SEMIGROUPS OF CONTINUOUS SELFMAPS
FOR WHICH GREEN’'S 9 AND ¢ RELATIONS COINCIDE
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(Received 29 June, 1977)

For algebraic terms which are not defined, one may consult [2]. The symbol S(X)
denotes the semigroup, under composition, of all continuous selfmaps of the topological
space X. When X is discrete, S(X) is simply Iy the full transformation semigroup on the
set X. It has long been known that Green’s relations 9 and §¢ coincide for T« [2, p. 52]
and F. A. Cezus has shown in his doctoral dissertation [1,p.34] that @ and ¢ also
coincide for S(X) when X is the one-point compactification of the countably infinite
discrete space. Our main purpose here is to point out the fact that among the 0-
dimensional metric spaces, Cezus discovered the only nondiscrete space X with the
property that 9 and $ coincide on the semigroup S(X). Because of a result in a previous
paper [6] by S. Subbiah and the author, this property (for 0-dimensional metric spaces) is
in turn equivalent to the semigroup being regular. We gather all this together in the
following

THEOREM. Let X be a 0-dimensional metric space. Then the following statements are
equivalent:

(1) S$(X) is a regular semigroup;

(2) D=4 in S(X);

(3) X is either discrete or is the one-point compactification of he countably infinite
discrete space.

Proof. The equivalence of (1) and (3) has been established in [6, Theorem 3.11]. It
follows from Theorem 2.9 of [2, p. 52] and Proposition 2.19 of { i, p. 34] that (3) implies
(2). Now suppose that (2) holds. We want to show that (3) must then hold. As a
preliminary step, we show, by contradiction, that X has at most one limit point. Suppose
to the contrary that X has more. Choose any two distinct limit points and denote them by
a and b respectively. Now there exist sequences {x,}r-, converging to a and {y,}ri-,
converging to b and we assume without loss of generality that all of the points involved
are distinct. Let

A ={a5 b}u{xn c:=l U{Yn}:lo=l

and choose mutually disjoint clopen sets {G,};_, and {H,};_; so that G,NA ={x,},
H,NA ={y,}, limdiam G, =0 and lim diam H, =0 where diam means diameter. Finally,
let

B=X\U[G,UH,T;_,,
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and define four functions f, g, v, w from X into X as follows:

Von for xeG,,
f(x) =4 Y2n— for X€ Hn’
b for xeB.

g(x)=4"" for xeG,UH,,
b for xeB.

Vn for xeG,,

) Yor2 for xeH,, n even,
v(x)=
Ywm+yz fOor xeH, n odd,

b for xeB.

Y2n for xeG,
W(X) =94Y2n1 for xe Hm
b for xeB.

Now f, g, v, and w are all continuous and, since the verifications are all somewhat similar,
we give the details only in the case of the function f. Since G, and H, are clopen, it is
immediate that f is continuous at all points of these sets. Let V be any open set containing
the point b. Then there is a positive integer N such that y, € V for n=N. One readily
verifies that

X\[V[GUH]L]

is a neighborhood of both a and b which f maps into V. This means that f is continuous at
both a and b. It remains for us to consider a point ¢ different from a and b and not in any
G, or H,. Choose any clopen set W which contains ¢ but does not contain either a or b.
Since lim x, = a, x, € G, and limdiam G, =0, it follows that W intersects only finitely
many G, and, for similar reasons, W intersects only finitely many H, as well. Thus there
is a positive integer N such that WN[G,UH,]= for n>N and it follows that
W\ U[G,UH,J, is a clopen subset of X containing ¢ which f maps into the point b.
This establishes continuity at the point ¢ and we now conclude that f and also the
functions g, v and w are continuous. That is, they all belong to S(X). Routine calculations
will serve to verify that f = gow and g = vef and this means that f and g are $-equivalent.
Now, according to theorem (3.1) of [5, p. 1490] a function in S(X) is regular if and
only if its range is a retract of X and it maps some subspace homeomorphically onto its
range. The function g is not only regular but, in fact, is idempotent. We show that f is not
regular by showing that it doesn’t map any subspace homeomorphically onto its range. Let
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E be any subspace which f maps bijectively onto its range. Then EN G, consists of one
point which we denote by a, and similarly E N H, consists of exactly one point which we
denote by b,. Finally ENf~'(b) consists of one point and we denote it by t. Then

E={t}U{a,}n-1U{b.}r-1.

Since lim diam G, =0, lim q,, = a and, for analogous reasons, lim b, = b. Since the only
point of E which could possibly be a limit of E is the point ¢, it readily follows that E is
not compact. Thus f does not map any subspace of X homeomorphically onto its range
and we conclude that f is not a regular element of S(X). Since g is regular, this means that
f and g are not @-equivalent even though they are $-equivalent. We have been able to
derive this contradiction because we assumed that X has more than one limit point. Thus
X has at most one limit point.

We show next that X is either discrete or compact. Suppose it is neither. Then X has
exactly one limit b with a sequence {y,}—, converging to it and another sequence {x, }—,
with no limit points at all. We may assume that all of these points are distinct and, as we
did previously, we will construct functions which are $-equivalent but not 9-equivalent.
In fact, the only difference in what we do now from what we did previously lies in the way
we define the set A. This time, let

A={blU{x}i_ Uiy teor.

Then define the sets G,, H, and B and the functions f, g, v and w just as before. They are
all continuous and f and g are $-equivalent since f = gow and g = vef. However, they are
not P-equivalent since g is idempotent while f is not even regular since, as before, f maps
no subspace homeomorphically onto its range. This contradiction was reached because we
assumed that X is neither discrete nor compact so it must be one of the two. It remains
for us to show that if it is not discrete, then it is the one-point compactification of the
countably infinite discrete space. This is easily done, for if X is not distrete then it is a
compact space with exactly one limit point. That is, it is the one-point compactification of
a discrete space. But that space must be countably infinite for X is metrizable and it is
well-known that the one-point compactification of an uncountable discrete space is not
metrizable [3, p.247]. This concludes the verification that (2) implies (3), and thus the
theorem is proved.

A few closing remarks are in order. In view of the theorem, there are very few
0-dimensional metric spaces X such that &% = $ on S(X) or, equivalently, such that S(X)
is a regular semigroup. Instances outside the class of 0-dimensional metric spaces are also
rare. To be sure, we have deGroot’s spaces [4, p. 87] whose semigroups are all left zero
semigroups with identities and, of course, such a semigroup is regular and 9 and § will
coincide on it. However, if X is completely regular and Hausdorff and contains an arc,
then S(X) will not be regular [S, p.1490] and @ and # will be distinct on S(X) [5,
p. 1491].

In conclusion, we express our appreciation to the referee whose suggestions have
resulted in a more economical presentation.
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