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Determination of Hauptmoduls and
Construction of Abelian Extensions of
Quadratic Number Fields

Hung-Jen Chiang-Hsieh and Yifan Yang

Abstract. We obtain Hauptmoduls of genus zero congruence subgroups of the type Γ+

0
(p) :=

Γ0(p) + wp, where p is a prime and wp is the Atkin–Lehner involution. We then use the Haupt-

moduls, along with modular functions on Γ1(p) to construct families of cyclic extensions of quadratic

number fields. Further examples of cyclic extension of bi-quadratic and tri-quadratic number fields

are also given.

1 Introduction

Let Γ be a congruence subgroup of SL2(R) commensurable with SL2(Z). The genus

of Γ is defined to be the genus of the compact Riemann surface X(Γ) = Γ\H∗, where

H∗
= {τ : Im τ > 0} ∪ Q ∪ {∞}. When the genus of a congruence subgroup Γ

is zero, the function field on X(Γ) can be generated by a single modular function.

We call a generator of the function field a Hauptmodul if the modular function has

a unique simple pole with residue 1 at infinity. For example, the classical modular

j-function is a Hauptmodul of SL2(Z).

Since a Hauptmodul on a congruence subgroup of genus zero is periodic, a Haupt-

modul has a Fourier expansion q−1/k + c0 + c1q1/k + · · · , where q = e2πiτ and k is the

width of the cusp ∞. When the genus zero congruence subgroups contain Γ0(N),

these Fourier coefficients have a surprising connection with the monster group, the

largest sporadic finite simple group. This connection was conjectured in [1], and

proved by Borcherds. In order to formulate the connection, Conway and Norton

expressed Hauptmoduls of such subgroups using the classical Dedekind η-functions

and the θ-series, from which the Fourier coefficients can be easily computed. (Note

that the first fifty Fourier coefficients of Hauptmoduls have been calculated in [6].)

In this note we will give an alternative determination of Hauptmoduls of some of

the genus zero congruence subgroups using the generalized Dedekind η-functions.

(See Section 2 for the definition of these functions.) We are primarily concerned

with genus zero congruence subgroups of the type Γ
+
0 (p) := Γ0(p) + wp , where p are

11, 17, 19, 23, 29, 31, 41, 47, 59, 71, because they are the cases where there is no way

to express the Hauptmoduls in terms of the Dedekind η-functions. (The values of the
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Hauptmoduls of Congruence Subgroups 335

prime p are precisely those such that X0(p) := X(Γ0(p)) is elliptic or hyperelliptic,

except 37.)

An application of interest is the construction of cyclic extensions of quadratic

number fields. Our construction is an immediate generalization of the construc-

tion of cyclic extensions of Q described in Lecacheux [5], Washington [8], and Dar-

mon [3]. Their basic idea is to use the fact that if f is a modular function on

Γ1(N) = {γ ∈ SL2(Z) : γ ≡ ±
(

1 0
0 1

)

mod N},

then any symmetric sum of product of f |γ , where γ runs through a set of coset rep-

resentatives of Γ0(N)/Γ1(N), is a modular function on Γ0(N). Thus, the coefficients

in
∏

γ∈Γ0(N)/Γ1(N)

(T − f
∣

∣

γ
)

are all modular functions on Γ0(N). When the genus of Γ0(N) is zero and H is its

Hauptmodul, the coefficients are rational functions of H. If f is suitably chosen,

then H and f will generate the function field of Γ1(N)\H∗. More precisely, any other

f |γ is in Q(H, f ). Therefore, the above polynomial gives an abelian extension of

Q(H) with the Galois group isomorphic to Γ0(N)/Γ1(N) ≃ Z
×

N /{±1}, which in

many cases are cyclic. For the cases where Γ0(N)\H∗ is elliptic or hyperelliptic, we

can show that the above idea yields families of cyclic extensions of quadratic number

fields. The precise procedure will be described in Section 3.

Finally, we remark that our approach can also be applied to genus zero congruence

subgroups of other types. However, given the main application we have in mind, we

only consider Γ
+
0 (p) here. Nonetheless, we will give a few examples of other types of

genus zero congruence subgroups in Section 4, where families of cyclic extension of

bi-quadratic and tri-quadratic number fields will also be presented.

2 Hauptmoduls of Γ
+
0 (p)

In this section we will obtain expressions for Hauptmoduls of Γ
+
0 (p). Throughout

this section we assume that p is one of the primes 11, 17, 19, 23, 29, 31, 41, 47, 59,

and 71. We first prove a lemma that makes Hauptmoduls explicit.

Lemma 1 Let g be the genus of Γ0(p). Let X(τ ) and Y (τ ) be modular functions on

Γ0(p) with a unique pole of order g +1 and g +2, respectively, at infinity. Let the Fourier

expansions of X and Y at 0 be

X(−1/(pτ )) = a0 +

∞
∑

n=1

anqn and Y (−1/(pτ )) = b0 +

∞
∑

n=1

bnqn,

where q = e2πiτ . Then the function (Y + a1 − b0)/(X − a0) is a Hauptmodul on Γ
+
0 (p).

Proof We first notice that the cusp ∞ is never a Weierstrass point on the compact

Riemann surface Γ0(p)\H∗ (see [7]). Therefore, the existence of such functions X
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and Y is guaranteed. Now let H be a Hauptmodul on Γ
+
0 (p). Then H, considered

as a modular function on Γ0(p), has two simple poles at ∞ and 0. It follows that

(X − a0)H is a modular function with a pole of order g + 2 at infinity. Hence we have

H(X − a0) = Y + c1X + c2 for some constants c1 and c2. Thus, a Hauptmodul on

Γ
+
0 (p) can be taken to be of the form (Y − c)/(X − a0) for some constant c. Now,

taking the local behavior of the function (Y −c)/(X−a0) near ∞ and 0 into account,

we see that the constant c must be b0 − a1. This completes the proof.

With the above lemma proven, the problem of determining Hauptmoduls reduces

to finding functions with a pole of designated order at infinity. For this purpose we

follow the approach of Yang [9].

Following the notation in Yang [10], we fix a positive integer N , and define two

classes of generalized Dedekind η-functions by

Eg,h(τ ) = qB(g/N)/2

∞
∏

m=1

(1 − e2πih/N qm−1+g/N)(1 − e−2πih/N qm−g/N)

for g and h not congruent to 0 modulo N simultaneously and

Eg(τ ) = qNB(g/N)/2

∞
∏

m=1

(1 − q(m−1)N+g)(1 − qmN−g)

for g not congruent to 0 modulo N , where B(x) = x2 − x + 1/6. Here we recall the

properties of Eg relevant to our consideration.

Proposition 2 ( [10, Theorem 1]) The functions Eg,h satisfy

(1) Eg+N,h = E−g,−h = −ζ−hEg,h, Eg,h+N = Eg,h.

Moreover, let γ =
(

a b
c d

)

∈ SL2(Z). Then we have for c = 0,

Eg,h(τ + b) = eπibB(g/N)Eg,bg+h(τ ),

and for c 6= 0, Eg,h(γτ ) = ǫ(a, b, c, d)eπiδEg ′,h ′(τ ), where

ǫ(a, b, c, d) =

{

eπi(bd(1−c2)+c(a+d−3))/6 if c is odd,

−ieπi(ac(1−d2)+d(b−c+3))/6 if d is odd,

δ =
g2ab + 2ghbc + h2cd

N2
− gb + h(d − 1)

N
,

(g ′h ′) = (g h)
(

a b
c d

)

.

Proposition 3 ( [10, Corollary 2]) The functions Eg satisfy

(2) Eg+N = E−g = −Eg .
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Moreover, let γ =
(

a b
cN d

)

∈ Γ0(N). We have for c = 0,

Eg(τ + b) = eπibNB(g/N)Eg(τ ),

and for c 6= 0,

(3) Eg(γτ ) = ǫ(a, bN, c, d)eπi(g2ab/N−gb)Eag(τ ),

where

ǫ(a, b, c, d) =

{

eπi(bd(1−c2)+c(a+d−3))/6 if c is odd,

−ieπi(ac(1−d2)+d(b−c+3))/6 if d is odd.

Proposition 4 ( [10, Corollary 3]) Consider the function f (τ ) =
∏

g Eg(τ )eg , where

g and eg are integers. Suppose that one has

(4)
∑

g

eg ≡ 0 mod 12,
∑

g

geg ≡ 0 mod 2.

Then f is invariant under the action of Γ(N). Moreover, if in addition to (4), one also

has

(5)
∑

g

g2eg ≡ 0 mod 2N,

then f is a modular function on Γ1(N).

Furthermore, for the cases where N is a positive odd integer, the conditions (4) and

(5) can be reduced to

∑

g

eg ≡ 0 mod 12 and
∑

g

g2eg ≡ 0 mod N,

respectively.

Proposition 5 ( [10, Lemma 2]) The order of the function Eg at a cusp a/c with

(a, c) = 1 is (c, N)P2(ag/(c, N))/2, where P2(x) = {x}2 − {x} + 1/6 and {x} de-

notes the fractional part of a real number x.

Take p = 11, for example. The genus of Γ0(11) is 1. Thus, we need to find two

functions X and Y with a unique pole of order 2 and 3, respectively, at infinity. By

Propositions 3–5 we see that

X =

∑

γ∈Γ0(11)/Γ1(11)

E2E2
4

E3
1

∣

∣

∣

γ
= q−2 + 2q−1 + 4 + 5q + 8q2 + q3 + q4 − 11q5 + · · ·

and

Y =

∑

γ∈Γ0(11)/Γ1(11)

E4
5

E3
1E3

∣

∣

∣

γ
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are such functions. (See [9] for details on how we find such functions.)

To complete our determination of a Hauptmodul on Γ
+
0 (11) we notice that by

Proposition 21 and the definition of Eg ,

(6) Eg(−1/(11τ )) = Eg,0(−1/τ ) = eπig/11E0,g(τ ).

It follows that

X(−1/(11τ )) = 16 + 121q + 605q2 + 2299q3 + · · · ,

Y (−1/(11τ )) = 59 + 726q + 4961q2 + 25773q3 + · · · .

By Lemma 1, we see that the function

Y + 62

X − 16
= q−1 + 1 + 17q + 46q2 + 116q3 + 252q4 + 533q5 + 1034q6 + 1961q7 + · · ·

is a Hauptmodul of Γ
+
0 (11). As a check on our computation we note that the above

Fourier expansion agrees with that in [1, Table 4].

Hauptmoduls of other subgroups Γ
+
0 (p) can be obtained in the same way. We

now summarize our finding in the following theorem. Here the notation
∑

k

∏

ab

represents
∑

γ∈Γ0(p)/Γ

∏

Eb
a|γ , where Γ is the unique intermediate subgroup between

Γ0(p) and Γ1(p) with [Γ0(p) :Γ] = k. We say a Hauptmodul is normalized if its

constant term is zero.

Theorem 6 Let X and Y be given as in Table 1. Then the function Y/X is the normal-

ized Hauptmodul for their respective group Γ
+
0 (p).

3 Construction of Cyclic Extensions of Quadratic Number Fields

In this section we will use the idea presented in the introduction to construct cyclic

extensions of quadratic number fields.

Let Γ be an intermediate subgroup between Γ1(N) and Γ0(N). The following

lemma gives sufficient conditions for the polynomial
∏

γ∈Γ0(N)/Γ

(T − f |γ)

to split in K( f ), where K denotes the subfield of modular functions on Γ0(N) whose

Fourier coefficients are all rational numbers.

Lemma 7 Let Γ be an intermediate subgroup between Γ1(N) and Γ0(N). Let f be a

modular function on Γ such that f can be expressed in the form
∏

E
eg

g . Assume that Γ

is the largest intermediate subgroup between Γ0(N) and Γ1(N) on which f is modular.

Then the polynomial

F(T) :=
∏

γ∈Γ0(N)/Γ

(T − f |γ)

splits in the field K( f ) with Gal(K( f )/K) ≃ Γ0(N)/Γ, where K is the subfield of mod-

ular functions on Γ0(N) whose Fourier coefficients are all rational.
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p X Y

11

∑

5

2 · 4
2

13
− 16

∑

5

5
4

13
· 3

− X + 62

17

∑

8

3 · 8

1 · 2
− 11

∑

8

6
2
· 8

22
· 3

+ 22

19

∑

9

7 · 8

1 · 6
− 8

∑

9

6
2
· 8

2 · 32
+ X + 8

23

∑

11

8 · 10

1 · 5
− 15

∑

11

8 · 10
2
· 11

2

4 · 52
· 62

+ 4X + 85

29

∑

7

8 · 9

2 · 5
− 4

∑

7

4 · 6 · 10 · 14

2 · 3 · 5 · 7
+ 2X + 25

31

∑

5

4 · 7 · 11

1 · 5 · 6
− 10

∑

5

3 · 13 · 15

1 · 5 · 6
+ X + 20

41

∑

10

16 · 20

2 · 18
− 16

∑

10

11 · 17

4 · 5
+ 2X + 32

47

∑

23

12 · 17 · 19 · 21

6 · 10 · 13 · 15
− 17

∑

23

21 · 22 · 23

6 · 11 · 13
+ 3X + 102

59

∑

29

17 · 19 · 23

1 · 18 · 21
− 38

∑

29

24 · 25 · 26 · 28

12 · 13 · 14 · 21
+ 2X + 102

71 2

∑

35

30 · 32

2 · 28
−

∑

35

14 · 22 · 32

7 · 11 · 16
− 68

∑

35

30 · 32

2 · 28
+ 2X + 110

Table 1

Proof From the properties of Eg (see Proposition 3) we know that if f =
∏

E
eg

g is

modular on Γ, then f |γ = ǫ
∏

E
eg

ag for all γ =
(

a b
c d

)

∈ Γ0(N), where ǫ = ±1. Thus,

the Fourier coefficients of f |γ are all rational numbers. It follows that the coefficients

in the polynomial F(T) are all in K. Let f1, . . . , fk denote the zeroes of F(T). Then

K( f1, . . . , fk) is a finite extension of K. Moreover, if γ1 and γ2 are two distinct ele-

ments of Γ0(N)/Γ, then we must have f |γ1
6= f |γ2

. This is because if f |γ1
= f |γ2

,

then f is fixed by the non-trivial element γ1γ
−1
2 of Γ0(N)/Γ, contradicting the as-

sumption that Γ is the largest intermediate subgroup on which f is modular. Thus,

the extension degree of K( f1, . . . , fk) over K is at least [Γ0(N) :Γ].

Now we consider the Galois group G of K( f1, . . . , fk) over K. Clearly, G has a

subgroup H induced by the action of Γ0(N)/Γ on fi . By the definition of a modular

function, if an element h in K( f1, . . . , fk) is fixed by H, then h is a modular function

on Γ0(N). Moreover, every element in K( f1, . . . , fk) has rational Fourier coefficients.

Therefore, h ∈ K, and the fixed field of H is exactly K. By the Galois theory, this

implies that the Galois group G is in fact equal to H, which is isomorphic to Γ0(N)/Γ

because of the assumption that Γ is the largest intermediate subgroup on which f is

modular. It follows that F(T) splits in K( f ). This completes the proof.
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Lemma 8 Let X1, . . . , Xk be modular functions on a congruence subgroup Γ such that

they generate the whole function field on Γ. Suppose that their Fourier expansions have

rational coefficients. Then every modular function on Γ whose Fourier coefficients are

rational is in the field Q(X1, . . . , Xk).

Proof Let f be a modular function on Γ whose Fourier coefficients are rational.

We have f = p1/p2 for some polynomials p1, p2 in C[X1, . . . , Xk]. Writing out the

Fourier expansion of f p2 = p1, we see that the coefficients of the polynomials p1,

p2 satisfy a system of linear equations whose coefficients are all rational numbers.

Therefore, they can be chosen to be rational. This completes the proof.

We now construct cyclic extensions of quadratic number fields as follows. Let X

and Y be the modular functions on Γ0(p) listed in Theorem 6 such that H := Y/X

is the normalized Hauptmodul of Γ
+
0 (p). It is clear that X + X|wp

and X · X|wp
are

functions on Γ
+
0 (p). Therefore, they are zeroes of a quadratic polynomial over Q(H).

In fact, because the only pole of X is at infinity, the polynomial is a monic polynomial

over Q[H]. That is, we have X2 + c1(H)X + c2(H) = 0 for some c1, c2 ∈ Q[H].

Moreover, since Y = XH, we also have Y 2 + Hc1(H)Y + H2c2(H) = 0.

Let Γ be an intermediate group between Γ0(p) and Γ1(p) with [Γ0(p) :Γ] = k.

Let f =
∏

E
eg

g be a modular function on Γ such that Γ is the largest intermediate

subgroup on which f is modular. By Lemmas 7 and 8, the coefficients of the polyno-

mial

F(T) :=
∏

γ∈Γ0(N)/Γ

(T − f |γ)

are all in Q(X,Y ), and the splitting field is Q(X,Y )( f ) with Galois group isomorphic

to Γ0(p)/Γ ≃ Zk. Now suppose that H takes a rational value h. Then X and Y will

be in the same quadratic number field Q(
√

∆), where ∆ = c1(h)2 − 4c2(h). Thus,

the above polynomial F(T) defines a cyclic extension of degree k over Q(
√

∆). (Of

course, we sometimes get a cyclic extension of Q this way, not a quadratic number

field. But this occurs only when (X,Y ) is a rational point on the modular curve

X0(p), and it is known that there are only finitely many of them. Also, it may happen

that the value of f for certain rational numbers h is in an extension field of Q(
√

∆)

of degree strictly less than k, but we expect that this is not the case for a general h.)

We now give some examples.

Example 1 Take p = 11, for example. Let X and Y be given as in Theorem 6.

Since the orders of poles of X and Y are relatively prime, X and Y generate the whole

modular function field on Γ0(11). Furthermore, X and Y clearly have integer Fourier

coefficients. Thus, by Lemma 8, every modular function on Γ0(11) that has rational

Fourier coefficients is in the field Q(X,Y ). Moreover, the quadratic relation between

X and the Hauptmodul H = Y/X is X2 − (H2 + 2H − 46)X + (121H + 847) = 0, and

the discriminant is

H4 + 4H3 − 88H2 − 668H − 1272 = (H + 6)(H3 − 2H2 − 76H − 212).
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(We remark that the four zeroes of the above polynomial of H correspond to the

four elliptic points of order 2 in Γ
+
0 (11)\H∗. The fact that one of the zeroes is ratio-

nal corresponds to the fact that the number of inequivalent classes of positive defi-

nite quadratic forms 11Ax2 + Bxy + C y2, A, B,C ∈ Z, of discriminant −11 under

the action of Γ
+
0 (11) is 1. In other words, −6 is the value of H at the elliptic point

(11 +
√
−11)/22, which is the root of 11z2 − 11z + 3 on the upper half-plane. On the

other hand, the roots of H3−2H2−76H−212 are the values of H at the three elliptic

points corresponding to the three inequivalent classes of positive definite quadratic

forms 11Ax2 + Bxy + C y2 of discriminant −44. See [2] for more discussion on the

values of Hauptmoduls at elliptic points.)

Now choose T = E3E4E5/E2
1E2. By Proposition 4, T is modular on Γ1(11). More-

over, we see from Proposition 3 that the action of Γ0(11)/Γ1(11) on T results in T,

E1E3E5/E2
2E4, −E1E2E5/E3E2

4, E1E2E4/E5E2
3, and E2E3E4/E1E2

5. This, in particular,

shows that Γ1(11) is the largest intermediate subgroup between Γ0(11) and Γ1(11)

on which T is modular, and T satisfies the assumption in Lemma 7 with Γ = Γ1(11).

Furthermore, by Proposition 5, their divisors are supported at the cusps of the form

k/11. Thus, any modular function on Γ0(11) formed by a symmetric sum of the

above functions will have poles only at ∞, and hence must be expressible as a poly-

nomial of X and Y . In fact, we find that f satisfies

(7) T5 − (X + 18)T4 + (2X + 35)T3 − (X + 16)T2 − 2T + 1 = 0.

The settings of H = −10,−8,−6,−4,−2, 0, 2, for example, give cyclic extensions of

degree 5 of

Q(
√

163), Q(
√

122), Q, Q(
√
−2), Q(

√
−19), Q(

√
−318), and Q(

√
−182),

respectively.

Remark In [5] Lecacheux showed that the family of the sextic fields she constructed

using the covering of modular curves X1(13) 7→ X0(13) have systems of fundamental

units expressible in terms of values of modular functions. A similar phenomenon

also appears in the family of quartic fields considered in [8]. A common feature of

the above two families of cyclic extensions is that the modular functions used are the

so-called modular units. That is, they are modular functions with divisors supported

only at cusps. (See [4] for more information.) In our notation, they can be expressed

as products of Eg or E0,g . Since our construction of cyclic extensions of quadratic

number fields also uses the modular units, one may ask whether systems of funda-

mental units for the fields under consideration can be expressed in terms of values of

modular functions analogously. To be more precise, we would like to study the unit

groups in Q(
√

∆, T), where H is an integer, ∆ = (H + 6)(H3 − 2H2 − 76H − 212),

and T is a root of (7). However, our investigation is not as satisfactory as that in [5]

or that in [8].

From now on, we use the capital letters H and T to indicate that they are consid-

ered as modular functions, while the lowercase letters h and t will denote the assign-

ment of an integer h to H and of a complex number t to the corresponding value

of T.
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We first deal with the case when ∆ is a perfect square. These ∆ correspond to

rational points on X0(11), and it is well known that there are five rational points on

X0(11). Among them, two are the cusps ∞ and 0, and the value of H at these two

points is infinity. Moreover, since there are two choices for x for a given h in general,

we conclude that there are only two finite values of h that make ∆ a perfect square.

Namely, they are h = −6, which gives ∆ = 0 and corresponds to the rational points

(X,Y ) = (−11, 66), and h = −7, which gives ∆ = 121 and corresponds to (0, 0)

and (−11, 77). When X = −11 and X = 0, the polynomial in (7) has discriminant

114 and 118, respectively. Thus the extension field Q(t) is Q(cos(2π/11)). (This can

be seen from the conductor-discriminant formula and the fact that Gal(Q(t)/Q) is

of order 5.) Computing the regulators using the computer software PARI GP, we find

that when X = −11, the roots of (7), along with ±1, generate the whole unit group,

and when X = 0, they generate a subgroup of index 11 of the unit group.

We next consider the case when ∆ is not a perfect square. The minimal polyno-

mial for the modular function T over Q(H) is of degree 10, and the conjugates of T

are obtained by letting the right cosets of Γ1(11) in Γ
+
0 (11) act on T. The extension

Q(H, T) over Q(H) is not normal because the Fourier coefficients of T|w11
are not in

Q . In fact, using property (6) of Eg and the fact that H and T generate the whole func-

tion field on Γ1(11), one sees that the splitting field is Q(H, T, cos(2π/11)). On the

other hand, by Lemma 8, we have T|γ ∈ Q(H, T) for all γ ∈ Γ0(11)/Γ1(11). Thus,

if h is an integer, then any conjugate of t induced by the action of Γ0(11)/Γ1(11) is in

Q(t), while the remaining conjugates are in Q(t, cos(2π/11)).

Now assume that h is an integer such that ∆ is negative. That is, assume that

h is one of the integers −5, . . . , 10. Then the rank of the unit groups is 4 because

all of the conjugates of t are non-real. Since we are interested in the question of

whether the unit group U is generated by values of modular functions, we naturally

consider the subgroup U ′ generated by the conjugates of t induced by the action

of Γ0(11)/Γ1(11). Since there are only finitely many cases, we just use PARI GP to

determine the index [U :U ′] case by case. We find that when h = −5,−4,−2, 10,

the index is 11. When h = 1, the index is 781, and when h = −3,−1, 0, 2, . . . , 9, we

have U = U ′.

For the remaining cases, where ∆ is positive non-square, the field Q(t) is totally

real, and the rank of the unit group is 9. Now among the conjugates of T over Q(H),

only five of them are in Q(T, H), and the rest are in Q(T, H, cos(2π/11)). Thus, it

seems to us that in these cases the values of modular units will not be able to generate

the unit group of Q(t), and a result analogous to that of [5] or that of [8] is out of

reach.

Example 2 Take p = 23, and let X, Y , and H be given as in Theorem 6. Then we

have

X2 − (H3 + 2H2 − 11H − 49)X + (69H2 + 368H + 644) = 0,

whose discriminant, as a function of X, is

(H3 − 2H2 − 17H − 25)(H3 + 6H2 + 11H + 7).

(Again, we remark that the factor H3 + 6H2 + 11H + 7 corresponds to the three

inequivalent classes of quadratic forms 23Ax2 +Bxy +C y2 of discriminant −23 under
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the action of Γ
+
0 (23), while the other factor H3−2H2−17H−25 corresponds to those

quadratic forms 23Ax2 + Bxy + C y2 of discriminant −92.) Set T = E8E10/(E1E5).

We find

T11 + (X + 15)T10 + (Z + 2X + 18)T9 + (−Z + Y − X − 22)T8

+ (−XY + 3X2 − 5Z − 15Y + 107X + 968)T7

+ (2XY − 7X2 + 11Z + 27Y − 242X − 2089)T6

+ (−XY + 5X2 − 6Z − 15Y + 166X + 1442)T5

+ (−X2 − Z + 5Y − 35X − 434)T4 + (Z − 4Y + 5X + 177)T3

+ (Y − X − 49)T2 + 5T − 1 = 0,

where

Z =

∑

γ∈Γ0(23)/Γ1(23)

E4
8

E1E3
4

∣

∣

∣

γ
=

Y 2 − XY − 6X2 − 69Y − 129X

X

= q−5 + q−4 + q−3 + q−2 + 2q−1 + 8 + 3q + · · ·

is a modular function on Γ0(23) with a pole of order 5 at infinity. Now the settings

of H = −5,−4,−3,−2,−1, 0, 1, for instance, yield cyclic extensions of degree 11

of Q[
√

5], Q[
√

265], Q[
√
−19], Q[

√
−7], Q[

√
−11], Q[

√
−7], Q[

√
−43], respec-

tively.

4 Further Examples

Example 3 Let N = 21. The congruence subgroup Γ0(21) is of genus 1, while

Γ0(21) + w3 is of genus 0. The normalized Hauptmodul for Γ0(21) + w3 can be

expressed as η(τ )η(3τ )/(η(7τ )η(21τ )) + 1. Let

X =
η(3τ )3η(7τ )

η(τ )η(21τ )3
− 1 = q−2 + q−1 + 1 + 2q2 + q3 + · · · ,

Y =
η(3τ )6η(7τ )2

η(τ )2η(21τ )6
− η(3τ )η(7τ )7

η(τ )η(21τ )7
− 2X − 4 = q−3 + q−2 − 2 + q + 3q2 + 2q3 + · · ·

be two modular functions on Γ0(21) with poles of orders 2 and 3 at ∞. Then we have

the relations

Y = XH, X2 − (H2 + H + 3)X − (3H + 3) = 0.

The discriminant of the last quadratic equation is (H2 + 3H + 3)(H2 −H + 7), which

we can verify that the zeroes of the factor H2 + 3H + 3 are the values of H at the

two elliptic points of order 2 on X0(21)/w3, while H2 − H + 7 corresponds to the

two elliptic points of order 3 on X0(21)/w3. Now take a modular function T =
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E8E10/(E1E4) = q−3 + q−2 + q−1 + 1 + 2q + 2q2 + · · · on Γ1(21) whose divisors are

supported at cusps of the form k/21 with (k, 21) = 1. We have

(8) T6 − Y T5 − (X2 + 2Y )T4 − (2X2 + 2Y − 1)T3 − (X2 + 2Y )T2 − Y T + 1 = 0.

(We remark that the observation that the above equation of T is invariant under

the substitution T 7→ 1/T can be explained using the fact that the action of one of

the coset representative
(

8 3
21 8

)

of Γ0(21)/Γ1(21) sends T to its reciprocal.) Now the

setting of H = −3, . . . , 3 yields cyclic extensions of degree 6 of Q[
√

57], Q[
√

13],

Q , Q[
√

21], Q , Q[
√

13], and Q[
√

273], respectively.

Example 4 Again let N = 21. The congruence subgroups Γ0(21)+w3, Γ0(21)+w21,

and Γ
+
0 (21) are all of genus zero, where Γ

+
0 (21) denotes the congruence subgroup

Γ0(21) plus all the Atkin–Lehner involutions. The normalized Hauptmoduls for the

above three congruence subgroups are, respectively,

H1 =
η(τ )η(3τ )

η(7τ )η(21τ )
+ 1, H2 =

η(3τ )2η(7τ )2

η(τ )2η(21τ )2
− 2,

and

H = H1 +
7

H1 − 1
= H2 +

1

H2 + 2
.

They satisfy the quadratic relations

H2
1 − (H + 1)H1 + (H + 7) = 0, H2

2 − (H − 2)H2 + (−2H + 1) = 0.

Let ∆1 = H2 − 2H − 27 and ∆2 = H(H + 4) denote the discriminants of the above

quadratic polynomials. Now the functions X and Y in Example 3 satisfy

X + 1 = (H1 − 1)(H2 + 2), Y = XH1.

Thus, they are in the field Q[
√

∆1,
√

∆2]. When H is a rational number, equation (8)

yields a cyclic extension of degree 6 of Q[
√

∆1,
√

∆2]. For example, the settings of

H = −3,−2, . . . , 3 give cyclic extensions of Q[
√
−3], Q[

√
−19, i], Q[

√
−3,

√
−6],

Q[
√
−3], Q[

√
−7,

√
5], Q[

√
−3,

√
3], Q[

√
−6,

√
21], respectively.

Example 5 Let N = 30. The groups Γ0(30) + 〈w3, w5〉, Γ0(30) + 〈w2, w15〉, and

Γ0(30) + 〈w5, w6〉 are of genus zero. Their normalized Hauptmoduls are

H1 =
η(τ )η(3τ )η(5τ )η(15τ )

η(2τ )η(6τ )η(10τ )η(30τ )
+ 1, H2 =

η(3τ )η(5τ )η(6τ )η(10τ )

η(τ )η(2τ )η(15τ )η(30τ )
− 1,

and

H3 =

( η(2τ )η(3τ )η(10τ )η(15τ )

η(τ )η(5τ )η(6τ )η(30τ )

) 2

− 2,
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respectively. Then the normalized Hauptmodul H for Γ
+
0 (30) is

H = H1 +
4

H1 − 1
= H2 +

1

H2 + 1
= H3 +

1

H3 + 2
.

Thus, H1, H2, and H3 fall in the fields Q[
√

∆k], k = 1, 2, 3 with

∆1 = (H − 5)(H + 3), ∆2 = (H − 1)(H + 3), ∆3 = H(H + 4).

Set

X =
η(τ )η(6τ )6η(10τ )2η(15τ )3

η(2τ )2η(3τ )3η(5τ )η(30τ )6
− 5 = q−4 − q−3 + q−2 + q−1 − 5 + q2 + · · · ,

Y =
η(6τ )3η(10τ )3η(15τ )6

η(2τ )η(5τ )2η(30τ )9
− η(τ )η(2τ )η(5τ )η(6τ )η(10τ )η(15τ )3

η(3τ )η(30τ )7
− 5X − 20

= q−5 − 2q−4 + 3q−3 − 2q−2 − 2q−1 + 1 + q − q2 + · · · ,

Z =
η(6τ )3η(10τ )3η(15τ )6

η(2τ )η(5τ )2η(30τ )9
= q−6 + q−4 + 2q−2 + 2q−1 + 2q + 2q2 + 4q−3 + · · · ,

W =
η(τ )η(5τ )2η(6τ )η(10τ )η(15τ )3

η(30τ )8
= q−7 − q−6 − q−5 − q−2 + q−1 + 4 + q + · · · .

By an argument analogous to that in the proof of Lemma 7, we can show that the

functions X, Y , Z, and W are in an extension field of Q(H) with Galois group iso-

morphic to Γ
+
0 (30)/Γ0(30) ≃ Z2 × Z2 × Z2. In other words, they are in

Q

[

√

∆1,
√

∆2,
√

∆3

]

.

Now choose

T =
E11E14

E1E4

.

We find

T4 − (Y + 3X + 16)T3 − (X2 + 3W + 2Z + 5Y + 23X + 74)T2 − (Y + 3X + 16)T + 1 = 0.

By Lemma 7, this equation defines a cyclic extension of degree 4 of the tri-quadratic

field Q[
√

∆1,
√

∆2,
√

∆3].
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