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A thorough self-similarity analysis is presented to investigate the properties of
self-similarity for the outer layer of compressible turbulent boundary layers. The
results are validated using the compressible and quasi-incompressible direct numerical
simulation (DNS) data shown and discussed in the first part of this study; see
Wenzel et al. (J. Fluid Mech., vol. 880, 2019, pp. 239–283). The analysis is
carried out for a general set of characteristic scales, and conditions are derived
which have to be fulfilled by these sets in case of self-similarity. To evaluate the
main findings derived, four sets of characteristic scales are proposed and tested.
These represent compressible extensions of the incompressible edge scaling, friction
scaling, Zagarola–Smits scaling and a newly defined Rotta–Clauser scaling. Their
scaling success is assessed by checking the collapse of flow-field profiles extracted
at various streamwise positions, being normalized by the respective scales. For
a good set of scales, most conditions derived in the analysis are fulfilled. As
suggested by the data investigated, approximate self-similarity can be achieved
for the mean-flow distributions of the velocity, mass flux and total enthalpy and
the turbulent terms. Self-similarity thus can be stated to be achievable to a very
high degree in the compressible regime. Revealed by the analysis and confirmed
by the DNS data, this state is predicted by the compressible pressure-gradient
boundary-layer growth parameter Λc, which is similar to the incompressible one found
by related incompressible studies. Using appropriate adaption, Λc values become
comparable for compressible and incompressible pressure-gradient cases with similar
wall-normal shear-stress distributions. The Rotta–Clauser parameter in its traditional
form βK= (δ

∗

K/τ̄w)(dpe/dx) with the kinematic (incompressible) displacement thickness
δ∗K is shown to be a valid parameter of the form Λc and hence still is a good indicator
for equilibrium flow in the compressible regime at the finite Reynolds numbers
considered. Furthermore, the analysis reveals that the often neglected derivative of
the length scale, dL0/dx, can be incorporated, which was found to have an important
influence on the scaling success of common ‘low-Reynolds-number’ DNS data; this
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holds for both incompressible and compressible flow. Especially for the scaling of
the ρ̄ũ′′v′′ stress and thus also the wall shear stress τ̄w, the inclusion of dL0/dx leads
to palpable improvements.

Key words: compressible boundary layers, turbulent boundary layers, turbulence theory

1. Introduction
Introduced by Rotta (1950), Clauser (1954) and Townsend (1956b), the concept of

self-similar equilibrium boundary layers is one of the most successful approaches
to understand turbulent boundary layers (TBLs) with pressure gradients (PGs)
in incompressible flow. The equilibrium character of the flow largely excludes
Reynolds-number effects and reproducibly defines the history of the boundary
layer. Since PG effects are unambiguously correlated with the reaction of the
turbulent flow in equilibrium conditions, scaling laws can be derived, mapping
the streamwise-evolving boundary layer to one unique solution. According to Smits
& Dussauge (2006), these ‘scaling laws give a unifying framework to our knowledge,
and their derivation and validation is one of the important tasks of turbulence
research’. Nearly all conclusions about the quantitative influence of PGs on TBLs
have therefore been obtained from equilibrium cases, and the expectation of how a
TBL spatially evolves in various flow conditions has been shaped by investigation
of this special class of flows. Although the idea of self-similarity appears clear and
simple, the multiscale nature of turbulent flows leads to difficulties. In its classical
definition in the case of zero pressure gradient (ZPG), the TBL is split into two
regions, an inner layer mainly affected by viscous forces and an outer layer more
affected by turbulent forces. Different regions thus have different scales, i.e. the
length scale in the inner layer is based on viscosity (ν/uτ ), leading to the y+ scaling,
and in the outer layer on scales such as the boundary-layer thickness, leading to the
outer scaling. With only one set of a local length and velocity scale, self-similarity
can only be achieved either for the inner or the outer layer, but not for the entire
boundary layer.

Owing to the increased interest in flows with PGs, also the definition of canonical
cases for PG TBLs has been subjected to many discussions in the past 20 years.
Even if the principal ideas founded by Rotta (1950) and Clauser (1954) are the most
common definitions of self-similar equilibrium boundary layers for PG TBLs still
today, a lot of progress has been made in the derivation and/or the interpretation of
new and partly more complete definitions. A detailed distinction between the terms
‘self-similarity’ and ‘equilibrium’ will be given in § 2.1. Since different analyses
start with different assumptions on the type of self-similarity that should be obtained,
some similarity conditions are more restrictive than others (see also George & Castillo
1993; Maciel, Rossignol & Lemay 2006). Fundamental questions are still open, such
as the ‘correct’ choice of the length and velocity scales that characterize the outer
layer of incompressible PG TBLs, as their choice has not been conclusively clarified
(see e.g. Maciel et al. 2018). In addition to the definition of self-similarity for PG
TBLs itself, also the extent to which those equilibrium boundary layers represent the
general case is controversially discussed. A more detailed introduction to the theory
of incompressible equilibrium flow is given in § 2 of this study.

In addition to Reynolds-number effects, the concept of compressible self-similarity
also has to eliminate compressibility effects due to a varying Mach number in the
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streamwise direction, if streamwise collapse of local flow-field profiles should be
obtained. Supersonic PG TBLs additionally consist of both sub- and supersonic
parts, which are expanded and compressed oppositely to each other in their spatial
evolution (Smits & Dussauge 2006). The growth of the compressible boundary layer
is therefore strongly dependent on local conditions and often differs from intuition
based on subsonics. Moreover, the adiabatic wall temperature is continuously altering
in the streamwise direction and the recovery factor cannot readily be assumed to
be constant any more. All these effects render the prediction of the compressible
PG TBL intricate. In fact, not much is known about the conditions of compressible
turbulent self-similarity (see also Wenzel et al. 2019), despite its importance for the
understanding of compressible TBLs in general, and many questions are still open.
To what extent can self-similarity be achieved in the compressible regime? What
are the properties of this condition? If the momentum boundary layer can reach a
self-similar state, does this also hold for the energy boundary layer, and, if so, what
are the relevant properties? To what extent and how are incompressible approaches
for the choice of characteristic scales transferable to the compressible regime?

1.1. Objectives of this study
Using the direct numerical simulation (DNS) data presented in the first part of this
series Wenzel et al. (2019), where an inner scaling is mostly employed, the main
goal of the present second part is to investigate both the conditions and the limits
of streamwise self-similarity for the outer layer of compressible TBLs. For this
purpose, a self-similarity analysis is performed for the compressible Favre-averaged
two-dimensional turbulent boundary-layer equations by using the same methodical
approach as for the incompressible regime. Thereby the properties and relevant
parameters for (approximate) self-similarity for the outer layer of compressible TBLs
are derived and discussed. On this basis, the most commonly used incompressible
scaling laws for the outer layer are extended to compressible flows. All results are
then evaluated in outer scaling and discussed using the DNS data.

The study herein is structured as follows. For better understanding of the detailed
self-similarity analysis in § 3, the features known so far of self-similarity for the
incompressible and also the compressible regime are summarized in § 2. In the
results (§ 4) the analysis is applied on the DNS database, while concluding remarks
are summarized in § 5.

2. Previous work
In this study, a distinction between the concepts of self-similarity and flow

equilibrium is needed, since both are the starting points for theoretical investigations
related to the self-similarity of PG TBLs. Both terms are briefly introduced before
the previous work is summarized.

In the following, Reynolds averages are denoted by an overbar, f̄ , and density-
weighted Favre averages by a tilde, f̃ = ρf /ρ̄; fluctuations around Reynolds and
Favre averages are denoted by single and double primes, f ′ = f − f̄ and f ′′ = f − f̃ ,
respectively.

2.1. Distinction between equilibrium and self-similarity
According to George & Castillo (1993) and Maciel et al. (2006), flow equilibrium
implies that all terms in the boundary-layer equations must maintain their relative
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weight as the flow spatially evolves, which means that ‘the balance of the turbulent
kinetic energy is virtually unaffected by the nature of flow in adjacent regions’
(Townsend 1961). Self-similarity (or self-preservation), on the other hand, implies
that the (most important) statistical properties of a flow only depend on local length
and velocity scales. Thus, if normalized by an appropriately chosen set of local scales
like the skin-friction velocity uτ or the displacement thickness δ∗, for instance, the
boundary-layer solution is invariant to the Reynolds number, which means that local
flow-field profiles can be collapsed for various streamwise positions (Maciel et al.
2006).

Therefore, the concept of flow equilibrium is a definition of flow history in
general without being limited to any particular type of self-similarity – whatever
such flow may look like. Conversely, if a flow is found to be self-similar in the
streamwise direction, then it is in equilibrium regardless of the similarity assumptions
(Maciel et al. 2006). Note that both the terms equilibrium and self-similarity have
often been used equivocally in history without being further distinguished (the
Rotta–Clauser parameter β predicting self-similarity of TBLs is traditionally known
as an ‘equilibrium parameter’).

2.2. Introduction to incompressible equilibrium layers
This section is subdivided into two parts: a first part introducing the conditions of self-
similarity and a second part summarizing the appropriate choice of scaling parameters.

2.2.1. Self-similarity of incompressible turbulent boundary layers
Based on a theory for the outer layer of ‘traditional’ equilibrium boundary layers,

Rotta (1950) and Clauser (1956) defined an equilibrium TBL as one where the
pressure-gradient parameter β (Rotta–Clauser parameter) with the wall shear stress τ̄w

and the far-field pressure pe (subscripts ‘e’ and ‘w’ are quantities at the boundary-layer
edge and the wall, respectively),

β =
δ∗

τ̄w

dpe

dx
=

δ∗

ρu2
τ

dpe

dx
, (2.1)

is constant in the streamwise direction and the edge velocity ue(x) follows a
power-law distribution. Thus, if scaled with an appropriately chosen set of local length
and velocity scales (see § 2.2.3), local mean-flow profiles should be independent
of the streamwise position. In the same years, Townsend (1956a,b) extended
Clauser’s analysis by defining equilibrium layers as those where the local turbulence
production and dissipation balance, which justifies the use of eddy-viscosity and
mixing-length-type arguments.

Especially the limit of separating boundary layers for strong adverse pressure
gradients (APGs), however, represented an inconsistency in classical theory since
β tends to infinity if the wall shear stress τ̄w tends to zero. Since the concept of
self-similarity should apply to all PG cases regardless of the PG strength, however,
particular attention was paid to the case of separating flow. This led to a self-similarity
analysis of half-power laws for the separated case (Stratford 1959) and its combination
with the law of the wall for weak PG cases (see Townsend 1961; Mellor & Gibson
1966; McDonald 1969; Perry & Schofield 1973; Skote & Henningson 2002). The
main results of these studies have been developments in the definition of valid scales
(see § 2.2.3), as well as in the discussion of generalized versions of a law of the wall.
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Related to the definition of self-similarity itself, further theories have been presented,
among others, by Kader & Yaglom (1978) for so-called ‘moving-equilibrium’ TBLs,
or the analysis of Perry, Marusic & Jones (2002) using a wake formulation.

More recently, an additional theory has been presented by George & Castillo (1993)
and extended by Maciel et al. (2006) for the inner and outer layers of the PG TBL
which provides ‘another look at the equilibrium boundary layer’.

2.2.2. Recent work on the definition of self-similarity
By assuming general ansatz functions for all x- and y-dependent quantities in the

two-dimensional boundary-layer equations, George & Castillo (1993) concluded that
all TBLs are in a state of equilibrium if the incompressible (subscript ‘inc’) pressure-
gradient parameter Λinc using the boundary-layer thickness δ99,

Λinc =
δ99

dδ99/dx
dpe/dx
ρ ū2

e

=−
δ99

dδ99/dx
dūe/dx

ūe
, (2.2)

is constant in the streamwise direction. Additionally, many other conditions have been
derived for various boundary-layer quantities, which all have to be fulfilled in the case
of streamwise equilibrium in a strict sense. Based on the analysis, the velocity scale
U0 and the Reynolds-stress scales Rij of the outer region of TBLs for instance have
to evolve such that

U0

ue
= const.,

Ruu

u2
e

= const.,
Rvv
u2

e

= const.,
Ruv

u2
e

dδ99

dx

= const. (2.3a−d)

It has been concluded therefore that the scales which characterize the turbulent flow in
the outer region of the boundary layer have to be ue, u2

e and u2
e dδ99/dx. In consecutive

papers Castillo & George (2001) and Castillo, Wang & George (2004) extended the
theory for the outer layer and suggested that there are only three possible values for
the pressure-gradient parameter Λθ , if built by the momentum thickness θ instead of
δ99, see (2.2), each one for favourable pressure gradients (FPGs), ZPGs and APGs.
Further extensions to incorporate the incompressible thermal boundary layers can be
found in Araya & Castillo (2013).

A generalized version of the previous similarity analysis for arbitrary scales was
conducted by Maciel et al. (2006). It has been shown that the (generalized) pressure-
gradient parameter Λinc can be reduced to β, if time-scale arguments are assumed to
be valid and are additionally taken into account. Both the Rotta–Clauser parameter β
and the classical theory of equilibrium flows therefore have been argued to remain
valid without respective extensions. Furthermore, it has been noted that, even though
Λθ is often observed to be in three value ranges, there are more than three self-similar
profiles.

2.2.3. Discussion on length and velocity scales
The scales are of essential importance for the physical understanding of self-

similarity itself. Only if chosen appropriately can a collapse of flow-field profiles
extracted at various streamwise positions be achieved.

In analogy to ZPG cases, early studies traditionally use the friction velocity uτ as
a velocity scale for the outer layer of PG TBLs, but, in contrast to the inner layer,
in combination with the boundary-layer thickness δ99 as outer length scale. More
complex approaches, such as ∆ =

∫ e
0 ((ue − ū)/uτ ) dy = δ∗ue/uτ , have been proposed
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by Clauser (1956), for instance. The choice of the friction velocity uτ , however, has
often been questioned in the literature since its definition fails for flows with strong
APGs approaching separation, among others. In the study by Mellor & Gibson (1966),
the friction velocity uτ therefore has only been used as the velocity scale for low
PG cases, but a new pressure-gradient velocity up has been derived for strong PG
cases. A combination of both friction and PG scales has been proposed by Skote,
Henningson & Henkes (1998), for example. Additional approaches are given by Perry
& Schofield (1973), among others, who proposed a maximum-shear-stress-based
velocity scale and a new length scale.

In contrast to wall-shear-stress-based velocity scales, also the boundary-layer-edge
velocity ue has often been assumed to be a valid velocity scale for the outer layer of
PG TBLs (see Castillo & George 2001; Kitsios et al. 2016, 2017). However, the use
of this scale is often disputed, as it contradicts the classical theory for ZPG boundary
layers (Panton 2005); it is argued that both uτ and ue cannot be characteristic scales
for the outer layer simultaneously. Therefore, ue is assumed to be inconsistent within
the asymptotic limits for the Reynolds stresses and therefore not a valid scale.

Zagarola & Smits (1998) derived a new outer-velocity scale uZS = ueδ
∗/δ99, which

is proportional to the average deficit of mass flow rate caused by the presence of a
wall. It has been shown by Panton (2005) that the Zagarola–Smits (ZS) velocity uZS

is equivalent to using higher-order theory and is consistent with traditional scaling
arguments. By contrast, George (2006) claims that the ZS scale can also be made
consistent with the edge scaling, depending on which theory is correct. Based on
validation with experimental data, Castillo & George (2001) further argued that the
ZS scale removes the level of dependence from both the upstream conditions and the
Reynolds number for a large number of cases, although not completely.

A comparison between the most commonly used length and velocity scales (friction
velocity, pressure velocity, ZS and wake scaling) has been presented recently by
Maciel et al. (2018) for general, non-equilibrium PG TBLs. In agreement with other
studies, by Castillo et al. (2004) or Maciel et al. (2006) for instance, they consistently
concluded that both uZS and δ99 are an excellent set of scales for equilibrium and
non-equilibrium incompressible TBLs.

2.3. Introduction to compressible equilibrium layers
Although it can be expected that the compressible PG TBL can also be characterized
by a certain degree of self-similarity due to the close relation between the
incompressible Reynolds-averaged and Favre-averaged turbulent boundary-layer
equations, there is no comparable theory for compressible flows as the one provided
by Rotta (1950) and Clauser (1954) for incompressible flows. The lack of sufficiently
accurate data seems to be one of the major issues in the analysis, theory and
their verification of compressible PG TBLs; quantities like the wall shear stress τ̄w,
turbulent velocity and heat-flux fluctuations or boundary-layer thicknesses are difficult
to measure (Smits & Dussauge 2006). For any kind of self-similarity analyses,
however, these data are of essential importance to validate critical assumptions. The
closest experimental realization of compressible equilibrium can be found in the work
by Thomas (1974).

Most arguments related to the possible self-similarity of compressible PG TBLs are
therefore based on Morkovin’s hypothesis, which essentially states that compressible
boundary layers ‘follow the incompressible pattern’. Compressible PG TBLs are
therefore expected to be characterized by the same boundary-layer structure and it
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can be assumed that extended, but similarly motivated, scaling arguments used in
incompressible flows still also work for compressible flows. To compare different
sets of compressible experiments, definitions that are close to the incompressible
Rotta–Clauser parameter β = (L/τ̄w)(dpe/dx) with an arbitrary length scale L are
commonly used to characterize pressure-gradient influences. While the displacement
thickness δ∗ is usually used for the length scale L, also the kinematic (incompressible)
displacement thickness δ∗K or the momentum thickness θ as well as an inner-layer
pressure-gradient parameter (ν̄w/(ρ̄wu3

τ ))(dpe/dx) can be found in the literature
(Fernholz, Finley & Mikulla 1981). It is often mentioned, however, that none of these
definitions contains the influence of the wall-normal PG, which is often mentioned to
be important with increasing Mach numbers, especially for cases with wall curvature
(see Fernholz et al. 1989; Smith & Smits 1995).

Like for the condition of self-similarity, also the definition of appropriate scales is
largely based on incompressible arguments. Therefore, the compressible profiles are
mostly scaled in their pseudo-incompressible Morkovin- or van-Driest-transformed
representation with the friction velocity uτ . There have been nearly no tests of
different characteristic scales in compressible flow. Since the experimental accuracy
in compressible flow is usually not sufficient to be used to verify advanced scaling
arguments, the traditional scalings are commonly used (Smits & Dussauge 2006).

3. Self-similarity analysis for the outer layer of compressible TBLs
In this section a self-similarity theory is presented for compressible TBLs. After

introducing the principal method in § 3.1, the self-similarity analysis is given in § 3.2
and discussed in § 3.3. The construction of characteristic scales is given in § 3.4.

3.1. Methodology
The analysis is performed for general characteristic scales of the velocity U0, mass
flux F0 and total enthalpy G0 and a single length scale L0 characterizing the growth
of the velocity, the mass-flux and the energy boundary layers simultaneously. Thus,
the similarity analysis itself only provides templates for conditions that must be
fulfilled by possible characteristic scales in case of self-similarity; consequently,
without the specific choice of scales, the results are not applicable to real flow
data. In analogy to the analysis of incompressible TBLs, such as by George &
Castillo (1993), Castillo et al. (2004), Maciel et al. (2006) and Kitsios et al. (2016,
2017), see § 2.2.2, a separation-of-variables approach is used for the present analysis.
Every quantity Ψ (x, y) of the compressible two-dimensional boundary-layer equations
is hereby assumed to consist of a combination of ansatz functions; for example,
Ψ (x, y) = Φ(x)φ(η), where Φ(x) and φ(η) depend only on either the streamwise
position x or the wall-normal position η = y/L0(x). All ansatz functions are plugged
into the compressible boundary-layer equations, which then are rearranged into terms
solely depending on either x or η. By assuming that all x-dependent parts have to
be proportional to each other or are negligibly small in self-similar flows, conditions
for equilibrium can be derived. It is emphasized that these conditions can also be
contradictory, which would imply that exact self-similarity cannot be achieved for the
outer layer of compressible PG TBLs.

The basic procedure is analogous to incompressible approaches, but some
differences need to be mentioned. The self-similarity analysis of compressible TBLs
must simultaneously take into account the spatial evolution of the velocity (kinematic),
the mass-flux and the energy boundary layers. Since these do not necessarily evolve
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proportionally to each other in the streamwise direction, each boundary layer should
be characterized by an individual length scale L0(x). However, both the assumption of
one length scale for each type of boundary layer and the assumption of only a single
general length scale L0(x) for all three boundary layers does not significantly alter
the results (see § A.1). A similar approach has been used for compressible turbulent
jets by Smits & Dussauge (2006), which only considers the momentum equation by
assuming that the energy equation behaves similarly (Prt= 1). For a more generalized
theory, a single general length scale L0(x) is used first as in Maciel et al. (2006). The
findings obtained are then supplemented in a few points by an analysis with multiple
length scales given in § A.1.

This work assumes a two-layer structure and focuses on the outer layer, since PG
influences are small on the inner layer for moderate PGs; see part 1 of the series.

3.2. Self-similarity analysis

By using the simplified y-momentum equation p̄= pe− ρ̄ṽ′′2 with the far-field pressure
pe (see Wenzel et al. 2019), the Favre-averaged boundary-layer equations for two-
dimensional flows are written as

∂ρ̄ũ
∂x
+
∂ρ̄ṽ

∂y
= 0, (3.1)

ρ̄ũ
∂ ũ
∂x
+ ρ̄ṽ

∂ ũ
∂y
=−

∂pe

∂x
+
∂

∂y

[
µ̄
∂ ũ
∂y
− ρ̄ũ′′v′′

]
−
∂

∂x
[ρ̄ũ′′2 − ρ̄ṽ′′2], (3.2)

ρ̄ũ
∂ h̃0

∂x
+ ρ̄ṽ

∂ h̃0

∂y
=
∂

∂x

[
−ũρ̄ũ′′2 −

1
2
ρ̄ũ′′3 −

1
2
ρ̄ṽ′′2u′′ − ρ̄ũ′′h′′

]
+
∂

∂y

[
−ũρ̄ũ′′v′′ −

1
2
ρ̄ṽ′′3 −

1
2
ρ̄ũ′′2v′′ − ρ̄ṽ′′h′′ + ũµ̄

∂ ũ
∂y
+ k̄

∂T̃
∂y

]
, (3.3)

where µ is the dynamic viscosity and k is the thermal conductivity. The general form
of the momentum equation resembles the momentum equation as used in Townsend
(1956b). To avoid the explicit appearance of a PG term in the energy equation, a
total-enthalpy formulation is used. Note that more turbulent terms are kept compared
to their common definitions (cf. Smits & Dussauge 2006), since terms like ρ̄ũ′′2 and
ρ̄ṽ′′2 are not necessarily negligible in the case of strong APGs, for instance. Only the
turbulent dissipation terms d(ṽρ̄ṽ′′2)/dy and d(ṽρ̄ũ′′v′′)/dx are omitted.

3.2.1. Outer-layer ansatz functions
For the self-similarity of the outer layer, all quantities in (3.1)–(3.3) are represented

by commonly used functional forms:

ρ̄ũ= Fe(x)+ F0(x)f (η), (3.4)
ũ=Ue(x)+U0(x)fu(η), (3.5)

h̃0 =Ge(x)+G0(x)g(η), (3.6)

ρ̄ũ′′v′′ =−Ruv(x)ruv(η), (3.7)

ρ̄ũ′′2 = Ruu(x)ruu(η), (3.8)
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ρ̄ṽ′′2 = Rvv(x)rvv(η), (3.9)
1
2 ρ̄ũ′′3 = Ru3(x)ru3(η), (3.10)

1
2 ρ̄ũ′′2v′′ = Ru2v(x)ru2v(η), (3.11)
1
2 ρ̄ṽ

′′2u′′ = Rv2u(x)rv2u(η), (3.12)
1
2 ρ̄ṽ

′′3 = Rv3(x)rv3(η), (3.13)

ρ̄ũ′′h′′ = Ruh(x)ruh(η), (3.14)

ρ̄ṽ′′h′′ = Rvh(x)rvh(η), (3.15)
µ̄=M(x)m(η), (3.16)

y= L0(x)η, (3.17)

where the subscript ‘e’ is the quantity at the boundary-layer edge and the subscript
‘0’ is a characteristic scale. Analogously to the incompressible analysis by Townsend
(1956b), the mean-flow quantities (3.4)–(3.6) are chosen in a generalized defect-law
form like fu(η) = (ũ − Ue)/U0(x), which resembles fu(y/δ99) = (ũ − Ue)/uτ for
the velocity, for instance. The defect form for the mass flux is deduced from its
incompressible limit, and for the total enthalpy it is chosen analogous to temperature
profiles in incompressible studies (Tennekes & Lumley 1972). Their verification with
DNS results is part of § 4. All turbulent terms (3.7)–(3.15) and the viscosity (3.16) are
represented analogously to the analysis of George & Castillo (1993) as products of an
x-dependent and an η-dependent quantity. In contrast to most previous incompressible
analyses, where the displacement thickness δ∗ is anticipated as length scale L0(x) for
the outer scaling (Townsend 1956b; Castillo et al. 2004; Kitsios et al. 2016, 2017),
L0(x) is not yet specified in (3.17) for the present study as in Maciel et al. (2006),
which allows its variation in the following.

It is also mentioned that the direct specification of functional forms for velocity,
mass flux and total enthalpy implicitly includes the equation of state. Thus, as long
as all functional forms are fulfilled, this analysis is independent of the fluid used.

3.2.2. Expansion of momentum and energy equation
In the following, all terms of the boundary-layer x-momentum (3.2) and energy

equation (3.3) are replaced by the functional forms (3.4)–(3.17). Therefore, the
continuity equation (3.1) is used to substitute the mass flux in the y-direction,

∂ρ̄ṽ

∂y
=−

∂ρ̄ũ
∂x
=−

∂Fe

∂x
− F0

∂η

∂x
∂f
∂η
−
∂F0

∂x
f , (3.18)

which then is replaced in (3.2) and (3.3) by

ρ̄ṽ = −L0
∂Fe

∂x
η− F0

∫ y

0

∂η

∂x
∂f
∂η

dy−
∂F0

∂x

∫ y

0
f dy (3.19)

= −L0
∂Fe

∂x
η+ F0

∂L0

∂x
ηf −

∂L0F0

∂x
F, (3.20)

where F(η) =
∫ η

0 f dη. If all terms are split into only x- and η-dependent parts, the
expanded x-momentum equation reads
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dL0

dx
L0

F0U0 −U0
dF0

dx

 F
dfu

dη
+

[
F0

dU0

dx

]
ffu +

[
F0

dUe

dx

]
f

+

[
Fe

dU0

dx

]
fu +

[
Fe

dUe

dx

]
1+

−
dL0

dx
L0

FeU0 −U0
dFe

dx

 ηdfu

dη

+

[
dRuu

dx

]
ruu +

[
−

dRvv
dx

]
rvv +

[
−

Ruv

L0

]
druv

dη
+

−
dL0

dx
L0

Ruu

 ηdruu

dη

+


dL0

dx
L0

Rvv

 ηdrvv
dη
=

[
−

dpe

dx

]
1+

[
MU0

L2
0

]
d

dη

(
m

dfu

dη

)
, (3.21)

and the expanded energy equation−
dL0

dx
L0

FeG0 −G0
dFe

dx

 η dg
dη
+

−
dL0

dx
L0

F0G0 −G0
dF0

dx

 F
dg
dη
+

[
F0

dG0

dx

]
fg

+

[
F0

dGe

dx

]
f +

[
Fe

dG0

dx

]
g+

[
Fe

dGe

dx

]
1

+

[
dRuuU0

dx

]
furuu +

[
dRuuUe

dx

]
ruu +

−
dL0

dx
L0

RuuU0

 ηdfuruu

dη

+

−
dL0

dx
L0

RuuUe

 ηdruu

dη
+

[
−

RuvU0

L0

]
dfuruv

dη
+

[
−

RuvUe

L0

]
druv

dη
+

[
dRhu

dx

]
rhu

+

−
dL0

dx
L0

Rhu

 ηdrhu

dη
+

[
Rhv

L0

]
drhv

dη
+

[
dRu3

dx

]
ru3 +

[
Ru2v

L0

]
dru2v

dη

+

−
dL0

dx
L0

Ru3

 ηdru3

dη
+

−
dL0

dx
L0

Rv2u

 ηdrv2u

dη
+

[
dRv2u

dx

]
rv2u +

[
Rv3

L0

]
drv3

dη

=

[
MU2

0

L2
0
−

MU2
0

PrL2
0

]
d

dη

(
mfu

dfu

dη

)
+

[
MU0Ue

L2
0
−

MU0Ue

PrL2
0

]
d

dη

(
m

dfu

dη

)
+

[
G0M
PrL2

0

]
d

dη

(
m

dg
dη

)
. (3.22)

All x-dependent terms denote the weight of a term with respect to the streamwise
evolution and are written in square brackets [ ].
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3.2.3. Equilibrium of the x-momentum equation – mean flow
If self-similar solutions exist for the x-momentum equation (3.21), all x-dependent

parts of each term have to be in equilibrium and hence proportional to each other or
negligibly small. Thus, the convective terms imply that−

dL0

dx
L0

FeU0 −U0
dFe

dx

∼
−

dL0

dx
L0

F0U0 −U0
dF0

dx

 , (3.23)

[
F0

dU0

dx

]
∼

[
F0

dUe

dx

]
∼

[
Fe

dU0

dx

]
∼

[
Fe

dUe

dx

]
, (3.24)

which leads to the condition

F0 ∼ Fe, (3.25)
U0 ∼Ue, (3.26)

which is further discussed in § 3.3.3. From the convective and the pressure terms it
can be further concluded that−

dL0

dx
L0

F0U0 −U0
dF0

dx

∼ [F0
dU0

dx

]
∼

[
dpe

dx

]
, (3.27)

which results in three conditions. The first one is:

F0
dU0

dx
∼

dpe

dx
. (3.28)

By using U0 ∼ Ue and F0 ∼ Fe from (3.26) and (3.25), this condition yields
Fe(dUe/dx) ∼ dpe/dx, or, replaced by physical quantities, (ρ̄ũ)e(dũe/dx) ∼ dpe/dx.
This is a true statement in our case since it resembles the x-momentum equation in
(3.2) if evaluated at the edge of the boundary layer, where all y-derivatives tend to
zero and turbulent fluctuations are negligible. The second condition relates the spatial
evolution of the mass-flux, velocity and length scales:

1
L0

dL0

dx
∼

1
F0

dF0

dx
∼

1
U0

dU0

dx
. (3.29)

Thus, if the length scale or the velocity scale has a distribution of L0 = a(x − x0)
n,

for instance (if dL0/dx= const., n= 1), all quantities U0, G0 and F0 have to evolve
according to a similar power law. With (dL0/dx)/L0= d(ln L0)/dx, the third condition
is the compressible pressure-gradient boundary-layer growth parameter:

Λc ∼
L0

FeUe
dL0

dx

dpe

dx
∼

L0

F0U0
dL0

dx

dpe

dx
=

1

F0U0
d ln(L0)

dx

dpe

dx
= const. (3.30)

Its definition is nearly identical to the generalized, Reynolds-averaged one found for
incompressible boundary layers (2.2) by Castillo et al. (2004):

Λinc =
L0

ρU2
e

dL0

dx

dpe

dx
, (3.31)

if the boundary-layer thickness δ99 is replaced by an arbitrary length scale L0.
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3.2.4. Equilibrium of the energy equation – mean flow
Analogously, the process is repeated for the mean-flow terms of the energy equation

(3.22). To relate the edge and characteristic scales, two types of convective terms are
used, −

dL0

dx
L0

FeG0 −G0
dFe

dx

∼
−

dL0

dx
L0

F0G0 −G0
dF0

dx

 , (3.32)

[
F0

dG0

dx

]
∼

[
F0

dGe

dx

]
∼

[
Fe

dG0

dx

]
∼

[
Fe

dGe

dx

]
, (3.33)

which leads to a similar condition as in the momentum equation, F0 ∼ Fe and G0 ∼

Ge. Since the total enthalpy at the edge Ge is a constant, but the characteristic total
enthalpy scale G0 varies in the streamwise direction, Ge ∼G0 can only be fulfilled if
either Ge = 0 or G0 = 0. Therefore, by assuming a constant stagnation enthalpy Ge
in the free stream, the reference zero for the total enthalpy Ge is adjusted such that
Ge = 0. Using Fe ∼ F0 and Ge = 0 on the weight of the convective terms,−

dL0

dx
L0

FeG0 −G0
dFe

dx

∼ [F0
dG0

dx

]
, (3.34)

returns a condition similar to (3.29),

1
F0

dF0

dx
∼

1
L0

dL0

dx
∼

1
G0

dG0

dx
. (3.35)

This again defines the relation between the scaling quantities, which implies a similar
evolution of the characteristic total enthalpy defect scale as found for the momentum
boundary layer.

3.2.5. Equilibrium of the turbulent terms
From the split momentum equation (3.21), the following conditions can be derived

for the turbulent terms:

[
dRuu

dx

]
∼

[
−

dRvv
dx

]
∼

[
−

Ruv

L0

]
∼

−
dL0

dx
L0

Ruu

∼


dL0

dx
L0

Rvv

∼


dL0

dx
L0

F0U0

 . (3.36)

With (3.27), the turbulent stresses of the momentum equation scale for equilibrium
boundary layers as

Ruu

F0U0
∼

Ruu

FeUe
= const., (3.37)

Rvv
F0U0

∼
Rvv

FeUe
= const., (3.38)

Ruv

F0U0
dL0

dx

∼
Ruv

FeUe
dL0

dx

= const. (3.39)
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Note that the definition of turbulent scales like Ruu also allows the additional choice of
a case-dependent scaling constant termed CM in the following, such that Ruu=CMF0U0,
for instance. Their further use and choice will be discussed in the results in § 4.

From the split energy equation (3.22), the conditions for the turbulent terms are

−
dL0

dx
L0

Rhu

 ∼
−

dL0

dx
L0

Ru3

∼
−

dL0

dx
L0

RuuU0

∼
−

dL0

dx
L0

Rv2u


∼

[
dU0Ruu

dx

]
∼

[
dRhu

dx

]
∼

[
dRu3

dx

]
∼

[
dRv2u

dx

]
∼

[
Rhv

L0

]

∼

[
Ru2v

L0

]
∼

[
Ru3

L0

]
∼

[
−

RuvU0

L0

]
∼


dL0

dx
L0

FeG0

 . (3.40)

Finally, if identical scaling of the Favre stresses, e.g. Ruu, is assumed for the energy
and the momentum equations, see (3.37)–(3.39), the following conditions can be
derived:

RuuU0

F0G0
∼

Ruu

F0U0
= const., (3.41)

RuvU0

F0G0
dL0

dx

∼
Ruv

F0U0
dL0

dx

= const., (3.42)

Ru3

F0G0
∼

Ru3

F0U2
0
= const., (3.43)

Rv2u

F0G0
∼

Rv2u

F0U2
0
= const., (3.44)

Rhu

F0G0
∼

Rhu

F0U2
0
= const., (3.45)

Rhv

F0G0
dL0

dx

∼
Rhv

F0U2
0

dL0

dx

= const., (3.46)

Ru2v

F0G0
dL0

dx

∼
Ru2v

F0U2
0

dL0

dx

= const., (3.47)

Rv3

F0G0
dL0

dx

∼
Rv3

F0U2
0

dL0

dx

= const. (3.48)

Similarly to the momentum equation, a case-dependent scaling constant CE can be
introduced, such that Rhu =CEF0G0, for instance; see § 4.
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3.2.6. Viscous terms
In the outer layer, viscous terms are usually neglected. If they are included, the

similarity condition for the viscous terms in the momentum equation (3.21) is

M
FeL0

1
dL0

dx

= const., (3.49)

with the first part being the inverse of the Reynolds number computed with the outer
length scale L0. For the energy equation, the diffusion terms return the similarity
conditions

MG0

F0U2
0L0

1
dL0

dx

= const., (3.50)

MG0

PrF0U2
0L0

1
dL0

dx

= const., (3.51)

M
PrF0L0

1
dL0

dx

= const., (3.52)

which are essentially identical to the ones for the momentum equation in (3.49) if
Pr= const.; see § 3.3.5 for further discussions.

3.3. Discussion
The first point is related to the ansatz functions (3.4)–(3.17), which have been defined
a priori to represent all quantities of the compressible turbulent boundary-layer
equations. These functions already assume both the self-similarity of the quantity
as well as the shape of its particular wall-normal distribution (a defect-law relation,
for instance). All conditions derived thus rely on the validity of the chosen ansatz
functions and break if these are not appropriately chosen; their validation with DNS
data is part of § 4.

The second point is related to the interpretation of the conditions revealed, like
the PG condition in (3.30). For a PG parameter, for example, it is desirable that
self-similar flows with different similarity solutions are uniquely characterized by
the PG-parameter value, which is not the case for the condition derived. If the PG
condition is directly used as a PG parameter in incompressible studies, for instance,
see (3.31), Λinc tends towards similar values for self-similar cases with different APG
strength, meaning that the Λinc value is not unique. Therefore, it is important to
mention that the conditions revealed only impose requirements on the construction of
possible parameters, but leave degrees of freedom in the additional consideration of
case-dependent constants like CM and CE mentioned in § 3.2.5.

The third point is related to the conditions resulting from the analysis like U0∼Ue
in (3.26), for instance. Although some of these conditions are less important than
others in practice, see also § 4, true self-similarity can only be determined for the
outer layer, if all conditions derived are fulfilled in a strict sense. Furthermore, the
generality of the product ansatz for the turbulent stresses might allow solutions that
real turbulence might not be able to realize. Therefore, the most important conditions,
namely the PG parameter Λc (3.30), the conditions of F0/Fe = const. (3.25) and
U0/Ue = const. (3.26), the coupling of the momentum and energy equations and the
results for the viscous terms, are discussed in more detail in the following.
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3.3.1. Towards a relation between Λc and β
As supposed by the analysis, the self-similar state of the compressible PG TBL

is predicted by the pressure-gradient boundary-layer evolution parameter Λc. If the
traditional Rotta–Clauser parameter β = (δ∗/τ̄w)(dpe/dx) is written in a generalized
form after Maciel et al. (2006) with τ̄w ∼ F0U0 by β = (L0/(F0U0))(dpe/dx), its
formulation only differs from Λc by the additional consideration of dL0/dx:

Λc =
β

dL0/dx
= const., (3.53)

which raises the question about the influence of dL0/dx and thus the significance of
both Λc and β. As the significance of dL0/dx is very difficult to quantify especially
for experimental results, its influence on low-Reynolds-number flows is still unclear.
By taking various arguments into account, Maciel et al. (2006), for instance, argued
that dL0/dx should be constant for self-similar boundary layers in a strict case. For
the ZPG TBL, however, which can be regarded as the simplest self-similar spatially
evolving TBL, dL0/dx is not constant, especially for finite Reynolds numbers, if the
length scale is assumed to be the boundary-layer thickness δ99 or other commonly used
length scales. Therefore, it will be an important part of the results section to compare
the significance of Λc and β as well as the influence of dL0/dx for the investigated
data.

Note that the choice of dL0/dx = const. has often been implicitly assumed in
older studies (Townsend 1956b; Mellor & Gibson 1966) by setting the turbulent
characteristic scales a priori. For instance, in Townsend (1956b), all turbulent stresses
were assumed to scale according to each other as Rij = F0U0, which can only be
fulfilled if dL0/dx= const.; compare (3.37)–(3.39).

3.3.2. Towards the length scale L0

The presented analysis was performed for a universal length scale L0 that
characterizes the spatial evolution of the velocity, mass-flux and energy boundary
layers at the same time. If, in contrast, a separate length scale is used for each
boundary layer in the analysis, as shown in § A.1, the Rotta–Clauser parameter yields

β =
L0,K

F0U0

dpe

dx
, (3.54)

where the length scale L0,K is associated with the velocity (kinematic) boundary
layer. Thus, if the mass-flux and the velocity boundary layers do not evolve strictly
similarly and the generalized Rotta–Clauser parameter β, for instance, is still a valid
indicator for self-similarity, the approximated state of self-similarity is better predicted
by using a kinematic length scale like the incompressible displacement thickness δ∗K
rather than with a mass-flux scale like the compressible displacement thickness δ∗ in
the compressible regime. This finding is already confirmed in part 1 of this study by
using DNS data (see Wenzel et al. 2019).

3.3.3. Towards the conditions U0 ∼Ue and F0 ∼ Fe

The condition derived from (3.26) is analogous to incompressible analyses
(Townsend 1956a; Mellor & Gibson 1966) and imposes U0/Ue = const. for all
Reynolds numbers. In Castillo & George (2001) it is assumed that U0/Ue = const.
can reach a finite constant value, whereas Maciel et al. (2006) postulate that the
ratio will approach zero in the asymptotic limit. Therefore, according to Maciel et al.
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(2006), the obvious choice of U0 = Ue is questionable, since Ue is not expected to
correctly scale turbulent stresses. However, as noted by Mellor & Gibson (1966),
the variation of self-similar solutions was found to be not sensitive with regard to
variations in uτ/Ue for which U0/Ue is not constant, which also explains the success
of related scales. Analogous to the condition for the velocity scale U0/Ue = const.,
(3.25) poses the condition on the mass flux as F0/Fe= const. and thus on the density
ρ0/ρe = const., if U0/Ue = const. is assumed. The condition ρ0/ρe = const. directly
involves compressibility effects and can only be fulfilled either for ZPG cases where
the local Mach number does not alter, or in the asymptotic limit for x→∞. The
sensitivity of self-similar solutions to a non-constancy of F0/Fe is evaluated in § 4
by using the DNS data. Nevertheless, it seems clear from this discussion that the
conditions of self-similarity can only be achieved approximately in the compressible
regime.

3.3.4. Towards the connection between the momentum and energy equation
Two conditions have been found for all Favre stresses Rij from the momentum

and energy equation, see e.g. (3.37) and (3.41). Since both conditions have to be
proportional to each other for each stress, see e.g. (3.41) for Ruu, the characteristic
total enthalpy has to be proportional to the characteristic kinetic energy, G0 ∼ U2

0 .
This relation couples the streamwise evolution of the energy equation with that of the
momentum equation. Hence, the enthalpy scale can be set as G0= cU2

0/2 with c being
a constant. In self-similar boundary layers with Ue ∼U0, the recovery factor r in the
Crocco–Busemann relation with the total enthalpy at the wall Hw and edge He of the
boundary layer Hw = He + (r − 1)Ue(x)2/2 is therefore a constant in the streamwise
direction.

For non-adiabatic walls, the modified Crocco–Busemann or Walz relation h̃0−Hw=

(q̄w/τ̄w)ũ has to be used, where q̄w is the wall-normal heat flux at the wall. Thus,
by assuming that this relation is capable of describing the streamwise evolution
of the flow and that the analysis can be transferred to non-adiabatic conditions,
the results can be extended to flows with wall heat flux. (Note that the turbulent
boundary-layer equations are strictly speaking only derived for adiabatic conditions
in this study.) Thus, if subjected to non-zero wall heat flux, self-similar solutions can
only be possible if the heat flux is q̄w(x)/τ̄w(x) ∼ Ue(x). This is subject of further
investigation.

3.3.5. Viscous terms
If dL0/dx is assumed to be (approximately) constant for equilibrium boundary

layers, the condition M/(FeL0) = Re−1
= const. in (3.49) is only true for Re−1

→ 0
and thus x→∞. Consequently, an exact self-similarity of the viscous terms is not
possible. Note that the condition G0 ∼ U2

0 is also recovered for the viscous stresses,
which hence does not lead to any additional contradiction in the analysis.

3.4. Scales
The analysis in the previous section has been conducted for a general set of scales
F0, U0 and G0 (by using a single length scale L0). If flow data should be analysed,
these scales must somehow be associated with boundary-layer quantities. However,
especially in the case of self-preserving flows, there are multiple possible choices
for these scales for the outer layer, as introduced in § 2.2.3 for incompressible flows.
Nevertheless, some guidelines on the appropriate choice of valid scalings can be made
to obtain a consistent set of scales.
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3.4.1. Definition of length scales
Following the ideas of Clauser (1954) and Maciel et al. (2006), the integral of

appropriately scaled flow-field profiles should be identical for different streamwise
positions and thus can be associated with a length scale L0. Thus, three different
length scales L0,F, L0,K and L0,G can be generally defined for the compressible regime,
one for the mass-flux, one for the kinematic and one for the energy boundary layer,
respectively (in contrast to only one in the incompressible case):

L0,F =

∫ δe

0

Fe − ρ̄ũ
F0

dy= δ∗
Fe

F0
, (3.55)

L0,K =

∫ δe

0

Ue − ũ
U0

dy= δ∗K
Ue

U0
(3.56)

or

L0,G =

∫ δe

0

∣∣∣∣∣ h̃0 −He

G0

∣∣∣∣∣ dy= δH
|Hw −He|

G0
, (3.57)

with

δ∗ =

∫ δe

0

(
1−

ρ̄ũ
ρeUe

)
dy, (3.58)

δ∗K =

∫ δe

0

(
1−

ũ
Ue

)
dy, (3.59)

δH =

∫ δe

0

∣∣∣∣∣ h̃0 −He

Hw −He

∣∣∣∣∣ dy. (3.60)

For the mass-flux and velocity length scales, L0,F and L0,K , respectively, both the
compressible δ∗ and the kinematic δ∗K displacement thicknesses are used. For the
total-enthalpy profiles, the use of an enthalpy thickness δH is the simplest possible,
consistent option. The absolute value of the integrand is used to avoid a negative
defect in the outer layer (see figure 5) reducing the length scale L0,G. Note that the
method can also be adapted to using integral length scales with a similar form as the
momentum thickness (see Maciel et al. 2006).

3.4.2. Determination of scales
In the self-similarity analysis introduced so far, the spatial growth and thus the

length scales of the mass-flux boundary layer L0,F (3.55), the kinematic boundary layer
L0,K (3.56) and the energy boundary layer L0,G (3.56) are represented by a single
length scale L0 only, yielding

L0 = L0,F = L0,K = L0,G. (3.61)

Equations (3.55)–(3.57) and (3.61) thus represent a basic system to generate a
consistent set of scales, if one of the four unknowns (L0, U0, F0 or G0) is predefined.

In the following, four consistent sets of scales are introduced, which all are intended
to extend the most commonly used incompressible sets of scales to the compressible
regime. It is explicitly pointed out that this selection is by no means complete or
definitive, since a great variety of sets should at least approximately work for the
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Scaling Velocity scale Mass-flux scale Enthalpy scale Length scale

Edge U0,e =Ue F0,e =
δ∗

δ∗K
Fe G0,e = |Hw −He|

δH

δ∗K
L0,e = δ

∗

K

Friction U0,τ =

√
ρ̄w

ρe

δ∗K

δ∗
uτ F0,τ =

δ∗

δ∗K
ρeU0,τ G0,τ = |Hw −He|

δH

L0,τ
L0,τ = δ

∗

K
Ue

U0,τ

RC U0,RC =
3

√
δ∗K

δ∗

Ueτ̄w

ρe
F0,RC =

ρeδ
∗

δ∗K
U0,RC G0,RC = |Hw −He|

δH

L0,RC
L0,RC = δ

∗

K
Ue

U0,RC

ZS U0,ZS =Ue
δ∗K

δ99
F0,ZS = Fe

δ∗

δ99
G0,ZS = |Hw −He|

δH

δ99
L0,ZS = δ99

TABLE 1. Consistent sets of compressible characteristic scales. RC, Rotter–Clauser;
ZS, Zagarola–Smits.

special case of equilibrium flows; see § 4. However, it was found that using consistent
scales based on a valid velocity scale leads to the best results, as most terms in the
momentum equation scale with a kinematic length scale L0,K (see § A.1 for a more
detailed examination).

The chosen sets of scales are summarized in table 1, and the ideas behind them are
discussed briefly below.

Edge scaling. In the incompressible analysis of George & Castillo (1993), the velocity
at the edge of the boundary layer Ue is used as the characteristic velocity scale U0.
This scaling is a result of the condition Ue∼U0, see (3.26), with the assumption that
the ratio does not approach zero. Derived from (3.55)–(3.57) and (3.61), the remaining
scales are determined as L0,e = δ

∗

K , F0,e = (δ
∗/δ∗K)Fe and G0,e = |Hw −He|δH/δ

∗

K .

Friction scaling. For flows approximating ZPG conditions, Clauser (1954), Mellor &
Gibson (1966) and Townsend (1956b) used the skin-friction velocity uτ as a velocity
scale U0. With the same arguments, the characteristic velocity scale is chosen to
depend on uτ with U0,τ =

√
(ρ̄w/ρe)(δ

∗
K/δ

∗)uτ , yielding a characteristic length scale
of L0,τ = δ

∗

KUe/U0,τ . The definition of U0,τ is constructed to allow the Favre stresses
ρ̄ũ′′i u′′j to be scaled by F0,τU0,τ = ρ̄wu2

τ , which almost resembles Morkovin’s scaling.
The corresponding mass-flux and enthalpy scales are then F0,τ = (δ

∗/δ∗K)ρeU0,τ and
G0,τ = (H0,w − H0,e)δH/L0,τ . Note that also other options for the velocity scale, such
as (ρ̄w/ρe)uτ , essentially yield a similar result, but simply using uτ does not work
within the chosen framework, as the Favre stresses would be scaled with the edge
density (F0U0 = (δ

∗/δ∗K)ρeu2
τ ).

Rotta–Clauser (RC) scaling. The RC scaling is designed to match the Rotta–Clauser
parameter βRC= (δ

∗

K/τ̄w)(dpe/dx)= (L0/(F0U0))(dpe/dx) and can be interpreted as a va
riant of the friction scaling. The velocity scale results in U0,RC= ((δ

∗

K/δ
∗)(Ueτ̄w/ρe))

1/3,
the mass-flux scale in F0,RC = (ρeδ

∗/δ∗K)U0,RC and the enthalpy scale in G0,RC = |Hw−

He|δH/L0,RC. The length scale results in L0,RC = δ
∗

KUe/U0,RC.

Zagarola–Smits (ZS) scaling. The ZS scaling, after Zagarola & Smits (1998), has as
characteristic length scale the boundary-layer thickness L0,ZS = δ99. The velocity scale
yields U0,ZS = Ueδ

∗

K/δ99, and is the average defect of the profile. The corresponding
mass-flux and enthalpy scales are F0,ZS = Feδ

∗/δ99 and G0,ZS = |Hw − He|δH/δ99,
respectively.
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βK Me,1–Me,2 1x/δ99,av δ99,2/δ99,1 Reθ,1 − Reθ,2

iZPG 0 0.5 33 1.67 1276–2153
iAPGβK=0.19 0.19 0.45–0.43 29 1.75 1435–2418
iAPGβK=0.58 0.58 0.41–0.37 24 1.84 1704–2859
iAPGβK=1.05 1.05 0.38–0.33 21 1.90 1906–3225

cZPG 0 2.00 32 1.62 1496–2457
cAPGβK=0.15 0.15 1.90–1.78 33 1.64 1601–2869
cAPGβK=0.55 0.55 1.69–1.41 32 1.79 1921–3991
cFPGβK=−0.18 −0.18 2.14–2.35 30 1.70 1336–1948

TABLE 2. Summarized properties of DNS results presented by Wenzel et al. (2019)
in the domain of interest. Given parameters are the kinematic Rotta–Clauser parameter
βK and parameters evaluated at the beginning (‘1’) and the end (‘2’) of the region of
interest, where βK = (δ∗K/τ̄w)(dpe/dx) is almost constant. Here Me is the local Mach
number, 1x/δ99,av is the spatial extent of the region of interest in averaged boundary-layer
thicknesses (‘av’), δ99,2/δ99,1 is the ratio of local boundary-layer thickness, and Reθ is
the corresponding Reynolds number. Prefix i is for almost incompressible and c for
compressible cases.

4. Results

The DNS presented in part 1 for both moderate APG and FPG cases have been
especially designed to achieve compressible near-equilibrium TBLs; see Wenzel et al.
(2019) for details. Furthermore, sub- and supersonic inflow Mach numbers are used
to allow for a meaningful comparison between the (quasi-)incompressible/subsonic and
the compressible/supersonic regimes. It is the objective of this section to analyse these
data with respect to the theory presented so far. For this purpose, important parameters
and conditions discussed in § 3 are first examined, before the streamwise self-similarity
of flow profiles is investigated in more detail for the outer layer. Local flow-field
profiles are therefore extracted at 10 equidistant streamwise positions, all of which are
in regions of estimated self-similarity where βK is approximately constant (see Wenzel
et al. 2019). By normalization with all scaling sets derived in § 3.4, both their scaling
success as well as the DNS’s state of self-similarity is assessed.

It is emphasized that the successful collapse of local flow-field profiles is crucial,
as it is a necessary condition for the meaningfulness of the self-similarity analysis
derived and the self-similar state of the computed data; for further discussion see
§ 4.5.1. If no collapse can be achieved, the reason cannot be clearly attributed to a
lacking quality of data, to a misleading choice of characteristic scales or to wrong
assumptions for ansatz functions plugged in to the self-similarity analysis, for instance.

4.1. Summary of DNS data
A summary of the most important flow-field properties is given in table 2 for all
cases used in the following. According to Wenzel et al. (2019), all cases are denoted
to be either APG, ZPG or FPG with a prefix i for almost incompressible and c for
compressible cases. In the following, only regions of approximate self-similarity are
considered, where βK is approximately constant. For the subsonic cases, this region is
located between 1506 x/δ99,0 6 310; for the supersonic cases between 2506 x/δ99,0 6
480; the beginning and the end of these regions are denoted by the index ‘1’ and ‘2’,
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respectively. The boundary-layer thickness δ99,av used in table 2 is the averaged one
over the region of interest.

In the following, results of the subsonic cases are plotted in red, the supersonic
cases in blue and the supersonic FPG case in cyan. The strength of the PGs is
distinguished by different line styles: all ZPG cases are depicted as solid lines, the
PG cases by different types of non-solid lines; the dashes of a line style become
shorter for increasing pressure-gradient strength and thus rising βK values.

4.2. Parameters
To estimate the success of the characteristic scalings, the most important conditions
derived in the self-similarity in § 3 are evaluated in this section. In all related figures,
the x-coordinate is normalized by the boundary-layer thickness δ99,0 at the inlet of the
domain (Reθ ≈ 300) and is denoted by x∗.

4.2.1. Validity of characteristic scales
The characteristic scales have to be proportional to the flow-field values determined

at the edge of the boundary layer, yielding

U0 ∼Ue, F0 ∼ Fe, G0 ∼U2
0 . (4.1a−c)

Hence, the ratios of U0/Ue, F0/Fe and G0/U2
0 should be constant for self-similar flows.

For all four sets of scaling, the respective conditions are given in figure 1(a–d).
Depicted in the first two columns, at first the conditions U0/Ue= const. and F0/Fe=

const. are discussed. For the edge scaling in figure 1(a1), the condition for the velocity
U0,e = Ue gives a true statement. The corresponding mass-flux scale in figure 1(a2)
has to be F0,e = (δ

∗/δ∗K)Fe 6= Fe, yielding the false statement F0,e � Fe for supersonic
cases; these vary by approximately 10 % in figure 1(a2). Note that the scales could
also have been chosen to fulfil F0/Fe = const., which lead to U0,e = (δ

∗

K/δ
∗)Ue and

thus to U0,e � Ue if F0 = Fe, for instance. Since the scaling success is better for
velocity-based scalings as already discussed in § 3.3.2, these have been chosen to
best fulfil the U0/Ue = const. condition. An exemplary comparison between the two
approaches for local velocity profiles is depicted in the appendix; see § A.2 later. Both
for the friction scaling in figure 1(b1) and (b2) and the RC scaling in figure 1(c1)
and (c2), it is evident that both ratios U0/Ue and F0/Fe are not constant and exhibit
slight negative drifts. For the ZS scaling in figure 1(d1) and (d2) in contrast, almost
the same behaviour is reproduced as for the edge scaling in figure 1(a1) and (a2).

Depicted in the third column of figure 1, the condition G0∼U2
0 relates the evolution

of the characteristic kinetic energy U2
0 to the defect total enthalpy G0. Consistently

for all scalings in figure 1(a3–d3), the distributions for all supersonic cases are
approximately constant for all PGs (slightly better for the edge and ZS scales) and
exhibit only small variations between different cases. For the subsonic cases, the
differences for the various PG strengths are larger and the distributions are not as
constant as for the supersonic cases. Since the statement G0 ∼ U2

0 is closely related
to a constant recovery factor r in the Walz relation as discussed in § 3.3.4, also the
recovery factor of the subsonic PG cases is not as constant as for the supersonic
cases, as depicted and discussed in Wenzel et al. (2019). But recall that the recovery
factor becomes meaningless for Mach numbers approaching zero.
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FIGURE 1. (Colour online) Plots of U0/Ue (column 1), F0/Fe (column 2) and G0/U2
0

(column 3) for different scalings: (a) edge scaling, (b) friction scaling, (c) RC scaling
and (d) ZS scaling. Grey lines denote the induction regions where βK is not yet constant.
Red lines: ——, iZPG; —— –, iAPGβK=0.19; — – —, iAPGβK=0.58; – · – · – · –, iAPGβK=1.05.
Blue lines: ——, cZPG; —— –, cAPGβK=0.15; – – – – –, cAPGβK=0.55. Cyan line: — – – —,
cFPGβK=−0.18.

4.2.2. Similarity parameter
Both the compressible pressure-gradient boundary-layer growth parameter Λc =

(L0 dpe/dx)/(U0F0 dL0/dx) and the generalized Rotta–Clauser parameter β = (L0 dpe/

dx)/(U0F0) are depicted in figures 2(a) and 2(b), respectively. For the Λc distributions,
the dL0/dx distributions have been smoothed by applying a Savitzky–Golay filter to
the L0 distributions. Note that βRC corresponds to βK in Wenzel et al. (2019).

The compressible Λc parameter converges towards an almost constant state for
the edge and ZS scalings for both the compressible and incompressible scales in
the domain of interest, see figure 2(a1) and (d1). The friction and RC scales in
figure 2(b1) and (c1), in contrast, show visible variations, becoming pronounced with
increasing PG strength. For the β distributions in figure 2(a2–d2), the supersonic
cases exhibit a comparable behaviour as for Λc in figure 2(a1–d1) for all scalings.
For the subsonics the trend is reversed; β is almost constant for the friction and RC
scales in figure 2(b2) and (c2) and visibly decreasing for the edge and ZS scales in
figure 2(a2) and (d2).
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FIGURE 2. (Colour online) Plots of PG boundary-layer-growth parameter Λc (column 1)
and PG parameter β (column 2) for different scalings: (a) edge scaling, (b) friction scaling,
(c) RC scaling and (d) ZS scaling. Symbols mark positions where local profiles are
extracted in the following; cases with the same βK have the same symbol type. Grey lines
denote the induction regions, where βK is not yet constant. Red lines: ——, iZPG; —— –,
iAPGβK=0.19; — – —, iAPGβK=0.58; – · – · – · –, iAPGβK=1.05. Blue lines: ——, cZPG; —— –,
cAPGβK=0.15; – – – – –, cAPGβK=0.55. Cyan line: — – – —, cFPGβK=−0.18.

Implied by the visible differences between both Λc and β, which only differ by
the additional consideration of dL0/dx, the assumption of dL0/dx ≈ const. is only
approximately fulfilled for our data and is expected to have significant influences on
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the scaling success. Its consequences are discussed in the following. It is emphasized
that the various scalings shift the relative position of sub- and supersonic cases with
respect to each other and thus do not allow a consistent comparison between PG
strengths for compressible and incompressible cases for different parameters.

4.3. Self-similarity of mean-flow profiles
In the following, the streamwise self-similarity of the Favre-averaged mass-flux,
velocity and total-enthalpy distributions is investigated for the outer layer. Local
flow-field profiles are extracted at 10 equidistant streamwise positions, all of which
are located in regions of estimated self-similarity for each case; see the symbols in
figure 2. Extracted at these 10 positions, the corresponding flow-field profiles are
given as grey lines in the background of all following plots, their mean value as
coloured lines in the foreground. All flow variables are depicted in the four different
scalings introduced, see (3.4)–(3.17), and plotted in their defect formulation versus
y/δ99.

4.3.1. Mean velocity profiles ũ
The mean velocity profiles are shown in figure 3. Represented in the edge scaling

in figure 3(a), the velocity-defect profile 1 − ũ/ũe approximately corresponds to
the integrand of the incompressible displacement thickness 1 − ū/ūe and thus
characterizes the velocity defect. Whereas higher APGs lead to higher defects and
thus less full profiles compared to ZPGs, FPGs lead to fuller profiles. A comparison
between compressible and incompressible profiles shows comparable, but not identical,
distributions for cases with similar βK values; see e.g. the two ZPG cases. For both
the friction scaling in figure 3(b) and the RC scaling in figure 3(c), the sub- and
supersonic counterparts are further separated from each other. Like for the edge
scaling in figure 3(a), the ZS scaling in figure 3(d) corresponds to the integrand of
the incompressible displacement thickness, but is additionally scaled by δ∗K/δ99 such
that profiles for the various PGs are pushed more closely together; however, they do
not collapse.

The edge scaling in figure 3(a) shows an impressive collapse for both the sub- and
supersonic cases, meaning that all 10 grey lines for successive x positions of each case
collapse under the corresponding coloured lines. For the friction scaling in figure 3(b)
and also the RC scaling in figure 3(c), the collapse is noticeably worse, meaning
that the 10 grey lines of each case slightly scatter. The extent of this scattering is
comparable for all cases. For the ZS scaling in figure 3(d), the collapse of each of
the 10 streamwise profiles is as good as for the edge scaling in figure 3(a).

It is interesting to see that the scaling success of the velocity profiles is well
correlated with the constancy of the condition U0 ∼ Ue and the Λc parameter tested
in figures 1(a1–d1) and 2(a1–d1), respectively. While both conditions are well
fulfilled for both the edge and ZS scalings, which excellently scale the spatially
evolving kinematic boundary layers, they exhibit slight deviations for the friction and
RC scalings. The conditions U0 ∼ Ue and Λc = const. derived in the analysis are
therefore expected to be meaningful indicators for a good set of scales. For the β
parameters (figure 2(a1–d1)), in contrast, which only differ from Λc by not including
dL0/dx, the inverse trends can be found. The β distributions are more constant for the
friction and RC scalings, which, however, do not scale the spatially evolving boundary
layers to the same degree as the edge and ZS scalings. Thus, it might be expected
that both friction-based scales are slightly influenced by dL0/dx values not being

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.672


Self-similarity analysis of compressible TBLs with pressure gradients 307

0 0.2 0.4 0.6
y/∂99

0.8 1.0 1.2 0 0.2 0.4 0.6
y/∂99

0.8 1.0 1.2

0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0 1.2

12

10

8

6

(u¡
e -

 u¡
)/

U
0,

RC
(u¡

e -
 u¡

)/
U

0,
e

(u¡
e -

 u¡
)/

U
0,

ZS
(u¡

e -
 u¡

)/
U

0,
†

4

2

0

0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5

3.5
3.0
2.5
2.0
1.5
1.0

6

5

4

3

2

1

0

1.75

1.50

1.25

1.00

0.75

40

35

30

25

20

15

10

5

0

10

8

6

4

0.40
0.35
0.30
0.25
0.20
0.15

1.0(a) (b)

(c) (d)

0.8

0.6

0.4

0.2

0

FIGURE 3. (Colour online) Mean velocity profiles for different characteristic velocity
scales: (a) edge scaling, (b) friction scaling, (c) RC scaling, and (d) ZS scaling. Grey lines:
profiles extracted at 10 streamwise positions. Coloured lines: average profiles. Red lines:
——, iZPG; —— –, iAPGβK=0.19; — – —, iAPGβK=0.58; – · – · – · –, iAPGβK=1.05. Blue lines:
——, cZPG; —— –, cAPGβK=0.15; – – – – –, cAPGβK=0.55. Cyan line: — – – —, cFPGβK=−0.18.

perfectly constant for the low Reynolds numbers investigated, which are eliminated
in the calculation of β. For higher Reynolds numbers, where dL0/dx becomes more
constant by a reduced growth of the boundary layer, the scaling success of both
friction-based scalings is expected to increase; see § 4.5.3 for a detailed discussion.

4.3.2. Mean mass-flux profiles ρ̄ũ
In figure 4 the Favre-averaged mass-flux profiles are shown. Since density variations

are weak for the subsonic cases, their profiles are virtually identical to the velocity
profiles discussed above. For the supersonic cases, in contrast, differences can be
observed in the boundary-layer edge region where the mass-flux boundary-layer
thickness is somewhat increased; see for instance the ZPG cases.

Nevertheless, the edge scaling in figure 4(a) and the ZS scaling in figure 4(d) work
excellently for both the sub- and supersonic cases in accordance with the velocity
profiles discussed before. For the friction scaling in figure 4(b) and the RC scaling
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FIGURE 4. (Colour online) Mean mass-flux profiles for different characteristic mass-flux
scales: (a) edge scaling, (b) friction scaling, (c) RC scaling, and (d) ZS scaling. Grey lines:
profiles extracted at 10 streamwise positions. Coloured lines: average profiles. Red lines:
——, iZPG; —— –, iAPGβK=0.19; — – —, iAPGβK=0.58; – · – · – · –, iAPGβK=1.05. Blue lines:
——, cZPG; —— –, cAPGβK=0.15; – – – – –, cAPGβK=0.55. Cyan line: — – – —, cFPGβK=−0.18.

in figure 4(c), the collapse of the 10 profiles for each case is slightly worse. Note
that the scaling success of the edge and ZS scalings was not necessarily expected for
the supersonic cases, since their F0/Fe ratios have no longer been found to be constant
in figure 1(a2) and 1(d2). Hence also the DNS results indicate that large parts of the
boundary layer scale much better with kinematic than with mass-flux quantities.

4.3.3. Mean total-enthalpy profiles h̃0

Lastly, the total enthalpy profiles h̃0 are shown in figure 5. Since the total enthalpy
decreases near the wall, i.e. has a large deficit there, a (smaller) localized negative
deficit peak (at higher velocity) rises in the outer part of the boundary layer balancing
the deficit near the wall. Note that the absolute magnitude of the total enthalpy defect
goes to zero for zero Mach number. For subsonic APG cases, normalized defect
profiles can indeed be calculated but describe absolute values of negligible size and
thus may be misinterpreted and are omitted here. For the supersonic cases, the outer
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FIGURE 5. (Colour online) Mean total enthalpy profiles for different characteristic
enthalpy scales: (a) edge scaling, (b) friction scaling, (c) RC scaling, and (d) ZS scaling.
Grey lines: profiles extracted at 10 streamwise positions. Coloured lines: average profiles.
Red line: ——, iZPG. Blue lines: ——, cZPG; —— –, cAPGβK=0.15; – – – – –, cAPGβK=0.55.
Cyan line: — – – —, cFPGβK=−0.18.

peak is larger than for the subsonic ZPG case, but no clear influence of the PG
strength is visible.

An assessment of the scaling quality, and thus the collapse of the respective 10
grey lines behind their corresponding coloured averaged line, does not show the
same quality as for the mass-flux and the velocity profiles before. However, the
self-similarity of the total-enthalpy profiles requires the self-similarity both of the
mass-flux profiles and of the coupling mechanism between mass flux and enthalpy,
and thus self-similarity is much more difficult to achieve for the total enthalpy. With
this in mind, the given distributions still indicate approximate self-similarity in the
outer layer of the total-enthalpy profiles. In the inner layer below roughly y/δ99≈ 0.15,
the plotted profiles appear to be x-dependent for both the ZPG and PG cases. As
previously seen in the relations G0 ∼U2

0 in figure 1(a3–d3) and the recovery factors
in part 1 (see Wenzel et al. 2019), all supersonic profiles are nearly identical.
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4.4. Self-similarity of turbulent terms
Besides the mean-flow profiles discussed before, also the profiles of the turbulent-
fluctuation terms have to collapse for the derived scalings. However, as has often been
observed, this is more difficult to achieve in general than collapsing the mean-flow
profiles even for the ZPG case; see Maciel et al. (2006) for instance.

For the mean-flow profiles discussed in the previous section, compressible and
quasi-incompressible cases have been found to be scaled to different similarity
profiles for similar βK values; compare the sub- and supersonic ZPG profiles in
figure 3 for instance. For the turbulent terms, however, the shear-stress distributions
ρ̄ũ′′i u′′j have been found to be almost Mach-number-invariant if normalized by the
local wall shear stress τ̄w (Morkovin’s scaling) in part 1 (see Wenzel et al. 2019).
Thus, by a suitable selection of the constants CM and CE introduced in § 3.2.5, this
behaviour is utilized to remove the Mach-number dependence of the initial profile for
various cases. To this end the constant CM is chosen as

CM =
τ̄w

F0U0

∣∣∣∣
ref

= const., (4.2)

which resembles Morkovin’s scaling for the Favre stresses,

ruiuj(η)=
ρ̄ũ′′i u′′j

CMF0U0
=
ρ̄ũ′′i u′′j
F0U0

F0U0

τ̄w

∣∣∣∣
ref

. (4.3)

The subscript ‘ref ’ denotes a selectable position in the domain. For the turbulent heat
fluxes, it has been found that the constant CE, chosen as

CE =
τ̄wU0

F0G0

∣∣∣∣
ref

= const., (4.4)

scales the turbulent heat fluxes to a similar order of magnitude for the sub- and
supersonic flows. For all scalings, the constants CM and CE are evaluated for the
initial profile in the domain of self-similarity. Since the friction scaling has already
been designed to reproduce Morkovin’s scaling, CM equals one for this case.

4.4.1. Favre stresses

The ρ̄ũ′′2 Favre stress is shown in figure 6. As discussed in Wenzel et al. (2019),
a second peak is forming in the outer layer of the boundary layers for increasing
PG strength besides the inner peak. This peak is localized at around y/δ99 ≈ 0.4 for
the highest subsonic PG. As a consequence of the additional consideration of CM
and thus Morkovin’s scaling, sub- and supersonic cases are directly comparable for
similar βK values. Note that, in contrast to the mass-flux profiles in figure 4, both sub-
and supersonic Favre-stress distributions tend to zero at the same y/δ99. This further
supports the expectation that the Favre stresses are closely coupled to the kinematic
boundary layer and thus scale with a kinematic rather than a mass-flux-related length
scale.

An excellent collapse for the outer layer of the subsonic cases is achieved for both
the edge and ZS scalings in figure 6(a) and (d), respectively. For the supersonic
cases, the 10 respective lines of each case differ slightly, meaning that the scaling
success is slightly worse. Recall, however, that also the βK distributions (equivalent
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FIGURE 6. (Colour online) Favre stress ρ̄ũ′′2 in (a) edge scaling, (b) friction scaling,
(c) RC scaling, and (d) ZS scaling. Grey lines: profiles extracted at 10 streamwise
positions. Coloured lines: average profiles. Red lines: ——, iZPG; —— –, iAPGβK=0.19;
— – —, iAPGβK=0.58; – · – · – · –, iAPGβK=1.05. Blue lines: ——, cZPG; —— –, cAPGβK=0.15;
– – – – –, cAPGβK=0.55. Cyan line: — – – —, cFPGβK=−0.18.

to βRC in figure 2) of the supersonic cases are somewhat less constant compared to
the subsonic ones. Additionally, the region of interest is larger for some supersonic
cases if measured in 1x/δ99,av and compared for the same βK; see table 2. For both
the friction and RC scalings in figure 6(b) and (c), respectively, the scaling success
is comparable to the edge and ZS scalings for the ZPG cases. With increasing APG
strength, it worsens somewhat for both the sub- and supersonic cases, whereas for the
FPG case it is better. For high APGs, the results for the RC scaling are slightly better
than for the friction scaling.

The ρ̄ṽ′′2 Favre stress is depicted in figure 7. As already discussed in Wenzel et al.
(2019), this stress is directly coupled to the mean-pressure distribution p̄= pe − ρ̄ṽ′′2

and thus directly depends on the wall-normal PG. In contrast to the ρ̄ũ′′2 stress, the
profile has only a single peak, which is widened and moved further outside towards
the boundary-layer edge for increasing PG strength. All sets of scales show a similar
behaviour as for the ρ̄ũ′′2 distributions discussed before.

The ρ̄ũ′′v′′ Favre stress is depicted in figure 8. This stress is directly linked to the
shear-stress evolution and hence represents the most important stress for turbulence
modelling. Its shape is comparable to that of ρ̄ṽ′′2 by only exhibiting one peak, which
is widened and moved further outside with increasing PG strength. In contrast to
the other stresses, the self-similarity analysis has revealed a scaling of F0U0(dL0/dx)
instead of F0U0, see (3.39). Although dL0/dx is often expected to be constant for self-
similar flows, its value drifts slightly due to the low Reynolds numbers in the DNS
data, and thus has a visible effect on the scaling success. The smoothed dL0/dx term
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FIGURE 7. (Colour online) Same as figure 6, but for Favre stress ρ̄ṽ′′2.
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is therefore included for the scalings in figure 8. However, the additional inclusion of
dL0/dx makes the comparison of different PG cases difficult, since dL0/dx depends
on the PG strength and on the Mach and Reynolds numbers. Note that the effect of
smoothing dL0/dx is only small for the edge and ZS scalings. For the friction and
RC scalings, smoothing eliminates some outliers due to noise in dL0/dx. To ensure
comparability between different PG cases for ρ̄ũ′′v′′ as well as between ρ̄ũ′′v′′ and
other stresses, dL0/dx is normalized to one concerning the streamwise mean of dL0/dx
of every PG case.

The trend of the scaling quality is in principle the same as for the previous
plots, although the spread for the friction and RC scalings in figure 8(b,c) is larger.
To estimate the influence of dL0/dx in the scaling success, the same plot without
including dL0/dx is given in figure 13 in § A.3 for comparison. Note that the scaling
success is thereby significantly improved for the friction and RC scalings, as the
neglect of dL0/dx balances the implicit dependence on dL0/dx for both scales. As
this is at the core of the discrepancies between Townsend (1956b), George & Castillo
(1993) and Maciel et al. (2006), its implications are discussed in § 4.5.3.

4.4.2. Turbulent heat fluxes
The turbulent heat flux ρ̄h̃′′u′′ is shown in figure 9. Besides the inner peak, an outer

peak forms for increasing APG strength. With the same arguments as for the total
enthalpy profiles in § 4.3.3, the subsonic cases are omitted except for the ZPG case.

Both the distributions as well as the respective streamwise scaling success resemble
those of the ρ̄ũ′′2 distributions shown in figure 6. It is noted that sub- and supersonic
ZPG cases are only matched by the additional consideration of CE for the edge scaling
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FIGURE 10. (Colour online) Same as figure 9, but for turbulent heat flux ρ̄h̃′′v′′.

in figure 9(a), and with slightly worse success also for the ZS scaling in figure 9(d).
Note that the definition of CE is mainly based on arguments related to Morkovin’s
scaling, which, however, cannot necessarily be assumed to still work for the turbulent
heat fluxes. The scaling quality is approximately the same for all four scalings.

The turbulent heat flux ρ̄h̃′′v′′ is shown in figure 10. Combined with the ρ̄ũ′′v′′

profile (figure 8), ρ̄h̃′′v′′ is usually employed to define the turbulent Prandtl number in
combination with the wall-normal gradients of streamwise velocity and temperature of
the mean flow. Like for the ρ̄ũ′′v′′ stress, the similarity analysis has revealed ρ̄h̃′′v′′
to be scaled by also taking dL0/dx into account, see (3.46). As the concept of the
turbulent Prandtl number assumes, the distributions of ρ̄h̃′′v′′ are indeed very similar
to those of ρ̄ũ′′v′′. The scaling quality is comparable for all sets of scaling, comparable
as for ρ̄h̃′′u′′.

4.5. Discussion
All statements made in this section are, strictly speaking, only reliable for the Mach-
and Reynolds-number ranges investigated. On the other hand, there is no decisive
factor rendering their extrapolation not plausible.

4.5.1. Assessment of DNS data
The collapse of local flow-field profiles extracted from the DNS data is crucial for

this study, as it validates the meaningfulness of both the self-similarity analysis as
well as the self-similar state of the computed flow field. However, this state is not
simple to warrant. For example, excellent scaling results were found for the edge
scaling, but a different choice of PG distributions could have made another scaling
more successful; recall that all PG distributions in the DNS have been aimed at
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yielding constant βK . For this reason, the ZPG cases are of particular importance,
since these can be assumed to be in equilibrium without being calibrated to any PG
distribution. Hence they provide the most clear measure for the ‘pure’ scaling success
of every particular scaling set. Thus, as long as the PG cases show the same trends
as the ZPG cases, like comparable distributions of U0/Ue in figure 2 for instance,
the results can be stated to be conclusive.

4.5.2. Conditions for the characteristic scales
In the self-similarity analysis, § 3.2, conditions were derived for a valid set of scales

for self-similar flows. The characteristic scales have to be proportional to the flow-field
properties at the boundary-layer edge, U0∼Ue, F0∼Fe, and the PG parameter Λc has
to be constant in the streamwise direction, among others. The scales of the kinetic
energy and the total enthalpy should develop according to U2

0 ∼G0.
By testing different sets of scales, it has been shown that both conditions are

well fulfilled for the edge and ZS scalings. The scaling success of the friction
and RC scalings is slightly weaker; especially, the constancy of U0/Ue is not as well
fulfilled. For both, however, the evolution becomes increasingly constant for increasing
Reynolds numbers, suggesting that the scaling success becomes increasingly better.
As further discussed in § 4.5.3 and demonstrated in § A.4, the friction scaling can be
improved by a ‘low-Reynolds-number’ correction. The limiting behaviour of U0/Ue
cannot be safely extrapolated from the available data. Hence, both the conditions
U0 ∼ Ue and Λc = const. seem to be a meaningful measure of the quality for
a scaling set. As a result of the varying density of the supersonic cases in the
streamwise direction, the ratio F0/Fe is only poorly fulfilled for all sets, which,
however, has no visible effect on the scaling success. The condition of U2

0 ∼ G0 is
approximately fulfilled for all supersonic cases.

4.5.3. On the influence of dL0/dx
In contrast to the classical theory, many terms in the self-similarity analysis

presented in § 3.2 are scaled by the additional consideration of dL0/dx. While this
term is mostly neglected or set constant in classical works, its inclusion yields visible
influences on the results presented due to the ‘low’ Reynolds numbers investigated.

Compared to the generalized β parameter introduced by Maciel et al. (2006) for
instance, Λc only differs by additionally taking dL0/dx into account, Λc=β/(dL0/dx).
While Λc is almost constant and β is not for the well-behaving edge and ZS scalings,
the opposite applies for the slightly weaker-performing friction and RC scalings; β
(and thus βRC= βK) is almost constant and Λc is not. Furthermore, if dL0/dx is taken
into account for the scaling of ρ̄ũ′′v′′ as proposed by the self-similarity analysis, an
excellent scaling success is determined for the edge and ZS scalings. If neglected, on
the other hand, an excellent agreement is determined for the friction and RC scalings.
Consequently, it seems reasonable to assume that the dL0/dx term is already implicitly
included in the friction-based scales and hence does not have to be re-accounted for
in the definition of Λc or the scaling of ρ̄ũ′′v′′ for the friction-based scaling sets for
instance. Both observations are discussed in the following.

In classical incompressible theory, the velocity scale can be derived from the wall
shear stress and the streamwise evolution of the Favre shear stress τ̄w ∼ ρ̄ũ′′v′′ ∼
F0U0 ∼ ρ̄wU2

0 , which results in U0 =
√
τ̄w/ρ̄w = uτ for friction-based scalings. From

part 1 of this study and with (3.39), in contrast, it is, however, reasonable to assume

τ̄w ∼ ρ̄ũ′′v′′ ∼ F0U0
dL0

dx
(4.5)
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in the streamwise direction. Therefore, if τ̄w ∼ F0U0(dL0/dx) ∼ ρ̄wU2
0(dL0/dx) is

assumed, the velocity scale yields

U0 =
√
τ̄w/ρ̄w/

√
dL0/dx= uτ/

√
dL0/dx, (4.6)

instead of just using U0 = uτ . The additional consideration of dL0/dx can hence
be interpreted as a ‘low-Reynolds-number’ correction of U0 = uτ . With the same
arguments, a compressible ‘low-Reynolds-number’ corrected version is derived
and tested in § A.4 for the compressible regime. Its scaling success yields almost
perfect results, which are essentially the same as for the edge scaling (implying
Ue ∼ uτ/

√
dL0/dx).

Like for the velocity scale, also the PG parameter can be associated with the
influence of τ̄w. If τ̄w ∼ F0U0 is assumed, the traditional Rotta–Clauser parameter
βK = (δ

∗

K/τ̄w)(dpe/dx) yields for a general set of scales β = (L0/(F0U0))(dpe/dx),
implying Λc ∼ β/(dL0/dx). If, on the other hand, τ̄w ∼ F0U0(dL0/dx) is assumed, βK
can be directly associated with Λc using

βK =
δ∗K

τ̄w

dpe

dx
∼

L0

F0U0
dL0

dx

dpe

dx
∼Λc. (4.7)

In its traditional definition, therefore, βK fulfils the definition of Λc and thus still
indicates the state of self-similarity, even if dL0/dx cannot be assumed constant.

4.5.4. Towards the interpretation of Λc

A clear requirement for a meaningful PG parameter is the comparability of different
PG strengths, connecting sub- and supersonic PG cases. It is desirable that flows
with identical shear-stress distributions (or identical Favre-stress distributions) are
characterized by an identical value of the PG parameter. For all scaling sets tested,
this is only achieved for βK (βRC), see figure 2(c2). For the Λc distributions, see
figure 2(a1–d1), only the constancy of the respective values is found as a criterion for
self-similarity; the particular Λc values of cases with similar shear-stress distributions,
however, differ. If Λc is interpreted as Λc = β/(dL0/dx), where both β and dL0/dx
are strongly influenced by the PG, the behaviour of Λc is sometimes misleading:
different cases with different flow profiles are ‘characterized’ by identical Λc values;
see figure 2(b1–d1) for example.

To obtain a characterizing behaviour of Λc, two modifications are proposed.
Whereas the additional consideration of CM (see (4.2)) eliminates the Mach-number
dependence of Λc and thus ensures comparability for cases with similar shear-stress
distributions, the case dependence of dL0/dx is reduced by normalization to one at a
reference position. A modified Λc parameter is therefore calculated as

Λc =

L0
dpe

dx

CMU0F0
dL0

dx

∣∣∣∣
O1

with
dL0

dx

∣∣∣∣
O1

=
dL0

dx
1

dL0

dx

∣∣∣∣
ref

. (4.8)

For both the edge and ZS scalings, typical results are given in figure 11. The reference
position in chosen in such a way that the resulting streamwise average of (dL0/dx)|O1
is approximately one, e.g. (1/(x2− x1))

∫ x2

x1 (dL0/dx)|O1 dx≈ 1, where x1 and x2 are the
bounds of the region of interest. Like for βK in figure 2(c2), the Λc distributions now
become equal again for cases with similar PG influence (note the symbols).
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FIGURE 11. (Colour online) Pressure-gradient boundary-layer growth parameter Λc
computed according to (4.8) for the (a) edge and (b) ZS scalings. Identical symbols denote
cases with similar βK values. Red: ——, iZPG; —— –, iAPGβK=0.19; — – —, iAPGβK=0.58;
– · – · – · –, iAPGβK=1.05. Blue lines: ——, cZPG; —— –, cAPGβK=0.15; – – – – –, cAPGβK=0.55.
Cyan line: — – – —, cFPGβK=−0.18.

4.5.5. Assessment of self-similarity for compressible flow
If self-similarity should be determined for compressible flow, streamwise scale

invariance must be fulfilled for all Reynolds numbers in a strict sense.
By the appropriate choice of characteristic scales, the distributions of turbulent

mean fluctuation have been successfully collapsed for cases with similar βK values.
Since the (quasi-)incompressible APG cases are the limit of the compressible APG
cases for Re→∞, and both are collapsed on a similarity solution, a high degree
of self-similarity can be expected for the turbulent terms in the compressible regime.
For the mean-flow profiles, however, compressible and incompressible cases could
not be directly related to each other with the outer scaling investigated here. The
limiting behaviour of the supersonic cases for Re→∞ therefore cannot be deduced
unambiguously from the available data. The violation of the condition F0 ∼ Fe, for
instance, does not seem to have any visible influence on the scaling success in the
investigated Reynolds-number range, but it is expected for the presented scales that
this does not hold for Re→∞. The reason is that van Driest’s transformation, which
would allow a comparison (at least to a certain degree; see Wenzel et al. (2018))
between compressible and incompressible cases, cannot simply be built in to the
self-similarity framework presented. In contrast to Morkovin’s scaling, van Driest’s
transformation represents a y-dependent scaling that cannot be built in as a simple
scaling factor. This does not mean that there are no modified techniques that could
incorporate adequate compressibility transformations.

5. Conclusions
The main objective of this study is to investigate the properties of self-similarity

for the outer layer of compressible turbulent boundary layers with pressure gradient.
Based on the compressible turbulent boundary-layer equations, a self-similarity
analysis is presented whose results are validated using the compressible DNS data
presented in Wenzel et al. (2019).

5.1. Results of the self-similarity analysis
The analysis is performed for general characteristic scales of the velocity U0, mass
flux F0 and total enthalpy G0 and a single length scale L0 characterizing the growth
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of the velocity, the mass-flux and the energy boundary layers simultaneously. It has
been shown that using a single length scale yields essentially the same restrictions as
characterizing each boundary layer by its own length scale.

In summary, the main findings of the analysis are that the ratios U0/Ue, F0/Fe
and G0/U2

0 as well as the compressible pressure-gradient boundary-layer evolution
parameter

Λc =

L0
dpe

dx

CMU0F0
dL0

dx

∣∣∣∣
O1

with
dL0

dx

∣∣∣∣
O1

=
dL0

dx
1

dL0

dx

∣∣∣∣
ref

(5.1)

have to be constant in the streamwise direction for self-similar flows. By introducing a
constant CM= τ̄w/(U0F0)|ref motivated by the Morkovin scaling and a normalization of
the dL0/dx term, Λc values become comparable for PG cases with similar shear-stress
distributions, no matter whether the flow is incompressible or compressible.

5.2. On the validity of characteristic scales and the influence of dL0/dx
Four sets for the compressible scales U0, F0, G0 and L0 are proposed and tested.
These are aimed at being compressible extensions of the incompressible edge scaling,
friction scaling, Zagarola–Smits (ZS) scaling and a newly constructed Rotta–Clauser
(RC) scaling. The latter yields the Rotta–Clauser parameter βK = (δ

∗

K/τ̄w)(dpe/dx)
if the RC scales are plugged into the generalized form of β = (L0 dpe/dx)/(U0F0)
introduced by Maciel et al. (2006); δ∗K is the kinematic (incompressible) displacement
thickness for the compressible flow. All scales are constructed on velocity-based
arguments and are identical to the incompressible scales in the incompressible limit.
Consequently, all findings gained apply equally to the incompressible regime. To
estimate the scaling success of the proposed sets, the collapse of flow-field profiles
extracted at various streamwise positions and normalized by the respective scalings
has been assessed.

For the turbulent terms, compressible and incompressible distributions are collapsed
by the additional consideration of CM for cases with the same shear-stress distributions.
If the edge scaling or ZS scaling is applied, local flow profiles are excellently
collapsed into a single profile in the Reynolds-number range considered. For the
friction and RC scalings, in contrast, the scaling success is not that perfect. This
holds for both the Favre stresses and the turbulent heat fluxes. In contrast to the ρ̄ũ′′2

and ρ̄ṽ′′2 stresses, the analysis reveals the ρ̄ũ′′v′′ stress (and also ρ̄h̃′′v′′) to be scaled
by incorporating dL0/dx. While this term is usually neglected in related studies,
the inclusion of dL0/dx has brought remarkable improvements for the edge and ZS
scalings in the considered Reynolds-number range. Note that this is not the case for
the friction and RC scalings, since the dL0/dx term is already implicitly included
in the velocity scale U0. If the dL0/dx term is incorporated in the velocity scale,
as exemplarily tested for the friction scaling, a ‘low-Reynolds-number’ correction is
achieved (U0 = uτ/

√
dL0/dx instead of U0 = uτ for incompressible flow); the scaling

success is comparable to the edge scaling and ZS scaling. The proven scaling quality
of uτ at high Reynolds numbers known from the literature (see e.g. Panton 2005)
can therefore hold also for the low Reynolds numbers investigated here, but only by
a reinterpretation of uτ as a velocity scale for the outer layer.

Concerning the mean flow, local profiles can be excellently collapsed using the edge
or ZS scaling in the Reynolds-number range considered. This holds for the velocity,
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the mass-flux and (to a slightly lesser extent) the total-enthalpy distributions. In
comparison, the friction and RC scalings exhibit a slight Reynolds-number-dependent
drift, which, however, can be eliminated by the incorporation of dL0/dx. In contrast
to the turbulent stresses, compressible and incompressible mean-flow profiles do not
collapse for comparable shear-stress distributions.

Related to the relevance of the conditions U0/Ue, F0/Fe, G0/U2
0 and Λc being

constants for the individual scalings, only F0/Fe seems to be of minor importance for
the scaling success. For stronger Mach-number variations in the streamwise direction,
however, a visible influence is expected. All other conditions are well fulfilled for
the well-working edge and ZS scales. Note that G0/U2

0 = const. is only meaningful
for the supersonic cases.

5.3. Validity of the traditional Rotta–Clauser parameter βK

In comparison to the generalized Rotta–Clauser parameter β = (L0/(U0F0))(dpe/dx),
Λc only differs by the additional inclusion of dL0/dx, namely by dividing β by
dL0/dx. For the data investigated, dL0/dx is noticeably non-constant due to the low
Reynolds number considered. Hence, for the well-behaving edge and ZS scalings,
where the equilibrium state with self-similarity is documented by a constant Λc, the
generalized β is not a good indicator for self-similarity. However, if the traditional
Rotta–Clauser parameter βK is built by assuming τ̄w ∼ F0U0(dL0/dx) as supposed by
the analysis and the data, βK can be directly associated with Λc using

βK =
δ∗K

τ̄w

dpe

dx
∼

L0

F0U0
dL0

dx

dpe

dx
∼Λc. (5.2)

The simpler to determine, commonly used Rotta–Clauser parameter βK in its
traditional definition is therefore fulfilling the definition of Λc and thus still
indicates the state of self-similarity, even if dL0/dx cannot be assumed constant.
This reinterpretation of βK as a valid parameter of the form Λc thus forms a direct
bridge between Clauser’s (1954) and George & Castillo’s (1993) self-similarity
analyses, which have so far not been satisfactorily linked to each other even in the
incompressible regime. Note that the pressure-gradient distributions for the DNS in
Wenzel et al. (2019) were chosen to yield constant βK . Like for Λc in (5.1), the
influence of various PG strengths in compressible and incompressible cases can be
also directly compared using βK , which thus represents a characterizing parameter
also for general compressible turbulent boundary layers.

5.4. Limits and potential of self-similarity for compressible turbulent boundary layers
Finally, although F0/Fe is not fulfilled and compressibility influences on the achievable
self-similarity are expected at some point, self-similarity can be achieved to a very
high degree in the compressible regime. Using our data, it was possible to show
that an impressive scaling success can be achieved at least over 30 boundary-layer
thicknesses with suitable compressible scaling sets; note that this range is by far
unique in related incompressible studies discussed in the literature. Thus the concept
of self-similarity, widely used in the incompressible regime, represents also an
extremely valuable tool for the consistent, systematic investigation of compressible
turbulent boundary layers with pressure gradients.
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Appendix A
A.1. Multiple length scales

Even though multiple length scales will essentially recover the identical conditions for
equilibrium, they are helpful in understanding how to choose certain parameters in
more general cases. Therefore, the ansatz functions are chosen as

ρ̄ũ= Fe(x)+ F0(x)f (ψ), (A 1)
ũ=Ue(x)+U0(x)fu(η), (A 2)

h̃0 =Ge(x)+G0(x)g(θ), (A 3)
y= L0,F(x)ψ, (A 4)
y= L0,K(x)η, (A 5)
y= L0,G(x)θ, (A 6)

where quantities with a subscript ‘e’ denote the edge scales and with subscript ‘0’ the
characteristic scale. In the above, L0,F is the characteristic length scale for the mass
flux ρ̄ũ, L0,K is the kinematic length scale and L0,G is the energy length scale.

Considering only the mean-flow terms results in the split momentum equationF0U0
dL0,F

dx
L0,K

ψ f (ψ)
dfu(η)

dη
+

−L0,FU0
dFe

dx
L0,K

ψ dfu(η)

dη

+

−F0U0
dL0,K

dx
L0,K

 ηf (ψ)
dfu(η)

dη
+

−FeU0
dL0,K

dx
L0,K

 ηdfu(η)

dη

+

−F0U0
dL0,F

dx
L0,K

−

L0,FU0
dF0

dx
L0,K

 F(ψ)
dfu(η)

dη

+

[
F0

dU0

dx

]
f (ψ)fu(η)+

[
F0

dUe

dx

]
f (ψ)+

[
Fe

dU0

dx

]
fu(η)

+

[
Fe

dUe

dx

]
1+ turbulent terms+ viscous terms=

[
dpe

dx

]
1. (A 7)

Using the same arguments as in § 3.2, this recovers identical conditions as in the
analysis with one length scale L0, for example:

Fe ∼ F0, (A 8)
Ue ∼U0. (A 9)
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From (A 7), the condition dL0,K/dx∼ dL0,F/dx can be derived, leading to L0,K ∼L0,F+

const. if integrated. If it is further assumed that L0,K and L0,F become proportional to
each other in the incompressible limit, it is reasonable to assume const.= 0. Similarly
with the energy equation, for the three length scales the condition

L0,K ∼ L0,F ∼ L0,G (A 10)

is obtained, implying that the multiple length-scale analysis leads to essentially the
same conditions as the analysis with only a single length scale.

Nevertheless, some additional remarks are possible. In the momentum equation
(A 7), almost all terms are scaled by the kinematic length scale L0,K , which thus can
be interpreted to be the most relevant length scale. The length scale L0,K assumed in
the analysis in § 3.2 as the only length scale simultaneously characterizing the growth
of the velocity, the mass-flux and the energy boundary layers, thus often can be more
associated with a kinematic L0,K rather than a mass-flux length scale L0,F.

As done for the single length scale in (3.30), for instance, the pressure-gradient
boundary-layer evolution parameter yields

Λc ∼
L0,K

F0U0
dL0,K

dx

dpe

dx
∼

L0,K

F0U0
dL0,F

dx

dpe

dx
= const. (A 11)

By assuming dL0,K/dx= const., the generalized Rotta–Clauser parameter β yields

β =
L0,K

F0U0

dpe

dx
. (A 12)

A.2. Scaling comparison: edge velocity or edge mass flux
In the edge scaling introduced in § 3.4.2 and summarized in table 1, the edge velocity
Ue is used as characteristic velocity scale. For the mass flux, this leads to the condition
F0,e= (δ

∗/δ∗K)Fe, which is a false statement for compressible flows; see figure 1(a2). In
contrast, also the choice of F0=Fe seems reasonable, which in turn leads to the false
statement for the velocity scale, U0,e = (δ

∗

K/δ
∗)Ue. The remaining scales are Le = δ

∗

and G0,e = |Hw −He|δH/δ
∗.

To compare the scaling quality of both scaling sets, the scaling success is
exemplarily tested for the velocity profiles in figure 12 as introduced in § 4.3. It
is obvious that the velocity-based set of scales is superior to the mass-flux-based one
for which the compressible cases are not appropriately scaled.

A.3. Favre stress ρ̄ũ′′v′′ without regarding dL0/dx

According to figure 8 the Favre stress ρ̄ũ′′v′′ is given in figure 13, but without taking
the dL0/dx term in the normalization into account; see (3.39). While this neglect leads
to a significant worsening for the edge and ZS scalings compared to figure 8, it leads
to an almost perfect and thus significantly improved scaling success for the friction
and RC scalings compared to figure 8. As already mentioned in the discussion of
figure 2, for example, this indicates the conclusion that the dL0/dx term is already
implicitly included in the definition of both shear-stress-motivated scales; see also
§ 4.5.3 and § A.4.
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FIGURE 12. (Colour online) Mean velocity profiles for variations of the edge scales:
(a) velocity-based edge scaling and (b) mass-flux-based edge scaling. Grey lines: profiles
extracted at 10 streamwise positions. Coloured lines: average profiles. Red lines: ——,
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FIGURE 13. (Colour online) Favre stress ρ̄ũ′′v′′ without regarding dL0/dx in the scaling
in (a) edge scaling, (b) friction scaling, (c) RC scaling, and (d) ZS scaling. Grey lines:
profiles extracted at 10 streamwise positions. Coloured lines: average profiles. Red lines:
——, iZPG; —— –, iAPGβK=0.19; — – —, iAPGβK=0.58; – · – · – · –, iAPGβK=1.05. Blue lines:
——, cZPG; —— –, cAPGβK=0.15; – – – – –, cAPGβK=0.55. Cyan line: — – – —, cFPGβK=−0.18.
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A.4. Low-Reynolds-number correction for the friction scaling

As exemplarily demonstrated for the ρ̄ũ′′v′′ Favre stress in § A.3, the inclusion of
the dL0/dx term noticeably influences the scaling success at the Reynolds numbers
investigated. It is additionally shown that dL0/dx is already implicitly included in the
friction-based scaling sets; if it is neglected, the scaling success for ρ̄ũ′′v′′ is virtually
perfect, see figure 13(b). Consequently, by additionally incorporating dL0/dx in its
construction, a ‘low-Reynolds-number correction’ can be proposed for the friction
scaling (the same would also be possible for the RC scaling).

From part 1 of this study (see Wenzel et al. 2019), it is reasonable to assume τ̄w∼

ρ̄ũ′′v′′ in the streamwise direction. With (3.39) and F0= (δ
∗/δ∗K)ρeU0 from (3.55) and

(3.56), the wall shear stress is proportional to

τ̄w ∼ ρ̄ũ′′v′′ ∼ F0U0
dL0

dx
∼
δ∗

δ∗K
ρeU2

0
dL0

dx
. (A 13)

Using τ̄w = ρ̄wu2
τ , a possible ‘low-Reynolds-number’ corrected (subscript ‘lR’) friction

velocity scale U0,τlR can be defined as

U0,τlR =

√√√√δ∗K

δ∗

ρ̄w

ρe

1
dL0,τlR

dx

uτ , (A 14)

which only differs by the additional inclusion of dL0,τlR/dx from the friction velocity
scale U0,τ in table 1. With the friction length scale L0,τlR = δ

∗

K(Ue/U0,τlR) and the
assumption of Ue/U0,τlR = const., dL0,τlR/dx results in

dL0,τlR

dx
=

d
(
δ∗K

Ue

U0,τlR

)
dx

∼
dδ∗K
dx
. (A 15)

The remaining mass-flux scale is F0,τlR = (δ
∗/δ∗K)ρeU0,τlR , and the enthalpy scale is

G0,τlR = |Hw −He|δH/L0,τlR . It should be mentioned, however, that the calculation of
this scale is numerically demanding due to the sensitivity of dL0,τlR/dx; especially,
the distributions of the turbulent stresses are greatly scattered by its additional
incorporation. Furthermore, since the dL0,τlR/dx term is not implicitly included in
the ‘low-Reynolds-number’ corrected friction scale any more, the self-similar state is
more predicted by the Λc distribution like for the edge scaling and not by βK like
for the friction scaling.

In the same representation as in figure 1, the streamwise evolution of the U0,τlR/Ue,
F0,τlR/Fe and G0,τlR/U

2
0,τlR

conditions are depicted in figure 14(a). According to
figures 3 and 4, the streamwise collapse of the mean-velocity and mass-flux profiles
are tested in figures 14(b) and 14(c), respectively. In order to retain comparability
between different PG cases, dL0,τlR/dx is normalized to one according to (4.8). As
can be seen from figure 14, the ‘low-Reynolds-number’ corrected friction scale yields
essentially the same scaling success as the edge and ZS scalings in the results
section of this study, although slightly suffering from inaccuracies in the computation
of dL0/dx, especially for stronger PGs.
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FIGURE 14. (Colour online) Scaling success for ‘low-Reynolds-number’ corrected friction
scaling. (a) Self-similarity conditions according to figure 1: (a1) U0/Ue, (a2) F0/Fe, and
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0 . (b) Mean-velocity profiles and (c) mean mass-flux profiles according to
figures 3 and 4, respectively. Grey lines: profiles extracted at 10 streamwise positions.
Coloured lines: average profiles. Red lines: ——, iZPG; —— –, iAPGβK=0.19; — – —,
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