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Abstract

We show that, for every x exceeding some explicit bound depending only on k and N , there are at
least C(k, N )x/ log17 x positive and negative coefficients a(n) with n ≤ x in the Fourier expansion of
any non-zero cuspidal Hecke eigenform of even integral weight k ≥ 2 and squarefree level N that is a
newform, where C(k, N ) depends only on k and N . From this we deduce the existence of a sign change
in a short interval.
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1. Introduction

Let f be a non-zero cusp form of even integral weight k ≥ 2 and level N with real
Fourier coefficients a(n), n ∈N. We refer to [11] for basic definitions. It is well
known that there are infinitely many n ∈N such that a(n) > 0 as well as infinitely
many n with a(n) < 0. For an extension of this result and a discussion of related
questions, see [8] (compare also [2] in connection with binary theta functions).

If N = 1 and k ≡ 2 (mod 4), then a result of Siegel [12] implies that the first sign
change of a(n) already occurs among the first d(k)+ 1 coefficients, where d(k) is
the dimension of the space of cusp forms in question (see also [3]). On the other
hand, if N = 1 and k ≡ 0 (mod 4) or if N > 1, the method of Siegel [12] does not
apply and thus a different approach, based on analytic number theory estimates, has
been developed by Kohnen and Sengupta [9], which in turn is related to some ideas of
Murty [10].

More precisely, let f be a fixed newform of weight k on the Hecke congruence
subgroup

00(N )=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣c ≡ 0 (mod N )

}
,
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which is a normalized Hecke eigenform. In particular, its Fourier coefficients a(n),
n ∈N, are the Hecke eigenvalues of f and a(1)= 1. Note that the a(n) are real.

We assume throughout that N is squarefree.
As in [9], we note that it is quite reasonable to assume that gcd(n, N )= 1 since the

p-eigenvalues of f for p|N are explicitly known.
In the following the implied constants in the symbols � are always absolute and

efficiently computable.
It is shown in [9] that for any ε > 0 there exist n ∈N with gcd(n, N )= 1 and

such that

n� k N exp
(

c

√
log N

log log(N + 2)

)
log26+ε k, (1)

for which a(n) < 0, where c is an absolute constant and the implied constant depends
only on ε. This bound has recently been improved by Iwaniec, Kohnen and
Sengupta [7].

Here we show that the technique of [9] can in fact give a lower bound on the
number of sign changes in a given interval n ∈ [1, x]. On the other hand, the approach
of [7], which led to an improvement of (1), does not seem to apply immediately to the
derivation of a lower bound on the number of sign changes.

To formulate our result, we introduce the divisor sums

σα(N )=
∑
d|N

dα.

Let S+f (x) and S−f (x) denote the number of positive integers n ≤ x with
gcd(n, N )= 1 for which a(n) > 0 and a(n) < 0, respectively.

THEOREM 1. We have

S±f (x)�
x

σ−1(N )4 log4(k N ) log17 x

whenever x ≥ X (k, N ), where

X (k, N )= Ck max{Nσ−1(N )
4σ−1/2(N )

2 log8(k N ), N 1/2σ−1(N )
6 log22(k N )},

for some absolute constant C > 0.

We also show that Theorem 1, coupled with a recent result of Alkan and
Zaharescu [1], allows us to study sign changes in short intervals.

THEOREM 2. There are absolute constants η < 1 and A > 0 such that, for y = xη,

S±f (x + y)− S±f (x) > 0

whenever x ≥ (k N )A.
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Let T f (x) denote the number of sign changes in the sequence a(n) taken for
consecutive positive integers n ≤ x with gcd(n, N )= 1, that is,

T f (x)= #{n ≤ x | sign(a(n)) 6= sign(a(n + 1)), gcd(n, N )= 1},

where, as usual,

sign(a)=

−1 if a < 0,
0 if a = 0,
1 if a > 0.

Splitting the interval [1, x] into x1−η intervals of length y = xη, we derive from
Theorem 2 the following result.

COROLLARY 3. There are absolute constants κ > 0 and A > 0 such that

T f (x) > xκ

whenever x ≥ (k N )A.

2. Preparations

2.1. The idea of the proof We define the ‘normalized’ Hecke eigenvalues λ(n) of f
by the relation

a(n)= λ(n)n(k−1)/2, n ∈N.
We now consider the sums

ϑν(x)=
∑
n≤x

gcd(n,N )=1

|λ(n)|ν log2(x/n) and ρν(x)=
∑
n≤x

gcd(n,N )=1

λ(n)ν log2(x/n),

which we use only for ν = 1, 2, 3.
By the Cauchy–Schwarz inequality,

ϑ2(x)≤
√
ϑ1(x)ϑ3(x). (2)

The proof of Theorem 1 is based on the observation that, if either S+f (x) or S−f (x)
is small, then the sums ϑ1(x) are close to the sum |ρ1(x)|. But the known lower bound
on ϑ2(x) and the known upper bounds on ρ1(x) and ϑ3(x) contradict (2).

The proof of Theorem 2 is based on the observation that Theorem 1 implies that,
for any ε > 0 and a sufficiently large X , there are m and n with X ≤ m < n ≤ X1+ε

which are close to each other and also satisfy

gcd(mn, N )= 1, λ(m)λ(n) < 0.

After this selection of s with gcd(s, mnN )= 1 in an appropriate interval (depending
on m and n) and such that λ(s) 6= 0, the existence of which is implied by a result of [1],
we can make sure that both sm and sn belong to the desired short interval and we also
have

λ(sm)λ(sn)= λ(s)2λ(m)λ(n) < 0.
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2.2. Some elementary bounds We need some elementary number theoretic
estimates.

Recalling that N is squarefree we immediately obtain the following results.

LEMMA 4. We have ∏
p|N

(1+ p−1)= σ−1(N ).

LEMMA 5. We have ∏
p|N

(1− p−1/2)�
1

σ−1(N )σ−1/2(N )
.

PROOF. Using the identity∏
p|N

(1− p−1/2) =
∏
p|N

(1− p−1)
∏
p|N

(1+ p−1/2)−1

=

∏
p|N

(1− p−1)σ−1/2(N )
−1

=

∏
p|N

(1− p−2)
∏
p|N

(1+ p−1)−1σ−1/2(N )
−1

=

∏
p|N

(1− p−2)σ−1(N )
−1σ−1/2(N )

−1

yields the desired result. 2

Let τ(n)= σ0(n) be the number of positive integer divisors of n. We need the
following well-known bounds (see [4, 6]).

LEMMA 6. For any z ≥ 1, we have∑
n≤z

τ(n)2� z log3 z and
∑
n≤z

τ(n)3� z log7 z.

2.3. Some bounds for sums ϑν(x) and ρν(x) The following estimate is a
combination of [9, Proposition 6] with a result of Goldfield, Hoffstein and Lieman [5]
(which has also been used in [9]) as well as Lemmas 4 and 5.

LEMMA 7. There are absolute constants c1, c2 > 0 such that the bound

ϑ2(x)≥
c1

σ−1(N ) log(k N )
x − c2(k N )1/2 log3(k N )σ−1(N )σ−1/2(N )x

1/2

holds for every x ≥ 1.

Using Lemma 4 instead of [9, Lemma 4] we can reformulate [9, Proposition 8] as
the following.
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LEMMA 8. The bound

ρ1(x)� k1/2 N 1/4 log2(k N )σ−1(N )x
1/2

holds for every x ≥ 1.

Finally, we need the following estimate.

LEMMA 9. We have
ϑ3(x)� x log7 x

for every x ≥ 1.

PROOF. As in [9], we use the Deligne bound

|λ(n)| ≤ τ(n). (3)

Now, by Lemma 6

ϑ3(x) =
∑
n≤x

τ(n)3 log2(x/n)�
∑

1≤i≤log x+1

i2
∑

x/ei≤n≤x/ei−1

τ(n)3

�

∑
1≤i≤log x+1

i2
∑

n≤x/ei−1

τ(n)3� x log7 x
∑

1≤i≤log x+1

i2e−i
� x log7 x,

which finishes the proof. 2

3. Proofs

3.1. Proof of Theorem 1 We note that there is an absolute constant C1 > 0 such
that, if we put

X1(k, N )= C1k Nσ−1(N )
4σ−1/2(N )

2 log8(k N ),

then Lemma 7 implies that the bound

ϑ2(x)�
x

σ−1(N ) log(k N )
(4)

holds for x ≥ X1(k, N ). Using (4) together with Lemma 9 and (2) we see that

ϑ1(x)�
x

σ−1(N )2 log2(k N ) log7 x
(5)

for x ≥ X1(k, N ). Let

A+f (x) =
∑
n≤x,

gcd(n,N )=1
λ(n)>0

λ(n) log2(x/n),

A−f (x) = −
∑
n≤x,

gcd(n,N )=1
λ(n)<0

λ(n) log2(x/n).
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Then by Lemma 8,

A+f (x)− A−f (x)= ρ1(x)� k1/2 N 1/4 log2(k N )σ−1(N )x
1/2. (6)

From (5), one has

A+f (x)+ A−f (x)= ϑ1(x)�
x

σ−1(N )2log2(k N ) log7 x
. (7)

We see that (6) and (7) imply that

min{A+f (x), A−f (x)} �
x

σ−1(N )2log2(k N ) log7 x

for x ≥ X2(k, N ), where

X2(k, N )= C2k N 1/2σ−1(N )
6 log22(k N ),

and C2 is large enough.
By (3) and the Cauchy inequality

(A+f (x))
2
≤ S+f (x)

∑
n≤x

τ 2(n) log4(x/n). (8)

Using Lemma 6 and applying the same argument as in Lemma 9, we derive∑
n≤x

τ 2(n) log4(x/n)� x log3 x,

which implies the desired bound for S+f (x). The case of S−f (x) is fully analogous.

3.2. Proof of Theorem 2 Note that, as is well known, f cannot have complex
multiplication since by our assumption N is squarefree. Therefore, by [1, Theorem 1],
there are some absolute positive constants α and β such that, for a sufficiently large real
Z and any integer M ≥ 1 with M ≤ Zβ , there exists s ∈ [Z , Z + Zα] with λ(s) 6= 0
and s ≡ 1 (mod M).

Define
X = (xβ/N )1/(4+2β).

By Theorem 1, for x ≥ (k N )A with a sufficiently large A (such that X ≥ X (k, N )),
there are m and n with X ≤ m < n < X2 and also with

gcd(mn, N )= 1, λ(m)λ(n) < 0.

From [1, Theorem 1] we conclude that we can assume that

n ≤ m + Xγ .

For some γ < 1 (provided x is large enough).
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We now put Z = x/m and M = mnN . One immediately verifies that M ≤ Zβ for
the above choice of X . Thus, by [1], we can find s ∈ [Z , Z + Zα] with λ(s) 6= 0 and
s ≡ 1 (mod M). In particular, since gcd(s, nm N )= 1 then, as we have noted before,

λ(sm)λ(sn)= λ(s)2λ(m)λ(n) < 0.

We also have

x ≤ sm < sn ≤ (Z + Zα)(m + Xγ )= x + Z Xγ + (m + Xγ )Zα

≤ x + mγ Z + 2m Zα

(since m ≥ X ) and, after simple calculations, the result follows.

4. Remarks

Using the ‘individual’ bounds

σ−1(N )� log log(N + 2), σ−1/2(N )� exp
( √

log N

log log(N + 2)

)
,

as well as the bounds ‘on average’

1
M

∑
N≤M

σ−1(N )�
1
M

∑
N≤M

σ−1/2(N )� 1,

which can easily be derived from prime number theory using standard methods of
estimating multiplicative functions (see [4, 6]), one can obtain more simplified forms
of Theorem 1.

Finally we note that it would be very interesting to obtain an explicit value for the
constant η in the bound of Theorem 2.
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