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Relaxation dynamics of capillary folding of thin
elastic sheets with pinned contact lines
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Capillary folding is the process of folding planar objects into three-dimensional (3-D)
structures using capillary force. It has many important industrial applications, e.g. the
fabrication of microelectromechanical systems. In this work, we propose a 3-D model
for the capillary folding of thin elastic sheets with pinned contact lines. The energy of
the system consists of interfacial energies between the different phases and the elastic
energy of the sheet. The latter is described by the nonlinear Koiter’s model, which
can accommodate large deformations of the sheet. From the energy, we derive the
governing equations for the static system using a variational approach. We then develop
a numerical method to find equilibrium solutions via a relaxation dynamics. At each
time step, we evolve the sheet by using the subdivision element method, and update
the droplet surface by minimizing a squared area functional using linear finite elements.
Qualitatively, numerical solutions for the equilibrium configurations of the sheet–droplet
system agree well with those observed in experiments. Furthermore, we identify the
critical bendabilities and present bifurcation diagrams for the folding of a triangular sheet.
The results exhibit rich and fully 3-D behaviours that were not captured by previous
two-dimensional models. Our results provide new insights into the nonlinear process of
capillary folding, and may contribute to the advancement of microfabrication techniques.

Key words: drops, contact lines, variational methods

1. Introduction

Elastocapillarity, which refers to the interaction between capillary and elastic forces, has
attracted growing interest in the scientific community in recent years. This is due to its
ubiquitous presence in everyday life and its many industrial applications (Bico, Reyssat &
Roman 2018). Capillary forces can deform elastic materials at small scales. For example,
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these forces can lead to the bending and bundling of thin fibres, such as paintbrush hairs.
In the case of excessive surface tension in the liquid film within pulmonary airways,
it can result in buckling of the airways, causing breathing difficulties (Heil & White
2002). Capillary forces have been employed widely in the fabrication of small objects,
such as photovoltaic devices (Guo et al. 2009), complex three-dimensional (3-D) hydrogel
constructs (Li et al. 2016), and liquid pipettes (Reis et al. 2010); see also the reviews
by Syms et al. (2003) and Mastrangeli et al. (2009) on capillary-driven self-assembly
techniques for the fabrication of microelectromechanical systems.

Interesting phenomena arise when capillary forces induce the bending of thin elastic
sheets. For instance, when a liquid droplet is placed within a channel bounded by
two elastic sheets, various equilibrium states emerge, such as an open channel and a
collapsed channel (Taroni & Vella 2012). Furthermore, the interaction between elasticity
and capillarity can cause the spontaneous movement of the droplet along the channel, a
phenomenon known as bendotaxis (Bradley et al. 2019; Yao, Zhang & Ren 2023). When a
droplet is placed on a thin elastic sheet, the wetting behaviours can be different from those
observed with a rigid solid substrate. Many studies have been conducted on the static
aspect of this problem (Shanahan 1985; Olives 1996; Zhang, Yao & Ren 2020), and it was
found that the bending force arising from the discontinuity in the sheet curvature gradient
plays a role in the force balance at the contact line. Additional studies have been devoted
to the wetting dynamics, focusing on understanding the boundary conditions and energy
dissipation laws at the moving contact line (Shanahan 1988; Yao et al. 2023). Capillary
forces can also induce wrinkles on ultrathin sheets (Huang et al. 2007). The analysis of
these wrinkles, including their extents and wavelengths, has attracted much attention in
research (Schroll et al. 2013; Davidovitch & Vella 2018).

The process of folding thin elastic sheets into 3-D structures using capillary forces
is commonly referred to as capillary origami. In this application, it is of great
interest to determine whether encapsulation occurs during droplet evaporation. The
capillary-bending length lB = (B/γ )1/2 was introduced by Py et al. (2007) and also by
Cohen & Mahadevan (2003), albeit in a different setting, as a folding criterion. This length
scale is obtained by balancing the surface tension γ with the bending force B/l2B, with B
being the bending modulus of the sheet. In Py et al. (2007), they also suggested tailoring
the sheet’s geometry to control the final encapsulated structure. Subsequent studies
considered other folding criteria and the selection of folded structures, taking into account
gravitational and droplet impact effects (Rivetti & Neukirch 2012; Neukirch, Antkowiak &
Marigo 2013). Péraud & Lauga (2014) explored the effects of different wetting conditions
and substrate geometries, as well as possible contact angle hysteresis. Paulsen et al. (2015)
examined a model for the optimal wrapping of a droplet by ultrathin sheets, in which the
interfacial energies are minimized under geometric constraints. Brubaker & Lega (2015)
considered the statics of a two-dimensional (2-D) system. They employed a variational
approach to derive governing equations, and characterized equilibrium states through
bifurcation diagrams. This work was extended later to the case of an unpinned contact
line (Brubaker 2019).

In previous work, various elastic models have been employed to study thin
elastic objects. For one-dimensional (1-D) elastic beams with small deflections, the
Euler–Bernoulli beam theory was used in the study of capillary rise (Kim & Mahadevan
2006). While this model is amenable to theoretical analysis, it is limited to small
deflections. To model large deflections of 1-D elastic beams, the nonlinear Euler’s elastica
was employed in the works of Py et al. (2007), Neukirch et al. (2013) and Brubaker & Lega
(2015). In this model, the elastic energy density is proportional to the squared curvature of
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Capillary folding of thin elastic sheets

the beam. The Euler’s elastica is a special case of the Helfrich energy (Helfrich 1973)

E = B
2

∫
Γ

(H − H0)
2 da, (1.1)

where Γ is for a 2-D surface, B is the bending modulus, H is the surface mean curvature,
and H0 is a constant called the spontaneous curvature. When H0 = 0, this energy is also
known as the Willmore energy. The Helfrich energy, combined with an inextensibility
condition, has been employed to study biomembranes (Zhang et al. 2020) and their
deformations under flows (Barthès-Biesel 2016). In addition to the aforementioned elastic
models, the Föppl–von Kármán (FvK) theory (Landau & Lifshitz 1986) has been applied
successfully to model thin sheets in various applications. It has been used to understand
instabilities in blistering (Juel, Pihler-Puzović & Heil 2018), the statics and dynamics of
wrinkling in ultrathin sheets (Cerda & Mahadevan 2003; Schroll et al. 2013; Davidovitch
& Vella 2018; Box et al. 2019), and the wrinkling instability of elastic-walled Hele-Shaw
cells (Pihler-Puzović, Juel & Heil 2014). It has also been applied to study the early stage
of 3-D capillary wrapping (Brubaker & Lega 2016). However, the FvK model is limited to
describing small to moderate out-of-plane deflections.

In the current work, we study the folding of thin elastic sheets caused by a liquid droplet.
Motivated by both the experimental set-up of Py et al. (2007) and other theoretical work,
we assume that the contact line is pinned at the boundary of the sheet. We propose a 3-D
model for the relaxation dynamics of capillary folding. The total energy of the system
consists of the interfacial energies between different phases and the nonlinear Koiter’s
energy (Koiter 1966; Ciarlet 2021) for the elastic sheet. Similar to the FvK model, the
nonlinear Koiter’s energy includes both stretching and bending energies. However, it uses
a geometric nonlinear description for the stretching and bending strains, thus allowing
for modelling large deformations. This model has been applied previously to study the
buckling instability of a liquid-lined elastic tube (Heil & White 2002). To the best of
our knowledge, the current work is the first application of the nonlinear Koiter’s model
to capillary folding problems. It allows us to study large deformations of the sheet and
therefore the full folding process in three dimensions.

From the total energy, we derive the governing equations for the static system using a
variational approach. These equations are highly nonlinear, fourth-order partial differential
equations that couple the deformation of the sheet and the configuration of the droplet. At
equilibrium, the droplet surface has a constant mean curvature determined by the Laplace
pressure. On the elastic sheet, we obtain the balance of elastic forces, fluid pressure, and
the curvature force induced by surface tension. At the pinned contact line, we obtain the
balance of the elastic forces with the capillary force.

Based on the equilibrium equations, we further introduce a relaxation dynamics for
the folding process. In this dynamics, the energy of the system decays over time and the
system reaches equilibrium at the steady state. Then we develop a numerical method to
compute the relaxation dynamics. In this method, we use the subdivision element method
with C1-conforming basis functions (Cirak, Ortiz & Schröder 2000; Cirak & Ortiz 2001)
to discretize the elastic sheet. To determine the constant mean curvature surface for the
droplet, we apply a Ritz method based on a squared area functional (Renka 2015). During
the simulation, we perform re-meshing (Engwirda & Ivers 2016) to maintain the mesh
quality of the droplet surface. We conduct numerical simulations for sheets with different
shapes. The numerical results show good qualitative agreement with those observed in
experiments (Py et al. 2007). Then we focus on triangular sheets and present two different
types of folding: one characterized by a twofold symmetry and the other by a threefold
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Figure 1. Schematics of the (a) undeformed and (b) deformed states. Here, Σ is the deformed elastic sheet,
Γ is the droplet surface, and Ω is the 3-D region occupied by the droplet. The unit vectors nΣ and nΓ are
the normals of Σ and Γ , respectively; the unit vectors mΣ and mΓ are the co-normals of Σ and Γ at their
boundaries, respectively.

symmetry. The different folded states correspond to different local minima of the total
energy. We identify three typical folding regimes in terms of the sheet’s bendability,
present the corresponding bifurcation diagrams, and reveal fully 3-D behaviours that were
not captured by previous 2-D models.

The rest of this paper is organized as follows. In § 2, we propose a mathematical model
for the capillary folding of thin elastic sheets in three dimensions. We introduce the energy,
derive the governing equations, and introduce the corresponding relaxation dynamics.
In § 3, we give a brief description of the numerical method for solving the relaxation
dynamics. In § 4, we present the simulation results. We validate our model by comparing
the numerical results with those observed in experiments, and investigate the capillary
folding of a triangular sheet in detail. We conclude the paper in § 5. Details concerning the
derivation of the equilibrium equations and a convergence study of the numerical method
are provided in the Appendices.

2. Mathematical model

We consider a droplet deposited on a thin elastic sheet, with the contact line pinned at
the boundary of the sheet; see figure 1 for an illustration. The droplet–sheet system is
surrounded by air. The sheet is very thin in the sense that h � D, where h is the thickness
of the sheet, and D is its characteristic lateral size. In this model, conceptually we regard
the sheet as infinitely thin and identify the sheet with its mid-surface. The parameter h
affects only the elastic properties of the sheet.

Let Σ0 be the undeformed configuration of the sheet. Let Σ be the deformed sheet, with
a regular C2 parametrization q : Σ0 → Σ . Denote by nΣ the normal of Σ , and by mΣ

the co-normal at the boundary ∂Σ . The droplet Ω on the sheet has a conserved volume
V . Let Γ = ∂Ω \ Σ be the surface of the droplet in contact with the air, with a regular
C1 parametrization r : Γ0 → Γ , where Γ0 is the reference domain for the droplet surface.
Denote by nΓ its normal, and by mΓ its co-normal at the boundary. Denote by Λ = ∂Σ =
∂Γ the pinned contact line. When no ambiguity arises, we omit the subscripts of nΣ and
nΓ .

The total energy of the system reads

E = EΓ + EΣ + Eel, (2.1)

where Eel is the elastic energy of the sheet, and EΣ, EΓ are the surface energies of the
sheet and the droplet surface, respectively. For the droplet surface, we have

EΓ = γf

∫
Γ

da, (2.2)
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Capillary folding of thin elastic sheets

where γf is the surface tension coefficient of the fluid–air interface. Similarly, on the elastic
sheet, we have

EΣ = γs

∫
Σ

da, (2.3)

where γs = γsf + γsv is the sum of the surface tension coefficients of the fluid–sheet
and sheet–air interfaces. Here, we use a two-sided surface energy for the sheet because
the contact line is pinned at the sheet boundary. This is in contrast to cases involving a
moving contact line, where both surface energies for the wetting and non-wetting regions
are relevant and must be considered. Consequently, the classical Young–Dupré relation
for the equilibrium contact angle does not apply in our system. Indeed, the equilibrium
contact angle at the pinned contact line is not unique and depends on the droplet volume.

We adopt the nonlinear Koiter’s shell theory (Koiter 1966; Ciarlet 2021) to model the
deformations of the elastic sheet. Specifically, the elastic energy can be written as the sum
of a stretching part Es and a bending part Eb:

Eel = Es + Eb, (2.4)

where

Es = Y
∫

Σ0

1
2
Aαβγ ηεαβεγ η dA, (2.5a)

Eb = B
∫

Σ0

1
2
Aαβγ ηbαβbγ η dA. (2.5b)

Here, the stretching modulus Y and the bending modulus B are given by

Y = Eh
1 − ν2 , B = Eh3

12(1 − ν2)
, (2.6a,b)

where E is Young’s modulus, and 0 ≤ ν ≤ 1
2 is the Poisson ratio. For an isotropic sheet,

the fourth-order elastic tensor in (2.5) is given by

Aαβγ η = νδαβδγ η + 1
2(1 − ν)(δαγ δβη + δαηδβγ ), (2.7)

where δ is the Kronecker delta. The stretching strain εαβ in (2.5a) is defined as

εαβ = 1
2(aαβ − δαβ), (2.8)

where aαβ = ∂αq · ∂βq is the first fundamental form of Σ ; see also (A3a). The bending
strain bαβ in (2.5b) is equivalent to the second fundamental form bαβ = ∂α∂βq · n of Σ ;
see also (A3b). In (2.5), we used the convention for the summation of repeated indices. All
Greek indices such as α, β, γ, η are in {1, 2}. We will use this convention in the rest of this
paper. We note that the area element dA on the reference domain Σ0 is distinguished from
its counterpart da on the deformed mid-surface Σ , and similarly for the length elements
dL and dl.
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2.1. Governing equations
The governing equations for the equilibrium droplet–sheet system can be derived by
minimizing the total energy (2.1) subject to the boundary condition

∂Σ = ∂Γ, (2.9)

and the constant volume constraint ∫
Ω

dx = V. (2.10)

Introducing p as the Lagrange multiplier, we define the Lagrangian

L = E − p
(∫

Ω

dx − V
)

. (2.11)

We then use a variational method to obtain the first-order optimality condition for the
equilibrium system. Let δq : Σ0 → R

3 be a variation of the sheet, and let δr : Γ0 → R
3

be a variation of the droplet surface. From the boundary condition (2.9), we note that

δq = δr on Λ. (2.12)

We introduce the variation operator

δL(q, r; δq, δr) = d
dτ

∣∣∣∣
τ=0

L(q + τ δq, r + τ δr), (2.13)

and write it simply as δL when no ambiguity arises. The variations of the different energy
components are defined similarly.

We compute the variation for each part of the Lagrangian as follows. For the droplet
surface energy in (2.2), we have

δEΓ (r; δr) = γf

∫
Γ

(∇s · δr) da

=
∫

Γ

−2γf Hn · δr da +
∫

Λ

γf mΓ · δr dl, (2.14)

where ∇s · is the surface divergence operator, and H = −1
2∇s · n is the mean curvature of

Σ . Similarly, for the sheet surface energy in (2.3), we have

δEΣ(q; δq) = γs

∫
Σ

(∇s · δq) da

=
∫

Σ

−2γsHn · δq da +
∫

Λ

γsmΣ · δq dl. (2.15)

For the volume constraint in (2.10), we have

δ

(
−p

∫
Ω

dx
)

=
∫

Γ

−pn · δr da +
∫

Σ

pn · δq da. (2.16)

We refer to Walker (2015) for the derivation of these results using shape calculus.
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Capillary folding of thin elastic sheets

Next, we compute the variation of the elastic energy. To this end, we introduce the
second Piola–Kirchhoff stress and moment

Sαβ = YAαβγ ηεγ η, (2.17a)

Mαβ = BAαβγ ηbγ η. (2.17b)

Then we readily have

δEs =
∫

Σ0

Sαβ δεαβ dA, (2.18a)

δEb =
∫

Σ0

Mαβ δbαβ dA. (2.18b)

For the stretching strain and the bending strain, it follows from the definition (2.8) and
equations (A3a), (A3b) and (A7a) in Appendix A that

δεαβ = 1
2(∂α δq · ∂βq + ∂αq · ∂β δq), (2.19a)

δbαβ = ∂α∂β δq · n − Γ
γ
αβ∂γ δq · n, (2.19b)

where Γ
γ
αβ is the Christoffel symbol of the second kind on the sheet Σ ; see (A6). We

substitute (2.19) into (2.18), then apply integration by parts and obtain

δEs(q; δq) =
∫

∂Σ0

SαβNβ(∂αq · δq) dL

+
∫

Σ0

−∇βSαβ(∂αq · δq) − Sαβbαβ(n · δq) dA, (2.20a)

δEb(q; δq) =
∫

∂Σ0

−
{
∇βMαβNα + ∂

∂L
(MαβLαNβ)

}
(n · δq)

+ 2bα
ηMηβNβ(∂αq · δq) + MαβNαNβ

∂

∂N
(n · δq) dL

+
∫

Σ0

(∇α∇βMαβ − Mαβcαβ)(n · δq)

− {∇β(bα
ηMηβ) + bα

η ∇βMηβ}(∂αq · δq) dA, (2.20b)

where L = (L1, L2) and N = (N1, N2) are the unit tangent and normal vectors of ∂Σ0,
respectively, bα

η is defined in (A4a,b), and cαβ is the third fundamental form of the sheet
Σ ; see (A3c). The covariant derivatives are defined as

∇βVβ = ∂βVβ, (2.21a)

∇βMαβ = ∂βMαβ + Γ α
βγ Mβγ , (2.21b)

for a first-order tensor Vβ and a second-order tensor Mαβ , respectively.
We then combine (2.14)–(2.16) and (2.20), and require δL to vanish for all smooth

variations δq and δr. This leads to the governing equations for the equilibrium system
as follows.
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(i) On the droplet surface, we have the usual Laplace equation

−2γf H − p = 0 on Γ. (2.22)

The droplet surface thus has a constant mean curvature. The Lagrange multiplier p,
which plays the role of pressure, determines the mean curvature.

(ii) On the undeformed sheet (or reference domain) Σ0, we have

∇α∇βMαβ − Mαβcαβ − Sαβbαβ = da
dA

(2γsH + p), (2.23a)

−∇β(Sαβ + bα
ηMηβ) − bα

η ∇βMηβ = 0, α = 1, 2, (2.23b)

where da/dA is the ratio between the deformed and undeformed area elements. Here,
(2.23a) states the balance of the elastic force (the left-hand side), the curvature force
and the fluid pressure (the right-hand side) in the direction normal to the sheet;
(2.23b) states the balance of elastic forces in the tangential directions.

(iii) Along the boundary ∂Σ0 of the reference domain, we have

MαβNαNβ = 0, (2.24a)

−∇βMαβNα − ∂

∂L
(MαβLαNβ) = dl

dL
f · nΣ, (2.24b)

(Sαβ + 2bα
ηMηβ)Nβ = dl

dL
f · q(α), α = 1, 2, (2.24c)

where dl/dL is the ratio between the deformed and undeformed arc-length elements
along ∂Σ0, {q(α) : α = 1, 2} is the dual basis of the tangent space of the sheet (see
(A2)), and f is the combination of the surface tension forces given by

f = −γf mΓ − γsmΣ. (2.25)

Here, (2.24a) is the moment-free condition; (2.24b) and (2.24c) state the balance of
the elastic force (the left-hand side) and the surface tension forces (the right-hand
side) in the normal and tangential directions, respectively.

2.2. Non-dimensionalization
Equations (2.22)–(2.24) with the boundary condition (2.9) and the constant volume
constraint (2.10) form the governing equations for the equilibrium system. We make the
system dimensionless by using D as the characteristic length and γf D2 as the characteristic
energy. The physical parameters are transformed as

γ̃f = 1, γ̃s = γs

γf
, Ỹ = Y

γf
, B̃ = B

γf D2 . (2.26a–d)

The variables are rescaled accordingly, e.g.

q̃ = q
D

, ε̃αβ = εαβ, S̃αβ = ỸAαβγ ηε̃γ η, b̃αβ = Dbαβ, M̃αβ = B̃Aαβγ ηb̃γ η,

(2.27a–e)

and so on. Note that Ỹ/B̃ = 12(D/h)2 � 1 for thin sheets. In view of the capillary-bending
length lB = (B/γf )

1/2, the dimensionless bending modulus can be written as

B̃ = (lB/D)2. (2.28)

Thus B̃1/2 is the ratio between the capillary-bending length and the sheet size. For
sufficiently small B̃, the capillary force is then strong enough to fold the sheet into a
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Capillary folding of thin elastic sheets

3-D structure. In the literature, the critical bendability Bcrit is the bendability below which
a folded structure can be attained upon evaporation of the droplet.

Hereafter, we will use the dimensionless equations and drop the overhead tildes for the
sake of simplicity.

2.3. Relaxation dynamics
We consider a relaxation dynamics of the droplet–sheet system in which the total energy
decays over time. Following this dynamics, the system reaches equilibrium at the steady
state. We focus on systems where the relaxation time scale of the droplet is much faster
than that of the sheet. We therefore assume that the droplet is in a quasi-static state during
the relaxation process. In other words, at every instant t, given the sheet Σ(t) with the
parametrization q(t, · ), the droplet surface Γ (t) is determined via

−2HΓ (t) − p(t) = 0, (2.29)

subject to the boundary condition

∂Σ(t) = ∂Γ (t), (2.30)

and the constraint ∫
Ω(t)

dx = V, (2.31)

where Ω(t) is the region enclosed by Σ(t) and Γ (t). Based on (2.23), we consider the
relaxation dynamics of the sheet governed by

∂q
∂t

=
{
−∇α∇βMαβ + Mαβcαβ + Sαβbαβ + da

dA
(2γsHΣ + p)

}
nΣ

+ {∇β(Sαβ + bα
ηMηβ) + bα

η ∇βMηβ} ∂aq, (2.32)

where the two terms on the right-hand side are the relaxation of the sheet in the normal
and tangential directions, respectively. In general, we may introduce additional parameters
to control the time scale of relaxation in different directions; however, for the sake of
simplicity, we consider the relaxation dynamics as given above since our main focus is the
equilibrium state. The dynamics (2.32) is subject to the boundary conditions

MαβNαNβ = 0, (2.33a)

−∇βMαβNα − ∂

∂L
(MαβLαNβ) = dl

dL
f (t) · nΣ, (2.33b)

(Sαβ + 2bα
ηMηβ)Nβ = dl

dL
f (t) · q(α), α = 1, 2, (2.33c)

where

f (t) = −mΓ (t) − γsmΣ(t). (2.34)

Note that in this system, Sαβ , Mαβ and ∇α depend on t as they are functions of q(t, · ).
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3. Numerical method

In this section, we give a brief description of the numerical method for solving the
relaxation dynamics (2.29)–(2.33). The implementation details will be reported in another
paper. A validation of the accuracy and robustness of this method is provided in
Appendix C.

We first review briefly some related earlier work. Several numerical methods have
been proposed in the literature for systems involving fluid–membrane interactions, among
which are the immersed boundary method (Lai & Ong 2019) and the parametric finite
element method (Barrett, Garcke & Nürnberg 2017). For modelling biomembranes with
the Willmore energy, the phase field method (Du, Liu & Wang 2004) and the discrete
differential geometry method (Seol et al. 2016) have been employed. For the simulation of
nonlinear Koiter’s sheets or shells, there exist lattice-based methods (Chen & Zhang 2022),
the finite difference method (Alben et al. 2019), the Hermite finite element method (Heil
& White 2002), and the non-uniform rational basis spline based isogeometric analysis
(Kiendl et al. 2009).

In our method, we reformulate the dynamical equation (2.32) into a weak form. We find
the sheet q(t, · ) such that for t ≥ 0 and all test functions ψ , the following equation holds:∫

Σ0

∂q
∂t

· ψ dA = −δEel(q;ψ) − δEΣ(q;ψ)

−
∫

Σ(t)
p(t) nΣ(t) · (ψ ◦ q−1) da

−
∫

Λ(t)
mΓ (t) · (ψ ◦ q−1) dl, (3.1)

where Σ(t) = Im q(t), Λ(t) = ∂Σ(t), and Γ (t) is the surface of constant mean curvature
determined by (2.29)–(2.31).

Let �t be the time step, and let qm be the numerical approximation to the sheet at
t = m�t. At each time step, with the sheet Σm = Im qm given, we first determine the
droplet surface Γ m and the Laplace pressure pm that satisfy the following equations:

−2H − pm = 0 on Γ m, (3.2a)

∂Γ m = ∂Σm, (3.2b)∫
Ωm

dx = V. (3.2c)

Following this, we proceed to update the elastic sheet and compute qm+1. For stability
considerations, we use a semi-implicit scheme to discretize (3.1). In this scheme, the
elastic force and the curvature force on the right-hand side of the equation are treated
implicitly, while the coupling with the droplet is treated explicitly. This leads to the
following semi-discrete scheme: for all test functions ψ ,∫

Σ0

qm+1 − qm

�t
· ψ dA = −δEel(qm+1;ψ) − δEΣ(qm+1;ψ)

−
∫

Σm
pmnΣm · (ψ ◦ (qm)−1) da

−
∫

Λm
mΓ m · (ψ ◦ (qm)−1) dl, (3.3)
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Capillary folding of thin elastic sheets

where Λm = ∂Σm.
Next, we consider spatial discretizations of the elastic sheet and the droplet surface.

In view of the second-order derivatives in the nonlinear Koiter’s energy, the discrete
function space for q is required to have square-integrable second-order derivatives. This
can be achieved by using a finite element space with C1 continuity. Here, we employ
the subdivision element method, which provides C1 conforming basis functions on
unstructured triangular meshes. These basis functions are implicitly defined through the
Loop’s subdivision procedure (Loop 1987). The subdivision element method was first
introduced in Cirak et al. (2000) and Cirak & Ortiz (2001) for analysing thin elastic shells.
It was later employed in Feng & Klug (2006) and Chen et al. (2020) to study deformations
of biomembranes.

The governing equations for the droplet surface Γ m in (3.2) are solved by using a Ritz
method. To be specific, let r : Γ0 → R

3 be a parametrization of a droplet surface. Consider
the following functional:

A[r] = 1
2

∫
Γ0

J(r)2 da, (3.4)

where Γ = Im r satisfies the boundary condition (3.2b) and the constant volume constraint
(3.2c), and J(r) is the area Jacobian between Γ and Γ0. It was shown (Renka 2015)
that the minimizer of the above functional gives a surface with constant mean curvature.
Moreover, this approach selects a specific parametrization for the constant mean curvature
surface that preserves mesh quality, in the sense that the area Jacobian J(r) is constant on
the surface. The functional (3.4) is discretized using piecewise linear finite elements and
subsequently minimized using the MATLAB routine fmincon.

We summarize the overall algorithm as follows. Initially, we are given the elastic sheet
q0, and the droplet volume V . For each time step m ≥ 0, we do the following.

(1) Determine the droplet surface Γ m by minimizing the functional (3.4) subject to the
boundary condition (3.2b) and the constraint (3.2c).

(2) Update the elastic sheet. Find qm+1 ∈ Ssbdv such that (3.3) holds for all test functions
ψ ∈ Ssbdv , where Ssbdv is the subdivision element space. The resulting nonlinear
system about qm+1 is solved by Newton’s method.

We repeat these two steps until the system reaches the equilibrium state.
During long-time simulations, the system may undergo large deformations, resulting in

significant mesh distortion on the droplet surface. This can lead to ill-conditioned systems
and slow down the convergence of the optimization routine. To maintain a high-quality
mesh, we incorporate a re-meshing step into the algorithm: We perform re-meshing on Γ m

using the software JIGSAW (Engwirda & Ivers 2016) whenever the deformation gradient
is ‖∇rm‖L∞ ≥ 1.6. At the same time, we set the current droplet surface Γ m as the new
reference domain Γ0 for subsequent computations. The effect of re-meshing is illustrated
in figure 2.

4. Results and discussions

We consider a polydimethylsiloxane (PDMS) sheet of thickness h = 40 µm, the Poisson
ratio ν = 1/2, and the Young’s modulus E = 7.5 × 105 Pa. The diameter of the sheet is
taken to be 2 mm. At room temperature, the surface tension coefficients are γf = 7.5 ×
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Figure 2. Mesh on the droplet surface in the example of a triangular sheet (see § 4.1). (a) No re-meshing is
performed throughout the simulation. (b) Re-meshing is performed, and Γ0 := Γ m whenever ‖∇rm‖L∞ ≥ 1.6.
(c) Aspect ratio of the triangles in meshes (a,b). The aspect ratio is calculated as the ratio between the longest
and shortest edges of each triangle.

10−2 and γs = 2 × 10−2 N m−1. The dimensionless parameters are calculated to be

Y = 5.33 × 102, B = 1.78 × 10−2, γs = 2.67 × 10−1. (4.1a–c)

Numerical simulations presented below are conducted under these parameters unless
stated otherwise.

4.1. Relaxation process
In this subsection, we present the relaxation process of the droplet–sheet system towards
the equilibrium state. We assume that the evaporation time scale is much slower than the
relaxation time scale. Therefore, we fix the droplet volume in the following examples.

4.1.1. Triangular sheets
First, we study the folding of a triangular sheet. The sheet is in the shape of an equilateral
triangle with side length D = 1. The sharp corners of the triangle require a fine mesh in
the discretization. To optimize computational efficiency, we mitigate this by using circular
arcs with radius 0.05 to round the corners. Our numerical results (not shown) demonstrate
that rounding out the corners has little effect on the folded structures. Initially, a droplet
of volume V = 0.074 is placed on top of the sheet. The system is then allowed to relax
with the droplet volume fixed. Four states during the relaxation process are presented in
figure 3. We observe that the three corners of the sheet are gradually pulled up by the
capillary force. Throughout the process, the system remains threefold symmetric. After
reaching equilibrium, the sheet partially wraps up the droplet. The mesh on the droplet
surface is shown in figure 2(b). From this equilibrium state, we may further decrease the
droplet volume to obtain a completely folded state.

4.1.2. Square sheets
Next, we present the folding process for a square sheet. The sheet has side length D = 1,
with the corners rounded by circular arcs of radius 0.1. Initially, a droplet of volume V =
0.25 is placed on the sheet. The system is then allowed to relax with the droplet volume
fixed. The change of energies in figure 4(e) shows that the relaxation process consists of
three stages. In the first stage, the edges of the square sheet are pulled up by the capillary
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Figure 3. Folding of a triangular sheet by capillary force. The droplet has fixed volume V = 0.074.
(a–d) Snapshots of the folding process. The insets are top views of the droplet–sheet system. (e) Changes of
the various energy components following the relaxation dynamics. See also supplementary movie 1, available
at https://doi.org/10.1017/jfm.2023.1051.

force; see figure 4(b). This stage soon transitions to the next: the corners of the sheet are
pulled up, while the edges are released; see figure 4(c). By now, the sheet remains fourfold
symmetric. As the system continues to relax, it reaches the final equilibrium state with
twofold symmetry; see figure 4(d).

The numerical results show that the energy gradients (i.e. the right-hand side of (2.32))
at the intermediate states in figures 4(b,c) are extremely small. This can also be observed
from the plot of the total energy, which is rather flat in these states. However, we cannot
ascertain whether these states are indeed critical points of the energy functional. Further
mathematical analysis is needed to characterize the nature of these states.
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Figure 4. Folding of a square sheet by capillary force. The droplet has fixed volume V = 0.25. (a–d) Snapshots
of the folding process. The insets are top views of the droplet–sheet system. (e) Changes of the various energy
components following the relaxation dynamics. See also supplementary movie 2.

4.1.3. Cubic encapsulation
Next, we simulate the cubic encapsulation of a droplet. In its initial undeformed state, the
sheet is the expansion of the surface of a cube with side length D/4 = 1/4. The sharp
corners are rounded by circular arcs of radius 0.1. Initially, as shown in figure 5(a), a
droplet with volume V = 0.078 is placed onto the sheet. As the system relaxes, the panels
of the sheet are bent towards the droplet by the capillary force. Since the droplet volume
is far larger than the encapsulation volume (i.e. the volume of the cube), the sheet only
partially wraps the droplet at equilibrium.
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Figure 5. Dynamics of the cubic encapsulation, with fixed droplet volume V = 0.078. (a–d) Snapshots of
the folding process. The insets are top views of the droplet–sheet system. (e) Changes of the various energy
components following the relaxation dynamics. See also supplementary movie 3.

4.1.4. Spherical encapsulation
In the last example, we simulate the spherical encapsulation of a droplet. In its undeformed
state, the sheet takes the shape of a flower with six petals; see Appendix D for the
MATLAB code to generate the shape. Here, D = 1 is the distance between the tips
of opposite petals. Initially, a droplet of volume V = 0.03 is placed onto the sheet. In
figures 6(a–d), we show the relaxation process of the spherical encapsulation. During this
process, the petals of the sheet are first being pulled upward by the capillary force, until
they reach an upright position. After that, the petals are being pulled towards the centre so
as to form a spherical encapsulation at equilibrium.
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Figure 6. Dynamics of the spherical encapsulation of a droplet with fixed volume V = 0.03. (a–d) Snapshots
of the folding process. The insets are top views of the droplet–sheet system.

4.2. Folded structures at equilibrium
To demonstrate further the capability of the proposed model, we vary the droplet
volume, examine the folded structures at equilibrium, and compare the results with the
experimental findings presented in Py et al. (2007).

(i) For a triangular sheet, we simulate the relaxation dynamics with a slowly decreasing
droplet volume. The rate of the volume decrease is slow, so at each instant,
the system is approximately at equilibrium; see supplementary movie 4 for the
simulated process. Two equilibrium configurations are shown in figures 7(a) and
7(b), corresponding to droplet volumes V = 0.074 and V = 0.037, respectively. In
the latter case, we obtain a folded state where the corners of the triangular sheet
are about to make contact. Further decreasing the volume will result in a ‘pyramid’
encapsulation, as depicted in figure 1(b) of Py et al. (2007). However, we note that
capturing the self-contacts of the sheet is beyond the capability of our numerical
method.

(ii) For a square sheet, the state with fourfold symmetry remains stable when the droplet
is large. However, as the droplet volume is decreased below V = 0.5, the fourfold
symmetric state gradually loses stability, and the system transitions to centreline
folding characterized by twofold symmetry; see figures 8(a) and 8(b). As the volume
is decreased further, the sheet tends to wrap the droplet in a quasi-cylindrical shape.
At V = 0.112, the pairs of adjacent corners are about to touch, dividing the droplet
surface into three pieces, with an oval shape at the top, as shown in figure 8(c). We
refer to supplementary movie 5 for the evaporation process.
In the experiments of Guo et al. (2009) and Py et al. (2007), they observed a diagonal
folding state when two opposite corners of the square sheet are significantly rounded.
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V = 0.037V = 0.074

(b)(a)

(c) (d )

Figure 7. (a,b) Equilibrium states of the droplet–triangular sheet system with two different droplet volumes,
and (c,d) a comparison with the experimental results (Py et al. 2007).

We observed a similar phenomenon in our simulation: by replacing a pair of opposite
corners with circular arcs of radius 0.2, we obtained a diagonal folding state as
shown in figure 8(d). However, as the droplet volume falls below a certain threshold,
the diagonal folding state disappears, and the system transitions to a centreline
folding state.

(iii) For cubic encapsulation, we start with the configuration in figure 5(d), and gradually
decrease the droplet volume. The equilibrium state corresponding to the volume
V = 0.029 is shown in figure 9(a), where the panels of the sheet nearly form the
surface of a cube.

(iv) For spherical encapsulation, we present the configuration shown earlier (in figure 6d)
in a different view in figure 9(b) and make a comparison with the experimental result.

We conclude that very good qualitative agreement is observed between the simulation
and the experimental results.

4.3. Bifurcation diagrams
We now focus on triangular sheets and study their folding behaviours under different
bendabilities (B), while keeping Y = 5.33 × 102 and γs = 2.67 × 10−2 fixed. In previous
2-D models, a critical bendability B∗ was identified. Upon evaporation of the droplet, the
sheet unfolds when B > B∗, and wraps up when B < B∗. Our 3-D model shows richer
behaviours. We observe that a triangular sheet can fold in either a mode-2 or a mode-3
manner. In mode-2 folding, two vertices of the sheet are pulled up by the capillary force,
resulting in a state symmetric about the centreline of the triangular sheet. Moreover, for a
given droplet volume, equilibrium states with both large and small droplet surface areas
can co-exist. Typical configurations of these states are shown in figures 10(a) and 10(b).
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V = 0.5 V = 0.25 V = 0.112 V = 0.5

(e) (g) (h)

(b)(a) (c) (d )

( f )

Figure 8. (a–d) Equilibrium states of the droplet–square sheet system with different droplet volumes, and
(e–h) a comparison with the experimental results (Py et al. 2007).

(a) V = 0.029 V = 0.03(b)

(c) (d)

Figure 9. Equilibrium states of (a) cubic encapsulation and (b) spherical encapsulation, and (c,d) a
comparison with the experimental results (Py et al. 2007).

We will refer to these states as mode-2(a) and mode-2(b), respectively. In contrast, mode-3
folding exhibits threefold symmetry, with all three vertices being pulled up and tending to
attach to each other, as shown in figure 10(c).
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(a) (b) (c)

Figure 10. Typical configurations of (a,b) mode-2 folding, B = 0.04, V = 0.037, and (c) mode-3 folding,
B = 0.04, V = 0.074, of a triangular sheet.
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Figure 11. Bifurcation diagram in Regime I. The sheet bendability is B = 0.048. (a) The rescaled area of the
droplet surface versus the rescaled droplet volume. (b) The total energy E versus the rescaled volume. Here,
Vencap = 1/48

√
2 is the volume of the tetrahedron that can be formed by the triangular sheet, and |Σ0| is the

area of the undeformed sheet. In both plots, the ends of the branches for mode-2(a), mode-2(b) and mode-3
states are marked by �,� and •, respectively. Solid lines are the paths that the system follows as the droplet
volume is decreased.

Following the typical experimental set-up, we study the equilibrium states attained
through droplet evaporation. The evaporation rate is slow, allowing the system to
reach an equilibrium state at each instant. When the bendability is large, the sheet
eventually becomes flat as the droplet evaporates fully. When the bendability is small,
the sheet adopts a mode-3 folded state during the evaporation of the droplet. In cases
of intermediate bendabilities, the sheet takes on a mode-2 folded state upon droplet
evaporation. Accordingly, we classify the folding of triangular sheets into three regimes,
as described below.

In Regime I, an unfolded state is attained eventually. Initially, when the droplet volume
is large, the system exhibits threefold symmetry and adopts a mode-3 configuration. This
equilibrium state disappears when the volume is below a certain value. The system then
transitions to a twofold symmetry and takes on a mode-2(a) state. Eventually, the sheet
becomes flat as the droplet evaporates fully. A typical path that the system follows is
shown in figure 11. The mode-2(a) and mode-2(b) states co-exist within a certain range of
droplet volumes. However, the mode-2(b) folding state is not realized in this evaporation
process.
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Figure 12. Bifurcation diagram in Regime II. The sheet bendability is B = 0.040. (a) The rescaled area of the
droplet surface versus the rescaled droplet volume. (b) The system energy E versus the rescaled volume. See
the caption of figure 11 for descriptions of the symbols.
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Figure 13. Bifurcation diagram in Regime III. The sheet bendability is B = 0.030. (a) The rescaled area of
the droplet surface versus the rescaled droplet volume. (b) The system energy E versus the rescaled volume.
See the caption of figure 11 for descriptions of the symbols.

In Regime II, a mode-2(b) folded state is attained eventually. The system exhibits
threefold symmetry when the droplet volume is large, and transitions to a twofold
symmetry when the volume is below a certain value. As the volume is decreased further,
a mode-2(b) folded state is attained. A typical path that the system follows is shown in
figure 12. Again, the mode-2(a) and mode-2(b) states co-exist within a certain range of the
droplet volume, but the mode-2(a) state is not realized in the evaporation process.

In Regime III, a mode-3 folded state is attained eventually. The system maintains
threefold symmetry throughout the evaporation process. A typical path that the system
follows is shown in figure 13. Neither mode-2(a) nor mode-2(b) states are realized in the
evaporation process.

From the bifurcation diagrams, we see that multiple equilibrium states can co-exist. As
a result, the system exhibits hysteretic effects. This phenomenon is indeed observed in the
simulations. Taking Regime II (see figure 12) as an example, when the droplet volume is
decreased gradually, the system assumes the mode-2(b) folding state within the volume
range V � 3.7Vencap; in contrast, when the droplet volume is increased gradually from
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Figure 14. The critical bendabilities Bcrit for different stretching modulus Y . The upper line corresponds to
the mode-2 folding of a square sheet, and the lower line corresponds to the mode-3 folding of a triangular
sheet.

V = 0 up to approximately 3Vencap, the system adopts the mode-2(a) state (results not
shown).

We also note that the dynamical process discussed above depends on the rate of volume
change. The bifurcation diagrams show the paths that the system follows when the droplet
volume is decreased at a very slow rate, allowing the system to reach equilibrium at
each moment. However, at a faster rate, the dynamics of the system may deviate from
those paths. Taking Regime II as an example again, when the volume is decreased at
rate dV/dt = 0.0184, the system adopts the mode-2(a) state and follows the mode-2(a)
branch after leaving the mode-3 branch. In this case, the system eventually assumes a flat
configuration upon complete droplet evaporation.

4.4. Critical bendability
We proceed to identify the critical bendabilities for both square and triangular sheets. The
critical bendability, denoted by Bcrit, is defined as the bendability below which a mode-2
folding (for square sheets) or a mode-3 folding (for triangular sheets) occurs upon complete
droplet evaporation. Numerical results for these critical values are shown in figure 14.

We make two observations from the numerical results. First, under the same stretching
modulus, the critical bendability is higher for the mode-2 folding of a square sheet than for
the mode-3 folding of a triangular sheet. In other words, it is easier to fold a square sheet
than a triangular sheet of the same size. This observation agrees with the experimental
results of Py et al. (2007). Second, the critical bendabilities decrease as the stretching
modulus increases. While these values exhibit minor changes for a square sheet, they
decrease considerably for a triangular sheet. This observation is absent from previous 2-D
studies and reveals the interplay between the stretching and bending of the sheet when
wrapping a droplet in three dimensions.

We also note the connection between our results and those in Py et al. (2007). There,
they assumed a linear relation between lcrit and lB, where lcrit is the sheet’s critical folding
length, and lB is the capillary-bending length, and reported the ratio α = lcrit/lB by linear
regression on the measured data. In view of the definition of the dimensionless bendability
in (2.28), we see that this ratio is related to the critical bendability via

Bcrit =
(

lB
lcrit

)2

= α−2. (4.2)
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Thus Bcrit ≈ 0.021 for the mode-2 folding of a square sheet, and Bcrit ≈ 0.0069 for
the mode-3 folding of a triangular sheet, according to the experimental results. These
values are smaller than those that we obtained in our simulations. Such a discrepancy
might be caused partially by the mismatch of parameters. Another possible reason is
that their (lcrit, lB) data were measured for systems with varying stretching modulus Y .
To our understanding, in their measurements, lB was altered by modifying the sheet’s
thickness, which could consequently alter its stretching modulus. Thus the result from
linear regression on such data might not be comparable directly to the critical bendability
obtained in our simulations, given the latter’s dependence on the stretching modulus.

5. Conclusion

In this work, we introduced a mathematical model for the capillary folding of thin
elastic sheets in three dimensions. We began with the system free energy that consists of
interfacial energies and the nonlinear Koiter’s energy for the elastic sheet. The employment
of the Koiter’s energy allowed us to study large deformations of the sheet in three
dimensions. This is in contrast to simplified 1-D or 2-D models used in previous work,
such as the Euler’s elastica for beams and the FvK model for plates with small deflections.

We derived the governing equations for the equilibrium system by a variational method.
On the thin sheet, we obtained Koiter’s equations, which give the balance between
the elastic forces and the fluid pressure. On the droplet surface, we obtained the usual
Young–Laplace equation. At the pinned contact line, we obtained the force balance
between the capillary force, the elastic forces, and the surface tension of the sheet. By
assuming the droplet to be in a quasi-static state, we formulated a relaxation dynamics
model for the droplet–sheet system. Following this dynamics, the system energy decays
over time, and the system evolves towards the equilibrium state.

We then developed a numerical method to solve the relaxation dynamics. Numerical
simulations for sheets of various shapes were carried out and found to achieve good
qualitative agreements with experimental results, thereby validating the proposed model
and the effectiveness of the numerical method. Furthermore, we studied the folding of
a triangular sheet in detail. The simulation revealed fully 3-D folding behaviours that
were not observed in previous studies using 2-D models. In particular, we observed three
distinct folding regimes: the system attains an unfolded state, a mode-2 folded state,
or a mode-3 folded state, respectively, as the droplet volume is gradually decreased to
zero. We presented bifurcation diagrams illustrating these regimes. We also presented
critical bendabilities for the folding of square and triangular sheets. These results provide
new insights into the nonlinear process of capillary folding, and may contribute to the
advancement of microfabrication techniques.

In future work, we intend to investigate the dynamics of the droplet–sheet system by
incorporating fluid motions. We will also relax the pinned contact line condition and
consider moving contact lines. Following the principles of non-equilibrium dynamics (Ren
& E 2007; Ren, Hu & E 2010), we will develop a dynamical model that obeys an energy
dissipation law. Additionally, we will explore dynamic wetting phenomena, such as the
analogy of the inverted Cheerios effect (Karpitschka et al. 2016) on thin elastic sheets.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1051.

Funding. This work was supported in part by Singapore MOE Academic Research Fund Tier 2 (project no.
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Appendix A. Surface calculus

Let Σ be a 2-D surface in R
3. Let q : Σ0 → Σ be a C2 parametrization of Σ , with Σ0 ⊂

R
2 being the reference domain. Then ∂1q and ∂2q are tangent vectors on the surface. We

assume the parametrization is regular, i.e.

∂1q × ∂2q /= 0 (A1)

at every point of the surface. It then follows that the frame {∂1q, ∂2q, n} is non-degenerate
in R

3 at every point of the surface, where n is the unit normal. There exists a dual basis
{q(α)} of the tangent space in the sense that

q(α) · ∂βq = δα
β , (A2)

where α, β ∈ {1, 2}, and δ is the Kronecker delta symbol.
The first, second and third fundamental forms of the surface are defined as

aαβ = ∂αq · ∂βq, (A3a)

bαβ = ∂α∂βq · n, (A3b)

cαβ = ∂αn · ∂βn. (A3c)

We further define the quantities

aαβ = q(α) · q(β), bα
β = aαγ bγβ. (A4a,b)

The differentials of the non-degenerate frame {∂1q, ∂2q, n} are given by the
Gauss–Weingarten equations

∂α∂βq = Γ
η
αβ∂ηq + bαβn, (A5a)

∂βn = −bη
β ∂ηq, (A5b)

where Γ
η
αβ is the Christoffel symbol of the second kind, defined as

Γ
η
αβ = ∂α∂βq · q(η). (A6)

PROPOSITION A.1. For the variations of the dual frame, we have

δn = −(n · ∂βδq)q(β), (A7a)

δq(α) = −(q(α) · ∂βδq)q(β) + aαβ(n · ∂βδq)n. (A7b)
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Proof . We first note that {q(1), q(2), n} is the dual basis of {∂1q, ∂2q, n}. We compute

δn = (δn · ∂βq)q(β) = −(n · ∂βδq)q(β), (A8)

where we used δn · n = 0 and δ(n · ∂βq) = 0. We then compute

δq(α) = (δq(α) · ∂βq)q(β) + (δq(α) · n)n

= −(q(α) · ∂βδq)q(β) − (q(α) · δn)n

= −(q(α) · ∂βδq)q(β) + (n · ∂βδq)(q(α) · q(β))n

= −(q(α) · ∂βδq)q(β) + aαβ(n · ∂βδq)n, (A9)

and the proof is completed.

Appendix B. Variations of the nonlinear Koiter’s energy

First, we consider the variation of the stretching energy. Continuing from (2.18a), we have

δEs =
∫

Σ0

Sαβ∂αq · ∂βδq dA

=
∫

Σ0

∂β(Sαβ∂αq · δq) dA −
∫

Σ0

∂β(Sαβ∂αq) · δq dA

=
∫

∂Σ0

SαβNβ∂αq · δq dL

−
∫

Σ0

{∂β(Sαβ)∂αq · δq + SαβΓ
η
αβ∂ηq · δq + Sαβbαβn · δq} dA

=
∫

∂Σ0

SαβNβ∂αq · δq dL

−
∫

Σ0

∇βSαβ∂αq · δq + Sαβbαβn · δq dA, (B1)

where the covariant derivative ∇β is defined in (2.21). This gives (2.20a).
Next, we consider the variation of the bending energy. Continuing from (2.18b), we have

δEb =
∫

Σ0

Mαβδbαβ dA

=
∫

Σ0

Mαβ(∂α∂βδq · n − Γ
η
αβ∂ηδq · n) dA

=
∫

Σ0

∂β(Mαβ∂αδq · n) − ∂η(MαβΓ
η
αβδq · n) dA

−
∫

Σ0

∂β(Mαβn) · ∂αδq − ∂η(MαβΓ
η
αβn) · δq dA

� (I) + (II) + (III) + (IV). (B2)

For term (II), we have

−
∫

Σ0

∂η(MαβΓ
η
αβδq · n) dA = −

∫
∂Σ0

MηβΓ α
ηβNα(δq · n) dL. (B3)
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For term (I), we have∫
Σ0

∂β(Mαβ∂αδq · n) dA =
∫

∂Σ0

MαβNβ(∂αδq · n) dL

=
∫

∂Σ0

MαβNβ{∂α(δq · n) + bη
α∂ηq · δq} dL. (B4)

Note that on ∂Σ0, we have

∂α = Nα

∂

∂N
+ Lα

∂

∂L
. (B5)

Thus ∫
∂Σ0

MαβNβ∂α(δq · n) dL

=
∫

∂Σ0

MαβNαNβ

∂

∂N
(δq · n) − ∂

∂L
(MαβLαNβ)(δq · n) dL. (B6)

Next, for term (III), we have

−
∫

Σ0

∂β(Mαβn) · ∂αδq dA

= −
∫

∂Σ0

Nα∂β(Mαβn) · δq dL +
∫

Σ0

∂α∂β(Mαβn) · δq dA

� (III-1) + (III-2). (B7)

For (III-1), we apply the Weingarten equation (A5b) and obtain

−
∫

∂Σ0

Nα∂β(Mαβn) · δq dL

=
∫

∂Σ0

−∂βMαβNα(n · δq) + MαβNαbη
β(∂ηq · δq) dL. (B8)

For (III-2), we apply the Gauss–Weingarten equations (A5) and obtain∫
Σ0

∂α∂β(Mαβn) · δq dA

=
∫

Σ0

∂α{∂βMαβn − Mαβbγ
β∂γ q} · δq dA

=
∫

Σ0

∂α∂βMαβ(n · δq) − ∂βMαβbη
α(∂ηq · δq)

− ∂α(Mαβbη
β)(∂ηq · δq) − Mαβbγ

β (Γ η
αγ ∂ηq + bαγ n) · δq dA. (B9)

For (IV), we have∫
Σ0

∂η(MαβΓ
η
αβn) · δq dA

=
∫

Σ0

∂α(Γ α
βγ Mβγ )(n · δq) − MαβΓ

γ
αβbη

γ (∂ηq · δq) dA. (B10)
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Instant t = 1/32 t = 1/16

Error norm L∞ L2 L∞ L2

‖q�t − q�t/2‖ 2.74 × 10−3 6.03 × 10−4 3.63 × 10−4 9.24 × 10−5

‖q�t/2 − q�t/4‖ 1.29 × 10−3 2.89 × 10−4 1.98 × 10−4 4.69 × 10−5

Rate 1.09 1.06 0.88 0.98

Table 1. Errors and convergence rates for the time refinement test. The base time step size is �t = 1/1024.
The two instants are before the system reaches equilibrium.

Finally, we can combine (III-2) and (IV) to get

(III-2) + (IV)

=
∫

Σ0

{−∇β(bα
ηMηβ) − bα

η ∇βMηβ}(∂αq · δq)

+ {∇α∇βMαβ − Mαβcαβ}(n · δq) dA, (B11)

which gives the body integral term in (2.20b). We can also combine (I), (II) and (III-1) to
get

(I) + (II) + (III-1)

=
∫

∂Σ0

2bα
ηMηβNβ(∂αq · δq)

+
{
−∇βMαβNα − ∂

∂L
(MαβLαNβ)

}
(n · δq)

+ MαβNαNβ

∂

∂N
(n · δq) dL, (B12)

which gives the boundary integral term in (2.20b).

Appendix C. Validation of the numerical method

Consider the relaxation of a droplet with V = 0.074 on the triangular sheet as in § 4.1. The
relaxation process is shown in figure 3, where the system reaches equilibrium at t ≈ 0.07.

C.1. Time refinement
We fix the triangular mesh of the sheet with step size �x = 0.037. For the droplet surface,
we choose Γ0 = Σ0 with the same triangulation. No re-meshing is performed throughout
the relaxation process. We decrease the time step size from �t = 1/1024 to �t = 1/4096.
Numerical errors of the sheet q are calculated by comparing the solutions on adjacent
meshes. In table 1, we show the L∞ norm and the L2 norm of the errors for the numerical
solutions at two time instants. The overall convergence rate is observed to be close to first
order.

C.2. Spatial refinement
We fix the time step at �t = 1/4096. We set up a base mesh for the sheet with step
size �x = 0.112. We then refine the mesh by midpoint bisection to obtain another two
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Instant t = 1/32 t = 1/16 t = 1/8

Error norm L∞ L2 L∞ L2 L∞ L2

‖q�x − q�x/2‖ 6.66 × 10−2 1.52 × 10−2 5.34 × 10−2 2.34 × 10−2 1.40 × 10−1 6.14 × 10−2

‖q�x/2 − q�x/4‖ 8.70 × 10−3 2.14 × 10−3 1.43 × 10−2 6.53 × 10−3 3.11 × 10−2 1.44 × 10−2

Rate 2.94 2.84 1.90 1.84 2.17 2.09

Table 2. Errors and convergence rates for the spatial refinement test. The base step size is �x = 0.112.

finer meshes. We choose Γ0 = Σ0 with the same triangulation on each level. No
re-meshing is performed throughout the relaxation process. Numerical errors of q are
calculated by comparing the solutions on adjacent mesh levels. In table 2, we show the
errors and the convergence rates of the numerical solutions at three time instants. The
overall convergence rate is close to second order.

C.3. Robustness
We test the robustness of the equilibrium solutions to small perturbations of the initial
shape of the sheet. We choose �t = 1/1024 and the mesh to be the finest one in the
spatial refinement test. Re-meshing of the droplet surface is enabled as described in § 3.
We compute the relaxation dynamics with the following initial conditions for the vertical
component of the sheet:

(I) q3(X1, X2, 0) = 0.1 cos(5X1) sin(7X2),

(II) q3(X1, X2, 0) = 0.1 sin(7X2) cos(5X1),

(III) q3(X1, X2, 0) = 0.12 cos(7X1) sin(9X2).

⎫⎪⎪⎬
⎪⎪⎭

(C1)

The equilibrium solutions exhibit the same morphology as that shown in figure 3(d).
Furthermore, we perform a quantitative comparison of these equilibrium solutions
after eliminating translational and rotational degrees of freedom. Specifically, for two
equilibrium solutions q1, q2 ∈ Ssbdv , we align them by finding a rigid-body transformation
T such that ‖q1 − Tq2‖L2 is minimized. We observe that the difference q1 − Tq2 is less
than 2.2 × 10−6 in L2 norm, and less than 5.1 × 10−3 in L∞ norm, across all three initial
conditions. These errors are well below those reported in the spatial refinement test and
therefore support the robustness of our method.

Appendix D. Generation of the sheet

The operation of replacing a sharp corner with a circular arc of a specific radius can
be done by using the polybuffer routine in MATLAB. In the example of spherical
encapsulation, we generate the initial undeformed sheet using the following MATLAB
code:

X = linspace(0, 1/2, 17);
Y = 1/(2*2*pi) * cos(2*pi*X-pi/2);
fan = polyshape([X X(end-1:-1:2)], [Y -Y(end-1:-1:2)]);
for i=6:-1:1
fans(i) = rotate(fan, (i-1)*60);
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end
fl = union(fans);
fl_in = polybuffer(polybuffer(fl, 0.018), -0.018);
fl_out = polybuffer(polybuffer(fl, -0.018), 0.018);
th = linspace(0, 2*pi, 33);
th = th(1:end-1);
disk = polyshape(cos(th), sin(th));
flower = union(fl_out, intersect(fl_in, scale(disk, 0.2)));

The undeformed sheet is stored in the variable flower.
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