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Abstract. An elementary proof is given of Krengel's stochastic ergodic theorem in
the setting of multiparameter superadditive processes.

1. Introduction
The stochastic ergodic theorem due to U. Krengel [4] asserts that if T is a linear
contraction of the Lx space of a probability space and if / e L , then the Cesaro
averages

converge in probability. Our purpose in this paper is to give an extension of this
result to multiparameter superadditive processes (theorem (3.12)). That the
existence of 'exact dominants' [1] implies the one-parameter extension to the
superadditive case was shown by Fong [3]. The multiparameter additive case was
also proved recently by Krengel [5]. Our proof is by a truncation argument already
used by us earlier [1], depending only on certain properties of Lx as a Banach lattice.
The extension to Banach lattices is however less elementary, and we hope to present
it in a separate article.

Note that the definition of superadditivity used in this article is the one given by
Smythe [6].

An apparently new result of some independent interest is theorem 2.4, which
gives the decomposition of the space into a 'positive' and a 'null' part for an arbitrary
family of positive contractions on Lx.

2. Basic Results
Consider the real Lx space of a measure space (X, ZF,^). Functional relations below
are often to be understood modulo sets of measure zero. We will assume that n is
tr-finite. This is no loss of generality, as we are going to deal only with countable
classes of functions. The characteristic function of a set F e %F is XF- The cone of
non-negative functions in L\ is denoted by L\. By a contraction on Lx we mean a
linear operator T:Li^L1 with ||T||<1. An operator T:LX^LX is called positive
if TLt^Li.
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Definition (2.1). A sequence /„ in Lx is said to converge stochastically to feLx if

limfi(An{x\\fn{x)-f(x)\>a}) = 0
n

whenever a>0 and whenever A e f has finite measure. If /x is a finite measure
then this is, of course, just convergence in measure.

Although this is the usual definition of stochastic convergence (c.f. [5]), we will
use a different formulation given in the following lemma.

LEMMA (2.2). Let fn be a sequence in Lx and let / e L i . Then the following are
equivalent:

(i) /„ converges to f stochastically;
(ii) limn\\\fn-f\A<t>\\=0 whenever 4> e Lt.

Proof. Let gn = \fn—f\- Assume (i) and let <f>eLt, e>0 be given. Choose A e f
with (i (A) <oo such that

\\XAC<t>\\<e.

Choose S > 0 such that \\XE<(>\\< e whenever fi(E) < S. Choose n0 such that fi(A n
Bn)<8 whenever n > n0, where

Bn={x\gn(x)>e(n(A)y1}.

Then

\\gnA<t>\\ ^ \\XAC<I>\\ + \\XAr,Bn<t>\\+ \\XAr,Bncgn\\ ^ 3e whenever n > n0.

Conversely, assume (ii) and let A e f , with fi(A)<<x>, and a>0 be given. If

Bn={x\gn(x)>a} and <f> =

then

which shows that

lim/i(AnBn) = 0. D

If /„ is a sequence in L | dominated by a fixed $ e Lt, then /„ has a subsequence
that converges weakly in Lx. If, in addition,

limsupH/jX),
n

then this sequence can be chosen to have a non-zero weak limit. If /„ and <j>k are
two arbitrary sequences in Lt, then /„ has a subsequence /„, such that

exists for each k, where w-lim denotes the weak limit in Lx. We omit the easy and
familiar proofs of these facts.

THEOREM (2.3). Let fn be a sequence in Lt such that

sup||/J = M<oo.
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Then either /„ converges stochastically to zero, or there is a non-zero g e L\ such that
Tg = g, whenever T:Li-*L1 is a positive contraction such that

\im\\fn-Tfn\\ = O.
n

Furthermore, if the support of each fn is contained in a set E e &, then the support of
g is also contained in E.

Proof. Assume that /„ does not converge stochastically to zero. Let <f> e L\ be such
that

limsup| | /nA0||>O.
n

We will assume, without loss of generality, that <j> > 0 a.e. on X. By passing to a
subsequence, if necessary, we may assume that

w-\imfnA(k<f>) = gk and ]im\\fH-fnA(k4>)\\ = ak
n n

exist for each integer fc>l, and that g i ^ O . Then \imkgk=g exists a.e. and in
I^-norm, as gk is a non-decreasing bounded sequence in Lj\ Hence g is a non-zero
function in Lj. It is also clear that if each /„ has support contained in E then the
support of g is also contained in E. We will now show that if T: Lx -» Lx is a positive
contraction and if

lim||/n-r/J = 0,
n

then Tg = g. Let

rk
n=fnMk<f>), uk

n=(Tfn)A(k<f>)

and

fn = rk
n+sk

n, Tfn = uk
n + vk

n.

Since ||/n - Tfn\\-»0, the uniform integrability of (rk
n — uk) implies that of (sk — vk),

hence we have

for each fixed k. Note that

n n

is non-increasing in k and

a = lim tti^O
k

exists. Given e > 0, find k such that
ak-a<e and ||g-gk||<£.

Then find / > k such that

for some heLt with ||b|| < e. Since rk
n < k<f>, then

Trk </</> + h.
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Now

Tfn=Trk
n + Tsk

n=u'n + v'n
shows that we can write

ul
n=(Trk-hn) + wn and v'n = (Tsk

n - wn) + hn

where
O^hn = Trk-{

and

O^wn = Ts

Hence

| |^ | | = ||T5*||-|
which implies that

lim sup || w j = lim sup (||rs£|| + ||M) - a,

— a, <2e.
Therefore

lim sup \\u'n- Trk\\ < lim sup (||M + IKH) ^ 3e
n n

which shows that ||g,-Tgk\\<3e so that ||g-Tg||<5e. D

THEOREM (2.4). Let {Ti}, iel, be an arbitrary family of positive Lx contractions.
Then there exists a unique {modulo sets of measure zero) partition of X into two sets
P and N such that

(i) there is a ge L^ such that Tig = g for all ie / and such that P is the support
ofg:P = {x\g(x)>0};

(ii) if fn is a bounded sequence in L^ such that

foreachiel

then xdn converges stochastically to zero.

Proof. We will obtain P as the largest set that supports an invariant function. Let
$ be the collection of all sets G e f that can be obtained as

G={x|g(*)>0},
where geLj" and Tg = g for all iel. Let v be any finite measure on (X,^),
equivalent to p, and let

a=sup{i>(G)\Ge<$}.

Let Gn be a sequence in ^ such that p(Gn)-* a. For each n, choose gn e L% such that

Gn={x\gn(x)>0} and r;gn = gn for all iel.

We may also assume that ||gn|| = 1. Then
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is another function in L\ such that Tg = g for all i e / and such that P = {x\g(x)>0}e
% satisfies v(P) = a. Let N = X-P. Then (i) is satisfied.

To see that (ii) is also satisfied, let /„ be a bounded sequence L\ such that

lim||/n-7X11 = 0 for all i s I.
n

Let hn = XNU and let T\ :L1^L1 be defined as

T'if = xNTif, feLlt

which is a positive contraction for each i e /. We claim that

WK-T'tKlhO asn^oo.

First observe that

XNTiXPf = T[ xPf = 0 for any / e U,

which follows easily from the fact that

\\Xpf - W A fcg)|| -* 0 as k -* oo
and that

Hence

IIK - r,hn || = || K - r;ftn - T'iXpfn II = I I U - xNT,fn II s || /„ - T;/n || -» o
as n->oo. Therefore, if hn does not converge to zero stochastically, then by the
previous theorem there is a non-zero heL^ such that T'jh = h for all iel. Since
each hn has support in N, the support of h is also in N. Now, if XpTJi = rh then

T,fc = XNTJI + ^ P T ^ = T\h + r,, = ft + r,

implies that r, = 0, since Tt is a contraction. Hence Tj/i = h for all i e /. This a
contradiction because now the support of g + ft also belongs to ^ and its ^-measure
is strictly larger than the ^-measure of P.

To see the uniqueness, note that if <j> € L\ is a function such that Trf = <f> for all
j € /, then the support of <f> is contained in any set P such that N = X — P satisfies
(ii). In fact, in this case the constant sequence fn = <t> satisfies the hypothesis in (ii)
and consequently xdn =

 XN<I> must converge to zero' stochastically. •

Definition (2.5). The sets P and N obtained in theorem 2.4 will be called, respec-
tively, the positive and the null parts of the family {Tt}.

3. Superadditive Processes
Let V be the set consisting of K -dimensional vectors v = (v1,...,vK) with non-
negative integer coordinates, and let e = ( 1 , . . . , 1) be the vector with all coordinates
equal to 1. If «, ve V, then [«, v) denotes the set

{ w | w e V , uk<wk<vk, k = l,...,K}

and ir{v) denotes the number of points in [0, v). II u, ve V, then uv will be defined
as the vector with coordinates

(uv)k = ukvk.
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Finally, limr denotes the limit as vk -> oo for each k, independently of each other.
For each veV, let Tv be a positive Lx contraction and assume that {Tv} is a

semi-group:

TUTV = Tu+V for all u, v e V.

If, in addition,

= \fdfjL forallueV, for a l l /eL, ,

then {Tv} will be called a Markovian semi-group. For u, ve V, let

and

^u =[7r(u)]~lSu, if7r(u)>0

AV
U=Q ifir(u)=0.

If v = e then these are, respectively, the ordinary sums and the averages of the
semi-group over [0, u), and will be denoted as Su and Au. Observe that AVAV

U = Auv.
Let P and N be the positive and null parts of the family {Tv}, as obtained in § 2.

Let Lx(P) be the set of Lt functions with supports contained in P. Note that Tv

maps Li(P) into Li(P) and the restriction of {Tv} to Lt(P) is a Markovian semi-
group. We need the mean ergodic theorem in the following K -dimensional form.

THEOREM (3.1). If feLx{P) then limv Avf exists in the L1-norm.

This is a direct consequence of the corresponding 1-dimensional form, which, in
turn, follows from the Kakutani-Yosida mean ergodic theorem.

Finally note that if feLlt then limu^JVAM/ = 0 stochastically, in the sense that

0 whenever </> e L\.

This follows from theorem (2.4), since

lim || TVAJ - AJ\\ = 0 for all veV.
u

Definition (3.2). A partition of a set E <= V is called an admissible partition if it is
the common refinement of finitely many partitions of the form

(E n{w\ wk < n}, E n{w\wk> n}),

where k and n are integers and 1 < k < K.

Definition (3.3). A function F: V -» Lx is called a superadditiveprocess (with respect
to {TJ) if

whenever {[«', t;')}"=1 is an admissible partition of [0, v). The function f:V-*Li
defined as

/ o = 0 if
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is called the average of F. If sup,, ||/o|| < oo, then F is called a bounded superadditive
process. If Fv e L\ for each veV, then F is called positive.

If both F and -F are superadditive then F is called additive. Note that F is
additive if and only if Fv = Svh, where h =FeeLl. An additive process is always
bounded, and if h e L\ then S,,Ji is also positive. Also, the sum of two superadditive
processes is again a superadditive process.

LEMMA (3.4). Any superadditive process is the difference of two positive superadditive
processes. If the original process is bounded then both of these positive processes are
also bounded.

Proof. Since {[u, u + e)}u^0<v) is an admissible partition of [0, v), we have that

Fv>SvFe.

Hence Fv - SvFe is a positive superadditive process. Then both

F'v=(Fv-SvFe) + SvF: and F:=SvFt

are positive superadditive processes and

The boundedness is obvious. •

LEMMA (3.5). Let f be the average of a positive bounded superadditive process with
respect to a Markovian semi-group {Tv} and let y = sup,, ||/r||. Let 0 < 8 < y, and u,
v e V be such that

fu\\>y-S and \ =

Then the Li-distance between any two of the functions fv, fv+u, Tufv is less than

48y

y-8'

Proof. The set [0, v + u) has in particular the following two admissible partitions:
one containing [0, v) as an atom and the other containing [u, v + u) as an atom. Hence

0<Fv<Fv+u and 0<TuFK<Fu + u,

because of the positivity of F. Therefore,

0=sA/o =£/„+„ and 0< \TJv<fv+u.

But

l|A/J = | |ATl l /B | |>A(y-S)ay-28 and ||/u+u| |<y.

Hence ||A/U-Aru/U||<45 i.e.

\\fv-TJv\\^4S/(l-(S/y)).

Also | |/U+U-A/J<25 implies that

Similarly,

\ \ \ \ \ \ \ \ \ \ 8)^38. •
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T H E O R E M (3.6). Let f be the average of a positive bounded superadditive process
with respect to a Markovian semi-group {Tv}. Then, for each e > 0 there is a zeV
such that

Proof. Let y = sup,, ||/u|| = 1, and choose 5, 0 < 5 < 1, such that 45/(1 - 5) < e/8. Let
ze V be such that TT-(Z)>0 and ||/2||> 1-5. Finally choose u°€ V such that

7r(«2)[ir(uz + w)]~1> 1-5 whenever u > u°, we[0, z).

We claim that

\\Avfz -fv\\ < e whenever v > u°z.

First note that any v > u°z can be expressed as v = uz+w, where u > «° and
we[0,2). But

\\AUZ+Wh - Auzh\\ < 28\\h\\ for any fc e L,,

by a simple computation. Hence

To complete the proof it is now enough to show that

\\Auzfz-fuz+w\\<3e/4

whenever u > «° and w G [0, z). Since {[rz, (r + e)z)}re[0 u) is an admissible partition
of [0, uz), we have that

0<Sz
uFzsFuz or 0 < A ^ < / U 2 ,

noticing that iv(uz) = TT(U)TT(Z). Hence 1-5<||/Z|| = ||A^/2||<||/UZ||< 1 implies that

Since ||/U2||> 1-5, we now apply lemma 3.5 to obtain

\\TJuz-fuz\\<e/S.

Hence, together with

| |T^^-Tw/U 2 | |<e/8,

this gives

\\TwAz
ufz-fuz\\<e/4.

Taking the average over we[0, z), we then have

\\AzA
z
ufz -fuz\\ = \\Auzfz -fuz\\ < e/A.

Then, again by lemma 3.5, we have that ||/U2— fuz+J\\< e/8 and consequently,

lkW2-/u2+w||<3e/8<3e/4. D

LEMMA (3.7). Let F be a positive superadditive process with respect to {Tv} and
assume that P is the positive part of {Tv}. Then %pF is also a superadditive process.

Proof. Let {[ul, v')}"=i be an admissible partition of [0, v). Then
n n n

XP I TuiFvi-u>> I XpTu
iXpFvi-ui=Y.Tu'XpFv>-ui-

i=\ i=l 1
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Here the first inequality follows from the superadditivity of F, the second inequality
from the positivity of F (and Tu>) and the equality from the fact that XNTuXph = 0
for all heLl and u e V. •

Remark. Call a set A e F an absorbing set for {Tv}, if

Xx-ATvXAh = 0 for all fc e L,, w e V.

It is clear that the above proof shows that XAF is superadditive whenever A is
absorbing and F is positive and superadditive.

Results close to the following were obtained by Derriennic and Krengel ([2, theorem
5.2]).

LEMMA (3.8). Let f be the average of a positive and bounded superadditive process
with respect to {Tv} and let P be the positive part of {Tv}. Then limv Xpfv exists in the
Li-norm.

Proof. Let f'=Xpf and let T'v be the restriction of Tv to L,(P). Then {T'v} is a
Markovian semi-group and/' is the average of a positive bounded process, superaddi-
tive with respect to this semi-group. Then theorem (3.6) shows that for each e > 0
there is a z e V such that

limsup\\A'vf'z-f'v\\<e,
V

where A'vf'z are the averages with respect to T'v, equal to Avf'z. Now limv Avf'z
exists in the L, norm, for each ze V, by the mean ergodic theorem (3.1), since
f'z G LX{P). Hence limo/J, must also exist in the Z^-norm. •

LEMMA (3.9). Let f be the average of a positive superadditive process F with respect
to {Tv} and let N be the null part of {Tv}. Then lim,, Xnfv = 0 stochastically if at least
one of the following conditions is satisfied:

(3.10) {Tv} is a Markovian semi-group and F is a bounded process;
(3.11) F is dominated by an additive process; i.e. there is an he Li such that

Fv < Svh for allveV.

Proof. If (3.10) is satisfied then for each e > 0 there is a z e V such that

lim sup || Avfz - /„ || < e.

But limv XN-Atfz =0 stochastically, i.e.
lim IKXAA/JA^. | |=0 for each <t> e Lf.

Hence we obtain

limsup||(;r,v/jA</>||<e for all </> e L|.

Therefore limu^A/u = 0 stochastically. The proof under the assumption (3.11) is
clear, since

O^Xsfv^XN^h. •

The positivity assumption in lemmas (3.8) and (3.9) can be removed easily. First,
since any bounded superadditive process is the difference of two positive and
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bounded superadditive processes, it is clear that lemma (3.8) and a part of lemma
(3.9), under the hypothesis (3.10), extend directly. To see that lemma (3.9) holds
under the assumption (3.11), assume that Fv<Svh with lieL,. Then

0<Fv-SvFe^Sv(h-F;)

and lemma (3.9) applies to Fv — SvFe. But it also applies to SVF* and SVF~ and
consequently to SvFe. Collecting these results, we have the following theorem.

THEOREM (3.12). Let f be the average of a superadditive process F with respect to a
semi-group {Tv}, veV, of positive Lx contractions. Let P be the positive part of {Tv}.
Assume that at least one of the following two conditions is satisfied:

(3.10) {Tv} is a Markovian semi-group and F is a bounded process;
(3.11) there is anhsLx such that Fv < Svh for all veV.

Then limvfv = f exists stochastically; i.e. there is an feLt such that

0 forall<f>eLt.

Furthermore, \imvXpfv = f in the Lx-norm.

There is an obvious extension of this result to additive processes with respect to
semi-groups {Tv} of general, not necessarily positive, L\ contractions, assuming that
{Tv} is dominated by a semi-group {Tv} of positive Lt contractions, in the sense that

\fvf\^Tv\f\ for all/eL,, veV.

(Note that this is the case if the linear moduli of the generators of {Tv} commute.)
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