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Identifying the governing parameters of self-sustained oscillation is crucial for the
diagnosis, prediction and control of thermoacoustic instabilities. In this paper, we
propose and validate a novel method for computing the parameters of thermoacoustic
oscillation in a stochastic environment, which exploits a physics-informed neural network
(PINN). Specifically, we introduce a negative log-likelihood loss function that integrates
the stochastic samples and the solution of the Fokker–Planck equation. The proposed
framework is validated using the numerically generated signal and the experimental
data obtained from an annular combustor, both before and after the supercritical Hopf
bifurcation. The results of PINN-based system identification show good agreement with
the actual system parameters and the original stochastic signal, with improved accuracy
compared to established methods. To the best of our knowledge, this study constitutes the
first demonstration of the PINN-inverse approach that uses the noise-induced dynamics
of thermoacoustic systems, opening up new pathways for diagnosing and predicting the
thermoacoustic behaviour of various combustion systems.
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1. Introduction

1.1. Thermoacoustic oscillations via Hopf bifurcation
Despite extensive research spanning many decades, thermoacoustic oscillations remain
a critical issue in developing and operating combustion systems such as rocket and gas
turbine combustors. These oscillations occur from the positive feedback loop between the
heat-release-rate fluctuations of an unsteady flame and the acoustic oscillations within
the combustor (Lieuwen & Yang 2005). When these two types of oscillations align
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in phase, self-sustained thermoacoustic instability arises at one or more of the natural
acoustic frequencies of the combustor via the Rayleigh mechanism (Magri, Juniper &
Moeck 2020). In most cases, thermoacoustic oscillation is considered undesirable, as it
exerts thermal stress on the combustion devices, potentially leading to mechanical damage
or failure. Therefore, diagnosing the combustion system in terms of thermoacoustic
instability is crucial in combustion systems so as to control the oscillation and prevent
the pressure surge (Juniper & Sujith 2018; Krishnan et al. 2021).

Phenomenologically, birth and extinction of a thermoacoustic oscillation is often
characterized as a Hopf bifurcation occurring between the fixed point and the limit cycle
(Noiray & Schuermans 2013; Subramanian, Sujith & Wahi 2013). The normal form of the
Hopf bifurcation in a nonlinear oscillating system is

da
dt

= k1a + k2a |a|2, (1.1)

where a = |a| eiφ is the amplitude of oscillation, t is time, φ is phase, and k1 and k2 are
linear growth rate and nonlinear parameter, respectively. Negative and positive values of
k1 indicate fixed-point and limit-cycle regimes, respectively, with the Hopf bifurcation
occurring at k1 = 0 (Hopf point). Also, the negative nonlinear parameter (k2 < 0) results
in a supercritical Hopf bifurcation, where the limit cycle is observed only after the Hopf
point (k1 > 0). On the contrary, when k2 is positive, subcritical Hopf bifurcation occurs,
and the limit cycle can take place even at negative k1. One or more higher-order nonlinear
terms may be required to stabilize the oscillation in the latter situation. It is worth
mentioning that in the hydrodynamics community, (1.1) is known as the Stuart–Landau
equation (Landau 1944; Stuart 1960) characterizing the hydrodynamic instabilities in
various types of flows, e.g. low-density jets (Raghu & Monkewitz 1991).

1.2. System identification using noise-induced dynamics for the diagnosis of
thermoacoustic oscillations

When the amplitude oscillation in a thermoacoustic system is modelled with (1.1), it is
crucial to identify the linear and nonlinear system parameters. In particular, the system
parameters succinctly express the thermoacoustic dynamics, thus the system can be
diagnosed using these values. The computation of system parameters can be conducted via
system identification, which involves statistical analysis of the system’s output signal. An
established method of system identification near a Hopf bifurcation uses the noise-induced
dynamics (NID) of the system (Lee et al. 2019; Kabiraj, Vishnoi & Saurabh 2020).
Opposing the conventional view of regarding noise as a signal contamination, researchers
have shown that a stochastically perturbed system can reveal more information about
its original deterministic dynamics than a noise-free system via the NID (Pikovsky
& Kurths 1997; Ushakov et al. 2005; Kabiraj et al. 2015). Therefore, in the system
identification framework mentioned above, a stochastic differential equation (SDE) is
postulated to capture the noise-induced behaviour of the system. Near the Hopf point
where the growth rate is small, the system is weakly nonlinear, and the stochastic averaging
can be applied to this SDE, yielding an equivalent Fokker–Planck equation describing
the drift and diffusion dynamics of the thermoacoustic system. Siegert, Friedrich &
Peinke (1998) have proposed that drift and diffusion terms of the Fokker–Planck equation
can be extracted by analysing the time correlation of the noisy data, establishing an
output-only system identification method. Noiray & Schuermans (2013) first applied
this framework to compute linear and nonlinear parameters of the stochastic Van der
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Pol equation governing thermoacoustic oscillations in a gas-turbine combustor. Noiray
& Denisov (2017) later validated this stochastic system identification framework by
applying periodic feedback control to the combustor at both the stable and unstable
regimes. Consequently, the system identification method using the stochastic Van der
Pol equation and the corresponding Fokker–Planck equation is applied to numerous
combustion systems exhibiting thermoacoustic oscillation, including both laminar and
turbulent combustors (Boujo & Noiray 2017; Bonciolini, Boujo & Noiray 2017; Lee et al.
2020, 2021).

Despite the robustness of the NID-based system identification framework proven in
various thermoacoustic systems, there exists an intrinsic limitation that hinders the
accuracy of the extracted parameters. First, established methods of system identification
that exploit the NID of the system are based on the probability mass function, counting
discrete samples of the time-shifted signal. This causes the inherent discrete approximation
error, especially when the input sample size is small. Furthermore, while computing
the time correlation of the signal, the noise is assumed to be perfectly memoryless.
In practical thermoacoustic systems, however, Markovian assumption can be severely
impaired due to the coarse sampling rate and the signal filtering. In such situations, adverse
finite-time effects arise, and further adjustment of the computed parameters may be
required, specifically by incorporating the optimization scheme based on adjoint equations
(Lade 2009; Boujo & Noiray 2017; Lee, Kim & Park 2023b). To the best of our knowledge,
a NID-based system identification method that is unaffected by the above-mentioned
limitations due to discrete time-shift computation has yet to be developed.

1.3. Physics-informed neural networks for the system identification of thermoacoustic
systems

Along with recent advances in machine learning, neural networks are increasingly applied
for the analysis of thermoacoustic systems. Selimefendigil & Polifke (2011) developed a
low-order model in the frequency domain for predicting thermoacoustic limit cycles using
the feed-forward neural network identification method. Consequently, neural networks are
exploited for deducing heat release models (Jaensch & Polifke 2017) and nonlinear flame
responses (Tathawadekar et al. 2021) in thermoacoustic systems. Recently, Nóvoa & Magri
(2022) used an echo state network, a reservoir-computing-based recurrent neural network,
for the real-time bias-aware estimation of the states and parameters of a numerical Rijke
tube model. Nóvoa, Racca & Magri (2024) later generalized this echo state network with
a regularized bias-aware ensemble Kalman filter. Building on these established methods,
we aim to develop a physics-informed neural network (PINN) for solving the NID-based
inverse problem introduced in § 1.2.

A PINN is a neural network that solves forward and inverse problems while respecting
the governing equations in the form of partial differential equations (PDEs) (Lagaris, Likas
& Fotiadis 1998; Karniadakis et al. 2021). By reason of their ability to provide desirable
solutions to ill-posed problems, PINNs have been used widely for the inverse modelling of
dynamical systems. For example, Chen et al. (2020) employed a PINN to tackle ill-posed
inverse scattering problems in nano-optics photonic metamaterials. Jagtap et al. (2022)
used the extended PINN framework for addressing inverse supersonic compressible flow
problems. For enhancing the training accuracy through inductive bias, hard-constrained
PINNs for inverse problems are proposed in Lu et al. (2021). Recently, Ozan & Magri
(2023) integrated a hard-constrained PINN and the Galerkin decomposition technique to
model nonlinear acoustics in a prototypical thermoacoustic system. One can find further
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theoretical foundations for the PINN approach to inverse problems in Mishra & Molinaro
(2022) and Zhang, Li & Liu (2023).

In order to model the noise-induced behaviour of the thermoacoustic system, it
is essential to incorporate SDEs into the PINN framework. Although not applied to
thermoacoustic systems, recent studies have suggested that PINNs can be adopted to
solve inverse problems of the SDEs (Xu & Darve 2021; Shin & Choi 2023), opening
up possibilities for system identification in noise-perturbed combustors. However, only a
limited number of studies have integrated stochastic samples with averaged PDEs, which is
essential for system identification using the NID. For instance, Chen et al. (2021) proposed
a PINN approach for solving inverse problems involving NID through the Fokker–Planck
equation using discrete particle observations. The authors employed the Kullback–Leibler
divergence from the observed empirical distribution to the neural network solution as
a loss function. We, on the other hand, seek to minimize the discrepancy between the
discrete samples and the analytical Fokker–Planck equation using the maximum likelihood
approach, aiming to obtain more stable solutions suitable for system identification in noisy
combustors.

1.4. Contributions of the present study
In this paper, we aim to develop and validate an NID-based system identification
method that does not require the computation of the time correlation of the signal, and
thus does not suffer from the discrete approximation error and the finite-time effect.
Specifically, we aim to exploit a PINN linking the combustor signal and the Fokker–Planck
equation equivalent to the stochastic Van der Pol equation for solving the inverse problem
(i.e. system identification). A key mathematical distinction in our framework is the use of
the maximum likelihood approach to integrate discrete samples with the Fokker–Planck
equation, directly incorporating stochastic samples from the original SDE.

Below, we present our mathematical framework in § 2, focusing on the system model
and PINN design. Next, we describe the numerical and experimental data for validating the
proposed method in § 3. We then show the system identification results and the following
discussion in § 4, before concluding in § 5.

2. Mathematical framework

2.1. Stochastic self-sustained oscillator model
Here, we describe briefly our system model and the corresponding probabilistic solution.
One may refer to Lee et al. (2023b) for a more detailed mathematical description. First,
we introduce a phenomenological low-order model for a thermoacoustically oscillating
system. Specifically, we consider an SDE consisting of a Van der Pol type self-sustained
oscillator equation and an additive noise term:

d2x
dt2

− (ε + αx2)
dx
dt

+ ω2x =
√

2d η, for t > 0, (2.1)

where x is the system variable (e.g. pressure in a combustor), η is a unit white Gaussian
noise, and d > 0 is the amplitude of the noise. Here, ε and α are linear and nonlinear
parameters, equivalent to k1 and k2 in (1.1), respectively, with scale factors. Finally, ω is
the angular frequency of the oscillation that can be obtained easily from spectral analysis
in practice. A probabilistic solution of (2.1) in the form of the Fokker–Planck equation can
be obtained by applying the method of variation of parameters. Specifically, we transform
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the system variable x and its derivative dx/dt into the functions of amplitude (a) and phase
(φ):

x = a cos (ωt + φ),

dx
dt

= −aω sin (ωt + φ).

⎫⎬
⎭ (2.2)

The method of variation of parameters shown above is used frequently for the analysis of
stochastic nonlinear oscillators (Nayfeh 1981; Zhu & Yu 1987). By applying trigonometric
identities, a set of SDEs is obtained:

da
dt

= ε

2
a + α

8
a3 + Q1 −

(√
2d
ω

sin Φ

)
η1,

dφ

dt
= Q2 −

(√
2d

ωa
cos Φ

)
η2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

where Φ is ωt + φ(t), and Q1 and Q2 are the sums of first-order terms that become
zero upon time averaging. Here, η1 and η2 are unit white Gaussian noise terms for
amplitude and phase, respectively, each of which is an independent stochastic process with
a correlation time smaller than the acoustic period (Bonciolini et al. 2021; Indlekofer et al.
2022). Therefore, we can confirm the equivalence of (2.1), (2.3) and (1.1) for zero noise
(d = 0) when averaged over sufficient time. Applying the stochastic averaging under the
assumption of weak nonlinearity, we obtain the Fokker–Planck equation:

∂tP(a, t) = −∂a(D(1)(a) P(a, t)) + ∂aa(D(2)P(a, t)), for (a, t) ∈ (0, ∞] × [0, ∞],

P(a, 0) = P0(a), for a ∈ [0, ∞],

P(0, t) = 0, for t ∈ [0, ∞],

⎫⎪⎬
⎪⎭

(2.4)

where D(1)(a) = (ε/2)a + (α/8)a3 + d/2ω2a and D(2)(a) = d/2ω2.

2.2. A PINN for solving the inverse problem
In the system identification of thermoacoustic oscillators, we aim to determine the
unknown system parameters ε, α and d in the SDE (2.1) from the discrete stochastic
samples {x(i)

tj }N
i=1 at various times tj for j = 1, 2, . . . , M. Although recent studies (Chen

et al. 2021; Xu & Darve 2021; Shin & Choi 2023) have demonstrated successfully
data-driven methods for solving such SDE-related inverse problems, training neural
networks while adhering to SDE constraints typically demands a considerable number
of samples, and may lead to unstable training. In our approach, we tackle these challenges
by adopting deterministic surrogate modelling, specifically by integrating a smooth initial
condition and domain truncation derived from the Fokker–Planck equation (Son & Lee
2023). The surrogate equation for a PINN-based system identification is

∂tP(a, t) = −∂a(D(1)(a) P(a, t)) + D(2)∂aaP(a, t), for (a, t) ∈ [0, A] × [0, T],

P(a, 0) = P̂(a), for a ∈ [0, A],

P(0, t) = 0, for t ∈ [0, T],

⎫⎪⎪⎬
⎪⎪⎭
(2.5)
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where D(1)(a) and D(2)(a) are as in § 2.1, and P̂(a) is a gamma distribution Γ (θ1, θ2) with
θ1 ≥ 2 and θ2 � 1.

We aim to approximate simultaneously the solution of (2.5) and the unknown model
parameters based on (2.5) with the stochastic samples {x(i)

tj }N
i=1. To achieve this, we

utilize a fully connected neural network to approximate the solution, and three additional
learnable parameters ε, α and d to approximate the unknown model parameters. The
network comprises three hidden layers, each composed of 64 hidden units activated
by the hyperbolic tangent function. The output layer is fed to the softplus function
F(x) = log(1 + ex), ensuring that the network output remains non-negative. We define
three loss functions: LR for the PDE residual, LBC for the boundary condition, and Lmass
to ensure that the solution conforms to the properties of a probability density function
(p.d.f.). Mathematically, these functions are represented as

LR = ‖∂tP(a, t) + ∂a(D(1)(a) P(a, t)) − D(2)∂aaP(a, t)‖2
L2([0,A]×[0,T]),

LBC = ‖P(a, t)‖2
L2({0}×[0,T]),

Lmass =
∥∥∥∥
∫

[0,A]
P(a, t) da − 1

∥∥∥∥
2

L2([0,T])
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)

where the learnable parameters ε, α and d contribute to LR through D(1)(a) and D(2). Note
that we excluded the surrogate initial condition from the loss function, as the initial data
will be given repeatedly in stochastic samples.

System identification of (2.5) requires integrating the stochastic samples {x(i)
tj }N

i=1
with the solution of the Fokker–Planck equation (2.5), which represents the p.d.f. of
the amplitude variable a at time t. Our process begins by transforming the samples
{x(i)

tj }N
i=1 into amplitudes {a(i)

tj }N
i=1 through the use of the Hilbert transform. To facilitate

the integration, we make an independence assumption about the samples {x(i)
tj }N

i=1 for
each time tj for j = 1, . . . , M. This assumption allows us to incorporate the concept of
maximum likelihood estimation into the loss function of PINN. Because maximizing
likelihood is equivalent to minimizing negative log-likelihood, we define a data loss
function by the sum of negative log-likelihood as

Ldata =
N∑

j=1

− log

( N∏
i=1

P(ai, tj)

)
= −

N,M∑
i,j=1

log P(ai, tj). (2.7)

Finally, we solve an optimization problem:

min
W,ε,α,d

λ1LR + λ2LBC + λ3Lmass + λ4Ldata, (2.8)

for some λ1, λ2, λ3, λ4, where W denotes the network parameters. Adam optimizer
(Kingma & Ba 2014) is used for the optimization. The overall architecture of the proposed
PINN-based system identification is illustrated in figure 1.

3. Data for PINN validation

3.1. Synthetic data
For the validation of the PINN-based system identification framework, we use both the
synthetic data and the experimental data. First, we consider six sets of synthetic data,
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Forward computation

Loss functions

Automatic

differentiation

Back propagation L = λ1LR + λ2LBC + λ3Lmass + λ4Ldata

LR = ||∂t P + ∂a(D(1) (a)P) – ∂aa(D(2) (a)P)||2
L2 ([0,A]×[0,T ])

LBC = ||P(0, t)||2
L2 ({0}×[0,T ])

D1 (a)

a

d

t

∂t

∂a

∂aa

a
P

F : R → [0, ∞)

F(P)

D2
α

ε

σσ

σ σ

σσ

Lmass =

Ldata =

P(a, t)da – 1
L2([0,T ])

N,M

i, j=1

– log P (ai, tj)

2

�

∫
[0,A]

Until L � 1

Figure 1. The architecture of the PINN designed for identifying the parameters of the self-sustained
thermoacoustic oscillator. We utilize a fully connected neural network providing non-negative output value, and
three additional learnable parameters ε, α and d. Network output is processed through automatic differentiation
and combined with ε, α and d to compute the loss functions as defined in (2.6) and (2.7). We update both the
network parameters and the additional learnable parameters through back propagation until convergence is
achieved.

each containing ten numerically generated time series. These time series feature stochastic
transient self-sustained oscillation displayed in figures 2(a– f ). Three sets of data are in the
fixed-point regime before the Hopf bifurcation (ε = −0.3, −0.2, −0.1), while the other
three sets are in the limit-cycle regime after the Hopf point (ε = +0.1, +0.2, +0.3). Other
system parameters are are set as α = −0.1, d = 0.1 and ω = 2π, as per Son & Lee (2023).

Synthetic data are created by solving (2.1) numerically with the fourth-order
Runge–Kutta method for t = [0, 100] with dt = 0.01. When solving the time-marching
problem, We set the initial values of [x, dx/dt] as [1, 0] for fixed-point data, and [0, 0] for
limit-cycle data. These initial conditions enable the observation of transient amplitude
death in the fixed-point regime and amplitude growth in the limit-cycle regime, as
depicted in figures 2(a–l). Time evolution of the oscillation amplitudes computed from
the Hilbert transform are shown collectively in figures 2(g–l), while their p.d.f.s are shown
in figures 2(m–r). The saturation in deterministic oscillation amplitude is found at t > 80
for all synthetic data, indicating zero-amplitude fixed points with stochastic fluctuation
(ε < 0) and fully developed self-sustained oscillations (ε > 0). It is worth noting that the
amplitude saturation is slower in the weakly nonlinear time series where the absolute value
of the linear growth rate is close to zero.

3.2. Experimental data
As for the experimental validation, we use the pressure data obtained from an annular
model gas-turbine combustor identical to that in Guk et al. (2023) (figure 3a). In this
set-up, gaseous methane (purity 95.95 %) is premixed with air, which is passed through
the dryer (Kyungwon T15K) and compressor (Kyungwon AL5N), before entering the
combustor via a swirler and a nozzle. The swirler and the nozzle, respectively, have swirl
number 0.608 and diameter 35 mm. The annular combustor has inner diameter 395 mm
and outer diameter 405 mm, and is manufactured with SUS304 stainless steel except for
the inner wall. A cylindrical quartz serves as the inner wall of the annular combustor,
enabling the visual inspection of the flame via two planar mirrors. Nine circular openings
with diameter 60 mm are installed at the combustor ceiling, which constitutes the flow exit
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Figure 2. (a– f ) Sample time series (black line) and the amplitude (blue line) used for PINN training.
(g–l) Time evolution of the amplitude in ten sample time series at each case, and (m–r) their p.d.f.s. Six sets of
synthetic data are displayed: (a,g,m) ε = −0.3, (b,h,n) ε = −0.2, (c,i,o) ε = −0.1 at the fixed-point regime,
and (d, j, p) ε = +0.1, (e,k,q) ε = +0.2, ( f,l,r) ε = +0.3 at the limit-cycle regime. Here, α, d and ω are fixed
at −0.1, 0.1 and 2π in all cases.
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Figure 3. (a) Schematic diagram of the annular combustor identical to that in Guk, Seo & Lee (2023).
(b) Mode of interest featuring transverse acoustic oscillation, and (c) mean oscillation amplitude of this mode at
varying methane–air equivalence ratio (φ). (d,e) Bandpass-filtered pressure signal (black line) and its amplitude
(blue line), and ( f,g) p.d.f.s of the amplitude at (d, f ) the fixed-point regime (φ = 0.74) and (e,g) the limit-cycle
regime (φ = 0.88). MFC: mass flow controller.

along with a fan-shaped opening at the top of the nozzle. The methane–air equivalence
ratio is varied between 0.74 (lean blowoff limit) and 0.9, with step size 0.02, while the
total mass flow rate is kept to 5.5 g s−1 via mass flow controllers (MKP TSC-230 and MKP
TSC-145 for fuel and air, respectively). Pressure oscillation in the combustor is measured
with a piezoelectric transducer (PCB 113B28) installed 50 mm above the nozzle exit. At
each equivalence ratio condition, the combustion experiment is conducted for 8 s. The
pressure signal is recorded with sampling rate 25 000 Hz, which is much faster than the
mode of interest described below.

By inspecting the oscillatory dynamics of the pressure signal, we found a distinct
transverse mode at 355 Hz, which matches the result of the acoustic numerical
simulation (figure 3(b), simulated using COMSOL Multiphysics v6.1). At this mode,
a gradual increase in pressure oscillation amplitude is observed (figure 3c), implying
a weakly nonlinear oscillation near a supercritical Hopf bifurcation. For diagnosing
the thermoacoustic system both before and after the Hopf bifurcation, we select two
experimental conditions, one in the fixed-point regime (φ = 0.74) and the other in the
limit-cycle regime (φ = 0.88). The pressure time series and p.d.f.s of the oscillation
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amplitude at these conditions are shown in figures 3(d–g). Although the system
identification using the stochastic Van der Pol equation (2.1) and the corresponding
Fokker–Planck equation (2.4) often requires external stochastic forcing for inducing
the NID (Lee et al. 2019, 2020), we do not excite the system with additional noise,
recognizing the strong inherent turbulence within the combustor (Noiray & Schuermans
2013; Lee et al. 2021).

We employed time segmentation for the experimental data, which significantly improves
training stability by increasing the number of samples at each time point. To be more
precise, we partitioned each experimental dataset into eight time segments, assuming
that the data are collected at the initial time point of each segment, i.e. t = 0, 1, . . . , 7.
This assumption is substantiated by the fact that all experimental data originated from the
stationary regime. It is worth mentioning that we have used an identical network for both
the synthetic and experimental validations, differing only in the dataset used to train the
log-likelihood loss function. In other words, we employed identical initial networks and
maintained consistent loss functions, adjusting only the data for each specific problem.

4. Results and discussion

In this section, we assess the results of PINN-based system identification in terms of
the parameter accuracy and the likelihood of the reconstructed p.d.f. We also present
comparisons of the results to the existing methods of system identification that use the
NID, which use extrapolation of the time correlation (Lade 2009; Noiray & Schuermans
2013), and the same method with adjoint-based optimization (Boujo & Noiray 2017).
These methods will be denoted SI-ext and SI-opt, respectively, in the following figures. In
both of the established methods, drift and diffusion terms are estimated using the equation

D(n)(a) = lim
τ→0

D(n)
τ (a), (4.1)

where D(n)
τ (a) is defined by

D(n)
τ (a) = 1

n! τ

∫ ∞

0
(A − a)n P(A, t + τ | a, t) dA, (4.2)

where P(A, t + τ | a, t) is the conditional p.d.f. of the pressure oscillation amplitude
being A at time t + τ given a at time t. In the adjoint-based optimization framework
(SI-opt), the discrepancy between D(n)

τ (a) computed from the obtained parameters and the
experimental measurement is minimized using the optimization scheme (Boujo & Noiray
2017). It should be noted that neither the time-shifted drift/diffusion term estimation nor
the adjoint-based optimization is applied in the proposed PINN framework, and these
methods are used only for comparing the extracted system parameters in this paper. For
further information about these existing methods, readers may refer to Lee et al. (2023b).

First, for identifying the governing parameters of the synthetic limit-cycle data, we
initialized ε, α and d to be zero and applied the Xavier initialization for the network
parameters before training, following the guidelines outlined by Glorot & Bengio (2010).
For the computation of loss functions LR and Lmass, we sampled 10 000 collocation points
from the domain [0, A] × [0, T]. Additionally, we sampled 100 points for each component
of LBC. We set the initial learning rate at 10−4, and reduced it systematically using a
learning rate scheduler throughout the training process.

Figures 4(a– f ) show the evolution of the parameters as training iterates when using
synthetic transient data. While the parameters ε, α, d converge rapidly in the limit-cycle
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Figure 4. (a– f ) The convergence history of ε, α, d during PINN-based system identification. (g–l) Time
evolution of the oscillation amplitude obtained from 500 numerical repetitions using the identified parameters,
and (m–r) the corresponding p.d.f.s. The results are obtained from six sets of synthetic data: (a,g,m) ε = −0.3,
(b,h,n) ε = −0.2, (c,i,o) ε = −0.1 at the fixed-point regime, and (d, j, p) ε = +0.1, (e,k,q) ε = +0.2, ( f,l,r)
ε = +0.3 at the limit-cycle regime. Here, α, d and ω are fixed at −0.1, 0.1 and 2π in all cases. Grey dashed
lines indicate true values of ε, α and d.
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SI-ext SI-opt PINN True SI-ext SI-opt PINN True

ε = −0.1 ε −0.182 −0.120 −0.097 −0.1 ε = 0.1 ε 0.113 0.101 0.087 0.1
α 0.138 −0.016 −0.014 −0.1 α −0.107 −0.097 −0.086 −0.1
d 0.125 0.091 0.091 0.1 d 0.222 0.054 0.105 0.1
E 115 % 38 % 33 % — E 47 % 17 % 10.8 % —

ε = −0.2 ε −0.328 −0.208 −0.185 −0.2 ε = 0.2 ε 0.217 0.217 0.201 0.2
α 0.467 −0.305 −0.245 −0.1 α −0.111 −0.109 −0.100 −0.1
d 0.131 0.108 0.102 0.1 d 1.278 0.059 0.097 0.1
E 221 % 73 % 51 % — E 399 % 19 % 1.2 % —

ε = −0.3 ε −0.463 −0.309 −0.284 −0.3 ε = 0.3 ε 0.270 0.297 0.286 0.3
α 0.462 −0.331 −0.158 −0.1 α −0.093 −0.099 −0.096 −0.1
d 0.135 0.092 0.094 0.1 d 3.600 0.081 0.089 0.1
E 217 % 81 % 23 % — E 1172 % 7.0 % 6.6 % —

Table 1. Parameters identified from synthetic data using the following methods: extrapolation-based system
identification (SI-ext), adjoint-optimization-based system identification (SI-opt) and PINN. Here, E is the
average relative error of the identified parameters (ε, α, d) compared to true values.
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Figure 5. Parameters of the stochastic Van der Pol equation computed from extrapolation-based system
identification (SI-ext, blue line with circular markers), system identification with adjoint-based optimization
(SI-opt, green line with cross markers), and the present method (PINN, red line with diamond markers).

cases (ε > 0), fixed-point cases (ε < 0) tend to require greater number of iterations for
convergence, especially when the system deviates further from the Hopf point (ε = 0).
This is because the fixed-point data are generally less deterministic compared to limit-cycle
counterparts, and thus have a wider choice of system parameters for minimizing the loss
function. Such a trend is also found in existing system identification methods, as shown in
table 1. Nevertheless, in all cases, PINN-based system identification shows substantial
improvement from the existing system identification methods in terms of the average
relative error of the identified parameters (see table 1). As a result, we were able to
reconstruct accurately the time evolution of the oscillation amplitude and its corresponding
p.d.f. for both the fixed-point and limit-cycle data, as shown in figures 4(g–r). Considering
that just ten stochastic signals (figure 2) are used as the input data in each case, the accuracy
of the present system identification framework is recognizable. Again, the parameters
identified from the PINN approach are closer to the true values in all test cases, as depicted
in figure 5.

Next, we present the PINN-based system identification results for the annular combustor
data in table 2 and figure 6. Because the true values of the governing parameters of the
thermoacoustic oscillation are unknown, we alternatively assess the average likelihood
values Lavg = −(1/M)

∑N,M
i,j=1 log P(ai, tj) of the analytical solution computed from the

identified parameters. It can be seen from table 2 that Lavg is greatest in the PINN-based
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(a) (b)

SI-ext SI-opt PINN SI-ext SI-opt PINN

ε −3.53 −6.61 −1.40 × 10 ε 1.75 1.07 × 10 4.74
α 7.61 × 104 −7.84 × 105 −7.40 × 105 α −6.28 × 104 −2.14 × 105 −9.94 × 104

d 1.21 × 102 3.34 × 102 6.67 × 102 d 5.73 × 102 7.59 × 102 6.52 × 102

Lavg 4.98 5.00 5.02 Lavg 4.07 4.13 4.18

Table 2. Parameters identified from experimental data at the equivalence ratios (a) φ = 0.74 and (b) φ = 0.88,
using the following methods: extrapolation-based system identification (SI-ext), adjoint-optimization-based
system identification (SI-opt) and PINN. Here, Lavg is the likelihood of the p.d.f. reconstructed from identified
parameters ε, α, d.
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Figure 6. Comparison between the experimental data (grey bars) and stationary analytical Fokker–Planck
solutions using parameters computed from extrapolation-based system identification (SI-ext, blue dashed line),
system identification with adjoint-based optimization (SI-opt, green dotted line), and the present method
(PINN, red continuous line) at (a) the fixed-point regime (φ = 0.74) and (b) the limit-cycle regime (φ = 0.88).
The stationary analytical solution could not be computed with SI-ext parameters at φ = 0.74 because of the
diverging solution (α > 0). Here, φ is the methane–air equivalence ratio.

system identification for both the fixed-point and limit-cycle data. This indicates that the
parameters computed from the PINN approach best represent the experimental p.d.f.,
especially in the limit-cycle regime (see figure 6 for comparison).

Finally, we reconstruct the phase portrait of the limit cycle from the computed
parameters of thermoacoustic oscillation. We use the delay embedding technique proposed
by Takens (1981), which enables the reconstruction of the phase portrait using just a single
time series with a time delay (τ ). This method is used widely to examine the dynamics
of thermoacoustic oscillations (Kashinath, Li & Juniper 2018; Lee et al. 2020). Following
Fraser & Swinney (1986), we choose the minimum τ that minimizes the average mutual
information. The reconstructed phase portraits shown in figure 7 reveal that the parameters
identified from the PINN-based framework best capture the dynamics of the experimental
data in both the fixed-point and limit-cycle regimes, reconfirming the robustness of the
present method.
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Figure 7. Phase portraits obtained from (a–c,e–g) numerical simulations and (d,h) experimental data.
Numerical results are computed using the system identification results of the experimental data obtained from
(a,e) extrapolation-based SI (SI-ext), (b, f ) SI with adjoint-based optimization (SI-opt), and (c,g) the present
method (PINN). Grey scatter dots are obtained from the stochastic signal, while blue lines are computed from
deterministic (d = 0) simulations. Cross markers in (b,c) indicate analytical fixed points, while the fixed point
could not be obtained with SI-ext parameters at φ = 0.74 because of the diverging solution (α > 0). Here, τ

is the time delay computed from the minimum average mutual information (Fraser & Swinney 1986), and φ is
the methane–air equivalence ratio.

5. Conclusions

In this study, we performed NID-based system identification of a thermoacoustic oscillator
in fixed-point and limit-cycle regimes using the PINN approach. From numerical and
experimental validation, we found that the system identification using PINN leads to better
computation performance than existing system identification methods that incorporate
NID, in terms of parameter accuracy and likelihood. This is the first time that PINN
has been applied for diagnosing thermoacoustic oscillations modelled with a stochastic
oscillator equation, to the best of our knowledge. A major implication of this study is
that the proposed framework could identify accurately the parameters of the stochastic
self-sustained oscillation using the output-only method without requiring information
about the input signal or the adjoint-based optimization schemes. Thus an efficient and
versatile system identification could be performed in a noisy thermoacoustic system by
capturing the NID from the PINN framework.

There are three categories of studies that can be explored in the future. First, albeit not
demonstrated in this paper, parameters of the stochastic Van der Pol equation identified
from the present framework can be used to predict and control the thermoacoustic
instabilities. Specifically, the Hopf point and the post-bifurcation dynamics can be
predicted via the extrapolation of the identified parameters (Lee et al. 2020), and the
feedback control can be conducted using these parameters. Second, the present study dealt
with the occurrence of thermoacoustic oscillation via the supercritical Hopf bifurcation.
In future research, other routes to instabilities involving higher-order dynamics, such as
subcritical Hopf bifurcation (Gopalakrishnan et al. 2016), intermittency (Nair, Thampi
& Sujith 2014) and period doubling (Subramanian et al. 2010), can be studied using
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the present PINN-based method. Finally, considering that the system model used in this
study is purely phenomenological, the present framework can be applied to other physical
systems exhibiting stochastic self-sustained oscillations. For example, one can apply
PINN-based system identification to diagnose hydrodynamically oscillating low-density
jets (Zhu, Gupta & Li 2017; Lee et al. 2019; Park & Lee 2024) or electrically oscillating
plasma in Hall-effect thrusters (Han et al. 2023; Lee et al. 2023a).
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