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Abstract. An elementary proof is given of Krengel’s stochastic ergodic theorem in
the setting of multiparameter superadditive processes.

1. Introduction

The stochastic ergodic theorem due to U. Krengel [4] asserts that if T is a linear
contraction of the L, space of a probability space and if fe L, then the Cesaro
averages

n N f+Tf+ -+ T"Yf)

converge in probability. Our purpose in this paper is to give an extension of this
result to multiparameter superadditive processes (theorem (3.12)). That the
existence of ‘exact dominants’ [1] implies the one-parameter extension to the
superadditive case was shown by Fong [3]. The multiparameter additive case was
also proved recently by Krengel [5]. Our proof is by a truncation argument already
used by us earlier [1], depending only on certain properties of L, as a Banach lattice.
The extension to Banach lattices is however less elementary, and we hope to present
it in a separate article.

Note that the definition of superadditivity used in this article is the one given by
Smythe [6].

An apparently new result of some independent interest is theorem 2.4, which
gives the decomposition of the space into a ‘positive’ and a ‘null’ part for an arbitrary
family of positive contractions on L;.

2. Basic Results

Consider the real L, space of a measure space (X, %, u). Functional relations below
are often to be understood modulo sets of measure zero. We will assume that u is
o-finite. This is no loss of generality, as we are going to deal only with countable
classes of functions. The characteristic function of a set Fe % is xz The cone of
non-negative functions in L, is denoted by L{. By a contraction on L, we mean a
linear operator T:L,;-> L, with ||T||=<1. An operator T:L,~ L, is called positive
if TLT<L,.
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Definition (2.1). A sequence f,, in L, is said to converge stochastically to fe L, if
lim p(An{x||fu(x) = f(x)}>a})=0

whenever a >0 and whenever A € ¥ has finite measure. If « is a finite measure
then this is, of course, just convergence in measure.

Although this is the usual definition of stochastic convergence (c.f. [5]), we will
use a different formulation given in the following lemma.

LEMMA (2.2). Let f, be a sequence in L, and let fe L,. Then the following are
equivalent:

(1) f, converges to f stochastically;

(ii) lim, |||f.—fIA®] =0 whenever ¢ € Li.
Proof. Let g, =|f.—f|. Assume (i) and let ¢ € L], £>0 be given. Choose Aec F
with u(A) < oo such that

lxacol <e.
Choose 8 >0 such that {|yz¢| < £ whenever w(E) < 8. Choose ng such that u(A
B,) < 8 whenever n = n,, where
B, ={x|g.(x) > e(u(A)7'}.
Then
lgrAdll=<llxacdl+lxar5,81+|Xar5,c8:=3e  whenevern=no.

Conversely, assume (ii) and let A € %, with u(A) <00, and a >0 be given. If

B, ={x|g.(x)>a} and ¢=axa
then
au(AnB,)=|g.Ad

which shows that

lim u(An B,)=0. (]
If £, is a sequence in L] dominated by a fixed ¢ € Lj, then f, has a subsequence
that converges weakly in L,. If, in addition,

lim sup ||£,||> 0,

then this sequence can be chosen to have a non-zero weak limit. If f,. and ¢y are
two arbitrary sequences in Lj, then f, has a subsequence f,, such that

w-lim f, Adi = gi
exists for each k, where w-lim denotes the weak limit in L;. We omit the easy and
familiar proofs of these facts.

THEOREM (2.3). Let f, be a sequence in L such that
sup || fuf = M <.
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Then either f, converges stochastically to zero, or there is a non-zero g € LT such that
Tg = g, whenever T:L,~> L, is a positive contraction such that

h'l;n ”fn - Tfn" =0.

Furthermore, if the support of each [, is contained in a set E € ¥, then the support of
g is also contained in E.

Proof. Assume that f, does not converge stochastically to zero. Let ¢ € L be such
that

lim sup || f,A¢|>0.

We will assume, without loss of generality, that ¢ >0 a.e. on X. By passing to a
subsequence, if necessary, we may assume that

welim f,A(k¢) =ge and lim||f,~ fuA(ke)] = e

exist for each integer k=1, and that g, #0. Then lim, g, =g exists a.e. and in
L,-norm, as g, is a non-decreasing bounded sequence in L}. Hence g is a non-zero
function in L. It is also clear that if each f, has support contained in E then the
support of g is also contained in E. We will now show thatif T: L, > L, is a positive
contraction and if

h:n ”fn - Tfn” =0,

then Tg=g. Let
rn=f.A(k), un = (Tf,)A(kd)
and
fo=rk+sk Tf, = uk + vk,
Since || f, — Tf.|| > 0, the uniform integrability of (r% — u¥) implies that of (s —v¥),
hence we have
Irk —ukl|>0, |sk—vk}-0 as n - oo,
for each fixed k. Note that

ax =lim |54 =lim %]

is non-increasing in k and

a= li{n a, =0
exists. Given £ >0, find k such that

a—a<e and |g—gl<e

Then find !> k such that

T(k¢)<Ilp+h
for some he L] with ||h|| < e. Since r¥ < k¢, then

Trk <l +h.
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Now
Tf, = Trk + Tsk =ul + v},
shows that we can write
u,=(Tri—h,)+w, and v, =(Tsk—w,)+h,

where
O0<h,=TrE —(U AT )< Trk —(IpA T )< h
and
0=w,=TskAlul, —(uL ATr*]= Ts*.
Hence

lonl=NTsal—lwall+lh)>a  asn-co,
which implies that
lim sup ||, || =lim sup (| Ts, || +[|.]) — a,

<lim sup (||sx]|+]|A.]) — o

=aqr+e—a;<2s
Therefore
lim sup {lu,, — Tr[|<lim sup (||| +[|wa[) = 3¢

which shows that ||g,— Tg,|| <3¢ so that ||g— Tg| < 5=. 0

THEOREM (2.4). Let {T;}, ic I, be an arbitrary family of positive L, contractions.
Then there exists a unique (modulo sets of measure zero) partition of X into two sets
P and N such that

(i) thereis a g€ Ly such that T,g =g for all i € I and such that P is the support

of g: P={x|g(x)>0};
(ii) if f, is a bounded sequence in L such that

lim \fa— Tif\=0  foreachiel

then xnf, converges stochastically to zero.

Proof. We will obtain P as the largest set that supports an invariant function. Let
% be the collection of all sets G € ¥ that can be obtained as

G ={x|g(x)>0},

where geLj and T,g=g for all iecL Let v be any finite measure on (X, %),
equivalent to u, and let

a=sup {¥»(G)|G e ¥}
Let G, be a sequence in ¥ such that »(G,) = a. For each n, choose g, € L] such that
G,={x|g.(x)>0} and Tg,.=g. foralliel
We may also assume that ||g,[|=1. Then

g= 1 (1/2"),
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isanother functionin L} such that T;,g = g forall i € I and such that P ={x|g(x) > 0}¢
¢ satisfies v(P) = a. Let N=X —P. Then (i) is satisfied.
To see that (ii) is also satisfied, let f,, be a bounded sequence L] such that

lim||f,— T;f,|=0 foralliel

Let h, = xnf, and let T : L, > L, be defined as
Tif =xnTif, feL,,
which is a positive contraction for each i € I. We claim that
flh,— Tih,||->0 as n-co,
First observe that
XnTixpf=Tixpf=0  foranyfel,,
which follows easily from the fact that
lxef — (xef Akg)ll >0 as k> o0
and that
Ti(xef Akg) = kg.
Hence
”hn - T:hn ” = ”hn - T:hn - T:Xan II = ”Xan _XNTifn” = ”fn - ’Tlfn II =0

as n-o. Therefore, if h, does not converge to zero stochastically, then by the
previous theorem there is a non-zero he L] such that T:h=h for all ie I Since
each h, has support in N, the support of h is also in N. Now, if xpT;h =r;, then
implies that r,=0, since T; is a contraction. Hence T,h=~h for all i€l This a
contradiction because now the support of g+ h also belongs to % and its v-measure
is strictly larger than the v-measure of P.

To see the uniqueness, note that if ¢ € L{ is a function such that T;¢ = ¢ for all
i€ I, then the support of ¢ is contained in any set P such that N =X — P satisfies

(ii). In fact, in this case the constant sequence f, = ¢ satisfies the hypothesis in (ii)
and consequently ynf, = xn¢ must converge to zero'stochastically. O

Definition (2.5). The sets P and N obtained in theorem 2.4 will be called, respec-
tively, the positive and the null parts of the family {T}}.

3. Superadditive Processes

Let V be the set consisting of K-dimensional vectors v =(vy,..., vx) with non-
negative integer coordinates, and let e = (1, . .., 1) be the vector with all coordinates
equal to 1. If u, ve V, then [u, v) denotes the set

{Wlwev, U =W, < Uy, k=1,...,K}

and 7 (v) denotes the number of points in [0, v). If u, v € V, then uv will be defined
as the vector with coordinates

(uv)k = U .
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Finally, lim, denotes the limit as v, = c© for each k, independently of each other.
For each ve V, let T, be a positive L, contraction and assume that {T,} is a
semi-group:
T.T,=T., forallu,ve V.

If, in addition,
J TJd,u=de;u forallve V, forallfelL,,

then {T,} will be called a Markovian semi-group. For u,ve V, let
Si= Y T

wel[0,u)
and
Al =[m(u)]'Ss, if m(u)>0
A.=0 if w(u)=0.
If v=e then these are, respectively, the ordinary sums and the averages of the
semi-group over {0, u), and will be denoted as S, and A,. Observe that A, A, = A,,..
Let P and N be the positive and null parts of the family {7}, as obtained in § 2.
Let L,(P) be the set of L, functions with supports contained in P. Note that T,

maps L,(P) into L,(P) and the restriction of {T,} to L,(P) is a Markovian semi-
group. We need the mean ergodic theorem in the following K -dimensional form.

TueoreM (3.1). If fe L,(P) then lim, A,f exists in the L,-norm.

This is a direct consequence of the corresponding 1-dimensional form, which, in
turn, follows from the Kakutani-Yosida mean ergodic theorem.
Finally note that if fe L,, then lim, ynA,f =0 stochastically, in the sense that

lim ||| xnALfIAD=0 whenever ¢ L.

This follows from theorem (2.4), since
lim | T,A.f—A.f|[=0 forallve V.

Definition (3.2). A partition of a set E < V is called an admissible partition if it is
the common refinement of finitely many partitions of the form
(E n{w|w, <n}, En{w|w,>n}),
where k and n are integers and 1=k=K.
Definition (3.3). A function F: V - L, is called a superadditive process (with respect
to {T,}) if
Fo=z ¥ TuFiy

whenever {{u’, v')}}, is an admissible partition of [0, v). The function f: V- L,
defined as

fo=lm()'F,  ifw(v)>0

f,=0 if m(v)=0
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is called the average of F. If sup, ||f,|| <o, then F is called a bounded superadditive
process. If F, € Ly for each ve V, then F is called positive.

If both F and —F are superadditive then F is called additive. Note that F is
additive if and only if F,=S,h, where h=F,c L,. An additive process is always
bounded, and if k€ L] then S,h is also positive. Also, the sum of two superadditive
processes is again a superadditive process.

LeMMA (3.4). Any superadditive process is the difference of two positive superadditive
processes. If the original process is bounded then both of these positive processes are
also bounded.

Proof. Since {[u, u+ €)}, (0,5 is an admissible partition of [0, v), we have that
F,=S,F.,.
Hence F,— S, F, is a positive superadditive process. Then both
F, =(F,—S,F.)+S,F, and F,=S,F,
are positive superadditive processes and
F=F—F".
The boundedness is obvious. O

LeEmMMA (3.5). Let f be the average of a positive bounded superadditive process with
respect to a Markovian semi-group {T,} and let y=sup, ||f,|. Let 0<8<Yy, and u,
ve V be such that
Iflzy—8 and A=n(v)m(v+u)]'=1-(8/7).
Then the L,-distance between any two of the functions f,, f,.., T.f, is less than
4oy
y—8’

Proof. The set [0, v+ u) has in particular the following two admissible partitions:
one containing [0, v) as an atom and the other containing [, v + u) as an atom. Hence
O0<F,=<F,,, and 0=<T,F,<F,,,

because of the positivity of F. Therefore,
OSAfvSle-u and OSATufvva+u'
But
"Afv”=“ATuvaZA(Y_S)Z‘y_zs and “.fv-é-u”S‘Y-
Hence ||Af,~AT,f,|| =456 ie.
”fv - Tufv” S48/(1 _(8/7))
Also || foru— Af,||= 28 implies that
Iforu=Fll =28 +|If = Afl| =28 +(8/ y)(y—8) =38.
Similarly,
forn— Tufll S| foru = ATLNHITufo —ATL| <26 +(8/ y)(y—8)<35. O
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THEOREM (3.6). Let f be the average of a positive bounded superadditive process
with respect to a Markovian semi-group {T,}. Then, for each ¢ >0 thereisa ze V
such that

lim sup ”Avfz _fv” <&’

Proof. Let y=sup, ||f.| =1, and choose 8, 0 < & <1, such that 45/(1—8)<¢/8. Let
z€ V be such that 7(z) >0 and ||f,||> 1 — 8. Finally choose u’e V such that

m(uz)[m(uz+w)] '>1-6 whenever u=u®, wel0, z).
We claim that
lA.f.—fll<e  whenever v=u’z
First note that any v=u’z can be expressed as v=uz+w, where u=u’ and
we[0, z). But
|Auz+wh— AL h||<28|h|  forany hel,,
by a simple computation. Hence
[Auzfe = Auzsnfoll =28y <e/4.
To complete the proof it is now enough to show that
[Auefe = fuzsnll <3e/4

whenever u = u® and we[0, z). Since {{rz, (r+ €)z)},c[0..) 15 an admissible partition
of [0, uz), we have that

0=S.F,<F, or 0=A f.<f,,

noticing that 7(uz) = w(u)m(z). Hence 16 <||f.)|=||Aif.|=|f.-|=1 implies that

AL~ full <8<e/8.
Since [|f..]|> 18, we now apply lemma 3.5 to obtain

ITwfu: = fuall < €/8.
Hence, together with
IT AL — Tufiel < /8,

this gives

ITw AL, = full < e/4.

Taking the average over we[0, z), we then have
(AALL, — fl| = [|Auf. —full<e/4.
Then, again by lemma 3.5, we have that | f,. — f..+./ < £/8 and consequently,
[Auzfz — fuzewll <38/8<3e/4. u

LeEMMA (3.7). Let F be a positive superadditive process with respect to {T,} and
assume that P is the positive part of {T,}. Then xpF is also a superadditive process.

Proof. Let {{u’, v')}7_, be an admissible partition of [0, v). Then

XPFUEXP z TuiFvi—ui = Z XPTuiXPFvi—ui =Z Tu'XPFv'?ui'
i=1 i=1 1

https://doi.org/10.1017/50143385700002017 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002017

A stochastic ergodic theorem 343

Here the first inequality follows from the superadditivity of F, the second inequality
from the positivity of F (and T,/) and the equality from the fact that yxT, xph =0
forall he L, and ue V. O
Remark. Call a set Ac F an absorbing set for {T,}, if

Xx-aTxah=0 forallheL,, veV.
It is clear that the above proof shows that xy.F is superadditive whenever A is
absorbing and F is positive and superadditive.

Results close to the following were obtained by Derriennic and Krengel ([2, theorem
5.2]D.

LemMA (3.8). Let f be the average of a positive and bounded superadditive process
with respect to {T,} and let P be the positive part of {T,}. Then lim, xpf, exists in the
L,-norm.

Proof. Let f'= xpf and let T, be the restriction of T, to L,(P). Then {T,} is a
Markovian semi-group and f’ is the average of a positive bounded process, superaddi-
tive with respect to this semi-group. Then theorem (3.6) shows that for each £ >0
there is a z€ V such that

limsup |ALf, —full<e,

where A,f, are the averages with respect to T, equal to A,f;. Now lim, A.f}
exists in the L, norm, for each z€ V, by the mean ergodic theorem (3.1), since
f. € L{(P). Hence lim, f,, must also exist in the L,-norm. O

LeEMMA (3.9). Let f be the average of a positive superadditive process F with respect
to {T,} and let N be the null part of {T,}. Then lim, xnf, =0 stochastically if at least
one of the following conditions is satisfied:

(3.10) {T,} is a Markovian semi-group and F is a bounded process;

(3.11) F is dominated by an additive process; i.e. there is an he L, such that
F,<S,h for all ve V. o

Proof. If (3.10) is satisfied then for each £ >0 there is a ze V such that
lim sup ”Avfz —fv" <E&.

But lim, xnA.f. =0 stochastically, i.e.
lim ||[(xnA.f.)Ap||=0 foreach ¢ €L7.

Hence we obtain

lim sup ||(xnfo)Ad || <& forallpeLy.

Therefore lim, ynf, =0 stochastically. The proof under the assumption (3.11) is
clear, since

0= xnfo = xnAsh. ]

The positivity assumption in lemmas (3.8) and (3.9) can be removed easily. First,
since any bounded superadditive process is the difference of two positive and
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bounded superadditive processes, it is clear that lemma (3.8) and a part of lemma
(3.9), under the hypothesis (3.10), extend directly. To see that lemma (3.9) holds
under the assumption (3.11), assume that F, = S,h with he L,. Then

0<F,—S,F,=S,(h—F)

and lemma (3.9) applies to F,— S, F,. But it also applies to S,F, and S,F, and
consequently to S,F,. Collecting these results, we have the following theorem.

THEOREM (3.12). Let f be the average of a superadditive process F with respect to a
semi-group {T,}, ve V, of positive L, contractions. Let P be the positive part of {T,}.
Assume that at least one of the following two conditions is satisfied:

(3.10) {T.,} is a Markovian semi-group and F is a bounded process;

(3.11) there is an he L, such that F,< S,h for all ve V.
Then lim, f, = f exists stochastically; i.e. there is an f € L, such that

lim||f,~flA¢|=0  forall$eLi.

Furthermore, lim, xpf, = f in the L,-norm.

There is an obvious extension of this result to additive processes with respect to
semi-groups {T,} of general, not necessarily positive, L; contractions, assuming that
{T,} is dominated by a semi-group {T,} of positive L, contractions, in the sense that

|ITfl=TJfl forallfeL, wveV.

(Note that this is the case if the linear moduli of the generators of {T,} commute.)
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