direct. Suppose that for some k £ K , AkiZ!(2ieiAi). Let J be a finite subset of
I. Then [Ak n (2,SJA,)]§ Ak. So that [Ak n(S)EJAf)]CM by Lemma 4.3. By
our choice of K, (2,<=jA,) and At +(2/ejAj) are summands of M. So that
Ak Pi (S,,=j Aj) is a summand of M. Hence Ak n (S/6JA() = 0. This shows that
Ak +(Si e I©A,) is direct, which is a contradiction to the maximality of /.
Hence Ak C(2 i e l© A,) and so N = S i e l © A,.

The last statement of the Theorem follows by Corollary 4.2.

COROLLARY 4.8. If M is a d-continuous module such that every proper
submodule is contained in a maximal submodule, then M is a direct sum of
cyclic indecomposable modules.

PROOF. Using the notation in Theorem 4.7, we find that N' = 0.

COROLLARY 4.9. If M is a d-continuous finitely generated module, then M
is a direct sum of cyclic indecomposable modules; moreover HomR(M, M) is a
semiperfect ring.

PROOF. Let H = HomR(M, M). Then H has a bounded number of
orthogonal indecomposable idempotents. Then by Theorem 3.10, H/RadH
is semisimple artinian. The result now follows by Bass (1960).

COROLLARY 4.10. A projective d-continuous module is a direct sum of
cyclic indecomposable modules.

PROOF. Using the notation in Theorem 4.7, N' is a projective
module. Thus RadN'= N" implies that N '= 0 by Bass (1960).

COROLLARY 4.11. Let R be a perfect ring. Then every quasi-projective
R-module M is a direct sum of cyclic indecomposable modules.

PROOF. By Theorem 2.3, M is d-continuous. Also by Bass (1960)
RadBj^B for every nonzero R-module B. The result now follows by
Theorem 4.7.

5.

In this section we determine the structure of d-continuous modules over
some special rings. We start with the following

PROPOSITION 5.1. Let M be any module and A, B be two small sub-
modules of M such that M/A ©M/B is d-continuous, then M/A = M/B.

PROOF. Let 4>: M/A -+M/(A + B), and IT: M/B -^M/(A + B) be
natural homomorphisms. By Proposition 4.1 there exists a homomorphism
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17 :M/A—> M/B such that <j) = 7717. Then Im TJ + Kervr = M/B and
Ker 77 CM IB give Imt) = M/B, so that 17 is an epimorphism and by Lemma
3.2, itSsplits. However KerTJ C(A + B ) / A C M / A . Hence Kerrj =0 . This
proves that MIA = M/B.

The following corollary is an immediate consequence:

COROLLARY 5.2. / / M , © M 2 is d-continuous and if Mi and M2 have
isomorphic projective covers, then Mi = M..

LEMMA 5.3. Let R be a right perfect ring e,, e2 be two indecomposable
idempotents of R such that eiR/e,A, Q)e2R/e2A2 is d-continuous for some
right ideals A,, A2 of R, then there exists an ideal B of R such that
e,B = etRe,A, and e2B = e2Re2A2.

PROOF. Without loss of generality we can suppose that A ,CRadR,
A 2 CRadR. Consider any e2xe,G e2Re,. Define

by

4>(etr + e,A,) = e2xe,r + (e2A2 + e2xe,A,).

Let 77: e2R/e2A2^>e2R/(e2A2 + e2xeiA,) be the natural homomorphism. By
Proposition 4.1 there exists a homomorphism T; : e<R/e,A,—>e2R/e2A2 such
that <p = 77T). Let

17 (e, + e,A,) = e2ye, + e2A2.

Then (e2xe, — e2ye,) G (e2A2 + e2xe,Ai) and e2ye,At Ce2A2. So for some a, £
A, and a 2 E A 2 , e2xe,(l + a,) = e2ye, + e2a2. Hence

e2xe,(l + a,)A, Ce2ye,Ai + e2a2A, Ce2A2.

As Ai is quasi-regular (1 + a,)A, = A,. Therefore e2xe,A, Ce2A2 and hence
e2Re,A, Ce2A2. Similarly e,Re2A2Ce,A,. Let B = Re,A, + Re2A2 then B is
an ideal of R such that e,B =e ,Re ,A] , e2B = e2Re2A2.

THEOREM 5.4. Let M be a d-continuous module over a perfect ring R.
Then M = N © N,(BN2Q) • • • © N, such that

(a) N is quasi-projective.

(b) N,,N2, • • \ N, are indecomposable and d-continuous, such that none
of N, is quasi-projective, for any ;V i the projective covers of N, and N, are
non-isomorphic, further given any indecomposable summand K of N, N{ and K
are non-isomorphic.

(c) There exist right ideals A,,A2,---,A, of R, an ideal B of R, and
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indecomposable idempotents, e,,e2,- • -,e, with the following properties:
(i) N, se,R/e,A,, e.Re.A, = e,B.
(ii) For any indecomposable summand K of N, K =eR/eB for some

indecomposable idempotent e of R.

PROOF. By Corollary 4.8

M = 2 © No

where Na are indecomposable d -continuous modules. By Corollary 5.2, if any
two Aa's have isomorphic projective covers, then these AQ's are isomorphic
and quasi-projective. Consequently, using Koehler (1971), Theorem 1.10, we
can write

M = N © N , © N 2 © - - - © N ,

where N is quasi-projective and N, satisfy (b).
Since R is perfect, N, = e,R/eiA, for some right ideal A, of R. By

Koehler (1971), there exist finitely many indecomposable orthogonal idempo-
tents /i,/2, • • -,/u and an ideal C of R, such that / ,R / / ,C©- • -©/UR//UC is
isomorphic to a summand of N and any indecomposable summand K of N is
isomorphic to f,R/f,C for some j = 1,2, • • •, u. Now

/ , R / / , C © •••©/„« //UC © e,R/e, A,© • • • © e,R/<?,A

being isomorphic to a summand of M, is d-continuous by Proposition 3.5.
Lemma 5.3 shows that there exists an ideal B of R such that

fC=f,B for i = l,2,---,u

and e,B = e,Re,A, for ; = 1, 2, • • •, f. This proves (c).
After this we determine the structure of a d -continuous torsion abelian

group. We prove the following:

THEOREM 5.5. Any torsion abelian group is d-continuous if and only if it
is quasi-projective.

PROOF. Let G be a torsion abelian group. Without loss of generality we
can suppose that G is a p -group for some prime number p. If G is
quasi-projective, then by Fuchs and Rangaswamy (1970) there exists a
positive integer n, such that G is a direct sum of copies of Z/(pn).
Consequently G is a quasi-projective module over the artinian ring Z/(p")
and hence by Theorem 2.3, G is d-continuous.

Conversely let G be d-continuous. Consider the quasi-cyclic p-group
(Fuchs (I960)) which we denote by Zp-. For any proper subgroup K of Zp-,
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Zp- = Zp'/K. But K is not a summand of Zp«, hence Zp« is not d -continuous.
Consequently G is a reduced abelian group. By Fuchs (1960), Corollary 24.3,

where C, is a cyclic group of order say p". Again G, being d-continuous gives
Gi = G2© C2 where C2 is a cyclic group of order say pm. We claim m = n. On
the other hand let m > n. By Proposition 3.5

is d-continuous. Now (P")/(Pm) is such that Z/(P")/((P*)/(P"))sZ/(P"),
but (P")/(Pm) is not a summand of ZI{Pm). This is a contradiction.
Consequently n = m. Then by Fuchs (1960), Theorem 24.5, we get G is a
direct sum of copies of Z/(Pn). Consequently, by Fuchs and Rangaswamy
(1970), G is quasi-projective. This proves the theorem.
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