
JFP 15 (5): 669–677, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005587 Printed in the United Kingdom

669

THEORETICAL PEARL

A bargain for intersection types: a simple
strong normalization proof

PETER MØLLER NEERGAARD

Michtom School of Computer Science, Brandeis University, Waltham, MA 02454, USA

(e-mail: turtle@achilles.linearity.org)

Abstract

This pearl gives a discount proof of the folklore theorem that every strongly β-normalizing

λ-term is typable with an intersection type. (We consider typings that do not use the empty

intersection ω which can type any term.) The proof uses the perpetual reduction strategy

which finds a longest path. This is a simplification over existing proofs that consider any

longest reduction path. The choice of reduction strategy avoids the need for weakening or

strengthening of type derivations. The proof becomes a bargain because it works for more

intersection type systems, while being simpler than existing proofs.

1 Introduction

Do we have a bargain for you! We prove that the set of λ-terms typable with an

intersection type is exactly the strongly normalizing terms. The bargain is that we –

to paraphrase Walmart – get more for less: our proof is simpler than existing

proofs, but handles more systems of intersection types. The novel idea is that we

use a specific reduction strategy rather than considering “any maximal reduction

path”. A benefit of the approach is that our type system does not need weakening

or strengthening of type derivations.

Intersection types have been around for about three decades. The original interest

was theoretical: intersection types were introduced to characterize the set of solvable

terms. Within the last decade they have gained traction for more practical purposes

of program analysis.1 The key idea is to introduce an intersection type operator ∧
with the meaning that a term of type τ ∧ σ can be used at both types τ and σ. This

provides a finite polymorphism where the various types of a term is listed explicitly.

Moreover, strictly more terms can be typed than with the well-known universal

polymorphism. In fact, it is a folklore theorem that the set of strongly β-normalizing

λ-terms is exactly the set of terms that can be given an intersection type. This was

1 Kfoury (2000) gives references on the history and Kfoury & Wells (2004) provide references on the
practical usage.

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


670 P. Møller Neergaard

first presented by Pottinger (1980). According to Kfoury (2000) Betty Venneri found

subtle errors in the part that all strongly normalizing terms have an intersection

types in that and a large number of subsequent proofs. Kfoury attributes the first

correct proof in the published literature to Amadio and Curien some fifteen years

later (Amadio & Curien, 1998).

In this pearl we focus on the tricky direction and prove that all strongly β-

normalizing λ-terms have an intersection type. The general approach taken in many

proofs, including the proof by Amadio and Curien, is the following:

1. establish that all β-normal forms have an intersection type, and
2. show that the type system has subject expansion under non-erasing reductions

(I-redexes), i.e. that if the term M reduces to N (written M →β N) and N is

typable, then M is typable with the same typing.

By definition, all strongly normalizing terms have a longest reduction path. We

consider any such reduction path

M0 →β M1 →β · · · →β Mn

where Mn is a β-normal form. We want to prove that M0 is typable. The base

case where n = 0 and Mn = M0 is covered by Point 1. In the inductive step, we

use Point 2 when M0 →β M1 is non-erasing. When M0 →β M1 erases a subterm

of M0, both the contractum and the erased subterm have shorter longest reduction

paths than M0. Therefore, they are typable by induction hypothesis and it is easy to

construct a type for M0.

It is straightforward to prove Point 1. However, Point 2 requires weakening and

strengthening of type derivations, i.e. that we can add or remove unused variables

to the type environment. This poses a problem as the most rigid intersection type

systems do not have weakening or strengthening, e.g. System-� proposed by Kfoury

& Wells (2004). Consequently, we cannot transfer Amadio and Curien’s proof to

these systems, but need indirect means. For instance, Kfoury and Wells prove that

all System-� terms are strongly normalizing by a translation into a type system that

Kfoury has previously proved strongly normalizing (Kfoury, 2000).

In this pearl, we circumvent weakening and strengthening by considering a specific

longest reduction path, the perpetual strategy. The longest reduction path is chosen

so we can transform a typing of the reduced term to a typing of the original

term without strengthening and weakening. Combining this result with Point 1, we

conclude that all strongly normalizable terms are typable. We get a simpler proof

that works for more type systems. Now, that could be considered a bargain.

2 Outline

In the following section we recall a few notions of the λ-calculus and define

intersections types. In Section 4, we introduce our reduction strategy and establish

the properties outlined above. We conclude the pearl with a discussion of related

work.

All omitted details of the proof can be found in my dissertation (Møller Neergaard,

2004), where the proof method is applied to System-�.

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


Theoretical pearl 671

Table 1. Terminology

Concept Syntax Meta variables

Term variable VΛ x, y, z, v, u, f, g

Term Λ � M ::= x | λx.M | M M M,N, P , Q, R

Type variable VT a, b

Strict type T � τ ::= a | τ → τ τ

Type T � τ ::= τ | τ ∧ τ τ

Type enviroment Γ

Var
x : τ � x : τ

Γ, x : τ � P : τ
λI

Γ � λIx.P : τ → τ

Γ � P : τ′

λK
Γ � λKx.P : τ → τ′

Γ � P : τ Γ′ � P : τ′

∧
Γ ∧ Γ′ � P : τ ∧ τ′

Γ � P : τ → τ Γ′ � Q : τ
@

Γ ∧ Γ′ � P Q : τ

Fig. 1. Intersection type typing rules,

3 Preliminaries on rigid intersection types

We consider λ-terms typed with intersection types. Let VΛ and VT be a countably

infinite sets of (term) variables and type variables, resp. Table 1 presents the term

and type syntax and meta variable conventions for the remainder of the paper. We

use fv(P ) for the set of free variables in P . We use λxI .P to denote an abstraction

where x ∈ fv(P ) and λxK.P when x �∈ fv(P ). We adopt Barendregt’s variable

convention (Barendregt, 1984) and assume implicitly that an abstraction variable is

not mentioned elsewhere in the current context (proof, discussion, etc.). We define

β-reduction in the usual way:

(λx.P ) Q β P [Q/x]

where P [Q/x] is the capture-free substitution of Q for x in P . The compatible

closure of β is →β . The set of normal forms under →β is NFβ .

As usual, a type environment is a finite mapping from VΛ to T. We write x : τ

for Γ(x) = τ. When x �∈ dom(Γ), we write Γ, x : τ for the extension of Γ with x : τ.

We extend ∧ to a binary operation on type environments Γ0 and Γ1 by intersecting

the type of common variables:

Γ0 ∧ Γ1 = {x : τ | x : τ ∈ Γi, x �∈ dom Γ1−i} ∪ {x : τ0 ∧ τ1 | x : τi ∈ Γi} .

We give the typing rules in Figure 1. When there is a derivation of Γ � M : τ, we

call 〈Γ; τ〉 a typing of M.

There are some subtleties to be aware of: all rules but ∧ conclude with a strict

type, the ∧-rule can only be used on the operand of an application or at the very

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


672 P. Møller Neergaard

bottom of a type derivation. There is exactly one variable in the type environment

of the Var rule – this prevents weakening.2 Moreover, due to the definition of Γ ∧ Γ′

and the formulation of the @-rule, the type of a variable with n occurrences is

the intersection of n types. This makes our type system less flexible than most

presentations where the intersection operator is taken to be associative, commutative,

and idempotent, i.e.

τ ∧ σ = σ ∧ τ τ ∧ (σ ∧ ρ) = (τ ∧ σ) ∧ ρ τ ∧ τ = τ. (1)

We do not need (1) and therefore refer to the intersection operator as rigid. The

result is a system without some of the usual features of type systems. For instance,

the system does not enjoy subject reduction:3

(
λxa∧(a→b).(λya→b.ya→b xa) xa→b

)(a∧(a→b))→b →β

(
λx(a→b)∧a.xa→b xa

)((a→b)∧a)→b

(λxa∧b.(λzb.xa) xb)(a∧b)→a →β (λxa.xa)a→a.

In the first example, we lack commutativity in the second, weakening. Since rigid

intersections are more restrictive than other intersection systems, all the proofs

below carry through if we adopt any (or all) of the identities in (1). Therefore, it is

a strength that our proof works for rigid intersections.

With the system at hand, we readily prove Point 1 mentioned in the introduction.

Lemma 1 (All Normal Forms Are Typable With a Strict Type)

Let M ∈ Λ be a term. If M ∈ NFβ , then M is typable with a strict type, i.e. there is

a derivation of Γ � M : τ for some environment Γ and strict type τ.

Proof

As M is a normal form, we have either M = λx.N or M = x N1 . . . Nn where n � 0

and N,N1, . . . , Nn are normal forms. We use induction on the structure of M. �

4 All strongly normalizing terms are typable

We can now turn to the proof that all strongly normalizing terms have an intersection

type. We want a longest reduction path where we can fold the typing back over

each step in the reduction. The following perpetual strategy4 defined by Barendregt

et al. (1976) serves our purpose:

Definition 2

The perpetual reduction strategy F∞ is defined as F∞(M) = M when M ∈ NFβ and

otherwise

1. F∞(x P1 . . . Pn) = x P1 . . . Pm−1 F∞(Pm) Pm+1 . . . Pn when Pi ∈ NFβ for 1 �
i � m − 1 and Pm �∈ NFβ;

2. F∞(λx.P ) = λx.F∞(P );

2 Formally, weakening is that Γ � M : τ implies Γ, x : τ′ � M : τ. Strengthening is that Γ, x : τ′ � M : τ
implies Γ � M : τ when x �∈ fv(M).

3 Subject reduction is the property that Γ � M : τ and M →β N implies Γ � N : τ.
4 A reduction strategy is perpetual (Barendregt, 1984) if it preserves the existence of an infinite reduction

path.

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


Theoretical pearl 673

3. F∞((λx.P0) P1 . . . Pn) = P0[P1/x] P2 . . . Pn when x ∈ fv(P0) or P1 ∈ NFβ;

4. F∞((λx.P0) P1 . . . Pn) = (λx.P0) F∞(P1) P2 . . . Pn when x �∈ fv(P0) and P1 �∈ NFβ

where n � 1.

We note that F∞ is a reduction strategy as M →β F∞(M) if M �∈ NFβ and F∞(M) =

M otherwise.

Remark 3

There are several proofs that F∞ picks a reduction path that is the longest

possible. It is implicit in de Vrijer’s functionals for the length of β-reduction

paths (de Vrijer, 1987). It is proved explicitly by Regnier & Danos (Regnier, 1994),

Khasidashvili (1994), van Raamsdonk & Severi (1995), and Sørensen (1996).

The idea of the proof is to use induction on the length of the longest reduction

path. In the inductive case, one considers a term M with a longest reduction path

of length n and show that F∞(M) has a reduction path of length n − 1.

As mentioned, we have lost subject reduction due to the rigidity of the intersection

operator. Likewise, we do not have subject expansion, i.e., unlike most intersection

type systems, M →β N and Γ � N : τ do not imply Γ � M : τ. However, we can

establish a weaker form of subject expansion where we only consider whether a

typing exists: if the contractum of a term under F∞ is typable, then the term is

typable. It hinges on the following lemma:

Lemma 4 (Typability Is Preserved Under Substitution)

Let M and N be terms and let x ∈ fv(M). If M[N/x] is typable with typing 〈Γ; τ〉
then there are Γ′ and Γ′′ and a type τ′ such that N is typable with 〈Γ′; τ′〉 and M is

typable with 〈(Γ′′, x : τ′); τ〉 where Γ′′(y) = Γ(y) for y �∈ fv(N).

Proof

Since M[N/x] is typable, there is a derivation ∆ of Γ � M[N/x] : τ. We use

induction on the height of ∆. In the case of an application M = P Q we split on

whether x ∈ fv(P ) ∩ fv(Q), x ∈ fv(P ) \ fv(Q), or x ∈ fv(Q) \ fv(P ). �

Corollary 5 (Weak Subject Expansion Under Substitution)

Let M and N be terms and let x ∈ fv(M). If M[N/x] is typable with typing 〈Γ; τ〉
then (λx.M) N is typable with 〈Γ′; τ〉 for some Γ′.

Using the corollary, we establish weak subject expansion under F∞.

Proposition 6 (Weak Subject Expansion Under F∞)

Let M ∈ Λ be a term. If F∞(M) is typable, then M is typable.

Proof

We note that if F∞(M) is typable then there is a derivation ∆ of Γ � F∞(M) : τ.

When M ∈ NFβ , then ∆ is a typing of M as F∞(M) = M. When M �∈ NFβ , we

use induction on the height of ∆ to prove that there is a typing 〈Γ′, τ′〉 of M and

that τ ∈ T if and only if τ′ ∈ T:

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


674 P. Møller Neergaard

1. If the derivation ∆ ends in

Γ1 � F∞(M) : τ1 Γ2 � F∞(M) : τ2

Γ1 ∧ Γ2 � F∞(M) : τ1 ∧ τ2

we get

Γ′
1 � M : τ′

1 Γ′
2 � M : τ′

2

Γ′
1 ∧ Γ′

2 � M : τ′
1 ∧ τ′

2

from the induction hypothesis. We note that τ1 ∧ τ2, τ
′
1 ∧ τ′

2 �∈ T.

2. M ≡ x P1 . . . Pn and τ = τ. The type derivation for F∞(M) ends in:

x : τ0 � x : τ0 ∆1 · · · ∆m−1 Γm � F∞(Pm) : τm ∆m+1 · · · ∆n

(· · · ((x : τ0) ∧ Γ1) ∧ · · · ∧ Γn) � x P1 . . . Pm−1 F∞(Pm) Pm+1 . . . Pn : τ

where ∆i derives Γi � Pi : τi for i = 1, . . . , m − 1, m + 1, . . . n and τ0 = τ1 →
· · · → τn → τ. By the induction hypothesis, we have

x : τ′
0 � x : τ′

0 ∆1 · · · ∆m−1 Γ′
m � Pm : τ′

m ∆m+1 · · · ∆n

(· · · ((x : τ′
0) ∧ Γ1) ∧ · · · ∧ Γm−1) ∧ Γ′

m) ∧ Γm+1) ∧ · · · ∧ Γn) � x P1 . . . Pn : τ

where τ′
0 ≡ τ1 → · · · → τm−1 → τ′

m → τm+1 → . . . → τn → τ.

3. M ≡ (λx.P0) P1 . . . Pn and x ∈ fv(P0) and τ = τ. The type derivation for F∞(M)

ends in

Γ0 � P0[P1/x] : τ0 Γ2 � P2 : τ2 · · · Γn � Pn : τn

(· · · (Γ0 ∧ Γ2) ∧ · · · ∧ Γn) � P0[P1/x] P2 . . . Pn : τ

where τ0 ≡ τ2 → · · · → τn → τ. Using Corollary 5, we have

Γ′
0 � (λx.P0) P1 : τ0 Γ2 � P2 : τ2 · · · Γn � Pn : τn

(· · · (Γ′
0 ∧ Γ2) ∧ · · · ∧ Γn) � (λx.P0) P1 · · · Pn : τ

4. M ≡ (λx.P0) P1 . . . Pn where x �∈ fv(P0), P1 ∈ NFβ , and τ = τ. The type

derivation for F∞(M) ends in

Γ0 � P0 : τ0 Γ2 � P2 : τ2 · · · Γn � Pn : τn

(· · · (Γ0 ∧ Γ2) ∧ · · · ∧ Γn) � P0 P2 · · · Pn : τ

where τ0 ≡ τ2 → · · · → τn → τ. As P1 ∈ NFβ , we have a typing Γ1 � P1 : τ1 by

Lemma 1. We obtain

Γ0 � P0 : τ0

Γ0 � λx.P0 : τ1 → τ0 Γ1 � P1 : τ1 Γ2 � P2 : τ2 · · · Γn � Pn : τn

(· · · ((Γ0 ∧ Γ1) ∧ Γ2) ∧ · · · ∧ Γn) � (λx.P0) P1 · · · Pn : τ

5. M ≡ (λx.P0) P1 . . . Pn where x �∈ fv(P0), P1 �∈ NFβ , and τ = τ. The type

derivation for F∞(M) ends in

Γ0 � P0 : τ0

Γ0 � (λx.P0) : τ1 → τ0 Γ1 � F∞(P1) : τ1 Γ2 � P2 : τ2 · · · Γn � Pn : τn

(· · · (Γ0 ∧ Γ1) ∧ · · · ∧ Γn) � (λx.P0) F∞(P1) · · · Pn : τ

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


Theoretical pearl 675

where τ0 ≡ τ2 → · · · → τn → τ. Using the induction hypothesis, we have

Γ0 � P0 : τ0

Γ0 � (λx.P0) : τ′
1 → τ0 Γ′

1 � P1 : τ′
1 Γ2 � P2 : τ2 · · · Γn � Pn : τn

(· · · ((Γ0 ∧ Γ′
1) ∧ Γ2) ∧ · · · ∧ Γn) � (λx.P0) P1 · · · Pn : τ

This exhausts the cases so we conclude weak subject expansion under F∞. �

We now have the following standard theorem.

Corollary 7

Let M be a strongly normalizing term, then M is typable.

Proof

We consider any strongly normalizing term M ∈ Λ. There exists an n such

that Fn
∞(M) ∈ NFβ . Now, Fn

∞(M) is typable by Lemma 1. By induction on n

using the proposition it follows that M is typable. �

The opposite direction, strong normalization of every term typable with an

intersection type, is usually done by the realizability method due to Tait (1975).

This is a semantic method where each type is interpreted as a suitable strongly

normalizing set of terms and the type derivation is shown to be sound with respect

to the interpretation.

Theorem 8

Let M be typable, then M is strongly normalizing.

Proof (sketch)

Define the following sets by induction on types τ ∈ T: �α� = SNβ , �ρ → τ� =

{F ∈ Λ | ∀a ∈ �ρ�.F a ∈ �τ�} , and �ρ ∧ τ� = {M ∈ Λ | M ∈ �ρ�, �τ�} . By induction

on the structure of the types, we show that �τ� ⊆ SNβ and x ∈ �τ� for all types τ.

Let a valuation be a map v : V → Λ. Let �M�v = M[v(x1)/x1, . . . , v(xn)/xn] where

fv(M) = {x1, . . . , xn} . We define the model relation |= as follows: v |= M : τ if and

only if �M�v ∈ �τ�. Moreover, v |= Γ if and only if v(x) ∈ �ρ� for all x : τ ∈ Γ.

Finally, Γ |= M : ρ if and only if v |= Γ implies v |= M : ρ for all valuations v.

We prove that Γ � M : τ implies Γ |= M : τ by induction on the derivation. We

consider the trivial valuation v(x) = x. We have v |= Γ. If follows that M = �M�v ∈
�τ� ⊆ SNβ . �

An alternative approach is taken by Kfoury and Wells who give a proof-theoretic

proof (Kfoury & Wells, 1995).

5 Concluding remarks and related work

We have with simple means reproved the well-known theorem that all strongly

β-normalizing λ-terms have an intersection type. The simplicity stems from the

fact that we consider a concrete reduction strategy and therefore can use weak

subject expansion rather than subject expansion. In particular, we do not need such

properties as weakening and strengthening of type derivations. I conjecture that the

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


676 P. Møller Neergaard

method works for all intersection type systems without nullary intersections, i.e. the

type constant ω typing all terms in all contexts.

Of the two essential properties needed in the proof, typability of all normal forms

and weak subject expansion, it is the weak subject expansion that sets intersection

type systems apart from other type systems. There are many type systems where all

β-normal forms are typable, e.g. System F (Reynolds, 1974; Girard, 1972). On the

other hand, Urzyczyn proves that the following λ-term
(
λx.z (x (λfλu.f u)) (x (λvg.v g))

)
(λy.y y y)

is not typable in the extremely powerful type system Fω , while its only reduct

z ((λy.y y y) (λfλu.f u)) ((λy.y y y) (λvg.v g))

is typable (Urzyczyn, 1997).

Acknowledgments

Without numerous discussions about intersection types with Sébastien Carlier, Assaf

J. Kfoury, and Joe B. Wells, I would not have been able to come up with this proof.

Franklyn Turbak’s feedback helped make the paper accessible to more than the

aficionados.

References

Amadio, R. and Curien, P.-L. (1998) Domains and Lambda Calculi. Cambridge tracts in

theoretical computer science, vol. 46. Cambridge University Press.

Barendregt, H. P. (1984) The Lambda Calculus: Its syntax and semantics. Revised edn. North-

Holland.

Barendregt, H. P., Bergstra, J., Klop, J. W. and Volken, H. (1976) Some notes on lambda-

reduction. Degrees, reductions and representability in the lambda calculus, pp. 13–53. Preprint

22. Mathematical Institute, Utrecht, The Netherlands.

de Vrijer, R. (1987) Exactly estimating functionals and strong normalization. Proceedings of

the Koninklijke Nederlandse Akademie van Wetenschappen, Series a, 90(4), 479–493.

Girard, J.-Y. (1972) Interprétation fonctionnelle et elimination des coupures de l’arithmétique

d’ordre supérieur. Thèse d’Etat, Université de Paris VII.

Kfoury, A. J. and Wells, J. B. (1995) New notions of reduction and non-semantic proofs of

β-strong normalization in typed λ-calculi. Proc. 10th Annual IEEE Symposium on Logic in

Computer Science, pp. 311–321.

Kfoury, A. J. (2000) A linearization of the lambda-calculus. J. Logic & Computation, 10(3).

(Special issue on Type Theory and Term Rewriting.)

Kfoury, A. J. and Wells, J. B. (2004) Principality and type inference for intersection types

using expansion variables. Theor. Comput. Sci. 311(1–3), 1–70.

Khasidashvili, Z. (1994) The longest perpetual reductions in orthogonal expression reduction

systems. In: Nerode, A. and Matiyasevich, Yu. V. (editors), Proc. of the 3rd International

Conference on Logical Foundations of Computer Science, ‘Logic at St. Petersburg’ LFCS ’94:

LNCS 813, pp. 191–203. Springer-Verlag.

Møller Neergaard, P. (2004) Complexity aspects of programming language design – from

logspace to elementary time via proofnets and intersection types. PhD thesis, Brandeis

University.

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587


Theoretical pearl 677

Pottinger, G. (1980) A type assignment for the strongly normalizable λ-terms. In: Hindley,

J. R. and Seldin, J. P. (editors), To H. B. Curry: Essays on combinatory logic, lambda calculus,

and formalism, pp. 561–577. Academic Press.

Regnier, L. (1994) Une équivalence sur les lambda-termes. Theor. Comput. Sci. 126(2),

281–292.

Reynolds, J. C. (1974) Towards a theory of type structure. Colloque sur la programmation:

LNCS 19, pp. 408–425. Springer-Verlag.

Sørensen, M. H. (1996) Effective longest and infinite reduction paths in untyped λ-calculi.

In: Kirchner, H. (editor), Colloquium on Trees in Algebra and Programming: LNCS 1059,

pp. 287–301. Springer-Verlag.

Tait, W. W. (1975) A realizability interpretation of the theory of species. In: Parikh, R. (editor),

Logic Colloquium: Lecture Notes in Mathematics 453, pp. 240–251. Springer-Verlag.

Urzyczyn, P. (1997) Type reconstruction in Fω . Math. Struct. in Comput. Sci. 7(4), 329–358.

van Bakel, S. J. (1992) Complete restrictions of the intersection type discipline. Theor. Comput.

Sci. 102(1), 135–163.

van Raamsdonk, F. and Severi, P. (1995) On normalisation. Technical report CS-R9545, CWI.

https://doi.org/10.1017/S0956796805005587 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005587

