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ABSTRACT 
Machine Learning (ML) techniques are showing increasing use and value in the engineering sector. 
Object Detection methods, by which an ML system identifies objects from an image presented to it, 
have demonstrated promise for search and retrieval and synchronised physical/digital version control, 
amongst many applications. 
 
However, accuracy of detection often decreases as the number of objects considered by the system 
increases which, combined with very high training times and computational overhead, makes 
widespread use infeasible. 
 
This work presents a hierarchical ML workflow that leverages the pre-existing taxonometric structures 
of engineering components and abundant digital models (CAD) to streamline training and increase 
accuracy. With a two-layer structure, the approach demonstrates potential to increase accuracy to >90%, 
with potential time savings of 75% and greatly increased flexibility and expandability. 
 
While further refinement is required to increase robustness of detection and investigate scalability, the 
approach shows significant promise to increase feasibility of Object Detection techniques in 
engineering. 
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1 INTRODUCTION 

Prototypes are embodied physically and virtually throughout a design process (Kent et al., 2021). 

Efficient linking between the two is difficult, time-consuming, and costly with the transition between 

physical and digital forms often requiring manual effort as each is updated independently (Jones et al., 

2020). While increasing efficiency of this process would be highly valuable it is complex to automate, 

the variety of forms that virtual and physical prototypes may take make even creating a correct 

association between a physical object and its digital counterpart a complex task.  

One method to link the physical and virtual is through Machine Learning (ML), which has been widely 

used for object detection (Zou et al., 2019). Object detection of physical or virtual parts through image-

based ML has been used as a basis for retrieving and comparing matching physical/virtual counterparts. 

Benefits include better model and product control, synchronised physical/virtual versioning, geometry-

driven product search algorithms, and automated detection of defects (Real et al., 2021; He et al., 2022). 

Convolutional Neural Networks (CNN) are a commonly applied ML method that can identify an 

unknown artefact from a repository of known artefacts, with a quantified statistical measure of 

confidence (Dhillon and Verma, 2020). Here, the CNN is ‘trained against a large set of known data 

(parts) to identify distinguishing features, and then uses this knowledge to identify unknown parts when 

presented to it. Whilst this is something humans can do intuitively, this skill of identifying what 

something ‘is’ by sight is complex to emulate computationally (Gopsill et al., 2021).  

However, accuracy of identification for CNNs typically decreases as the number of objects that it is 

trained to detect increases. Real et al. (2021) report an investigation into CNNs for search and retrieval 

of CAD models based on end-users taking photos real-world objects demonstrating an accuracy of 

60% for a CNN trained on 100 objects and 40% when trained on 1,000 objects. This significantly 

limits the utility of ML techniques for detection of parts used in complex machines, where standard 

components of many different types and geometries are common. The Mechanical Components 

BenchMark database of standard engineering components lists 58,696 component models from 68 

different classes (see Kim et al. (2020)). With such variety in components and the relatively small 

geometric differences between many, means that reliable detection using ML is currently infeasible.  

This paper proposes and explores an alternative approach to identifying Standard Components (SC) 

using ML. This involves leveraging predefined taxonomies of parts, digital model repositories, and of 

close geometric alignment between physical SCs and digital CAD counterparts to create a hierarchical 

ML approach and significantly increase classification accuracy. In so doing, it provides a means to 

increase feasibility of ML for part identification, leading to increased feasibility of automated search 

and retrieval, physical/virtual synchronisation, and additional capabilities.  

The paper continues by reviewing related work (Section 2) before presenting the proposed workflow 

in Section 3. It then tests the workflow through an ML study using a Surrogate Model training 

approach and TensorFlow, applied to 178 parts across three classes of standard components (Section 

4). Results are then presented and discussed in Sections 5 and 6. 

2 MACHINE LEARNING IN ENGINEERING DESIGN 

Machine Learning (ML) has already had considerable impact across engineering. Design is feeling the 

impact of ML maturing as an industry-ready toolset, with it being applied across several scenarios to 

support designers in making the products of tomorrow. Applications strut across a breadth of design 

and development activities, including:  

Simulation: Whereby ML may substantially reduce computational footprint (and hence simulation 

time) through surrogate models that learn from complex simulations, and take over once their 

confidence in results is sufficiently high. (Gopsill and Hicks, 2023).  

Classifying Product Shape: Whereby ML may aid in understanding human perception of geometry 

(Gopsill et al., 2021), useful in automating and supporting brand definition, detection and protection 

(i.e. see Burnap et al. (2016); Ranscombe et al. (2012)), investigated the relationship between human 

perception of shape and ML interpretation, opening the opportunity for emulating.  

Product Interactions: Whereby ML supports identification of associations between products (Maturana 

and Scherer, 2015) via voxel-based geometric approximations. 

Automating Technical Activities: Whereby ML supports automated geometric optimisation 

Goudswaard et al. (2021), toolpath generation (Kukreja et al., 2020), and production monitoring and 

remanufacturing process planning (He et al., 2022). 
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2.1 Object detection in ML 

A common application of ML techniques lies in object detection (OD) (Zou et al., 2019), whereby the 

ML system is ’trained’ to recognise and classify objects from a picture. Training occurs through 

processing of a large set of prelabelled images through which the system ’learns’ features of each 

image (and hence object) that allow it to distinguish between objects and correctly classify, which it 

then looks for in new images when presented to it. One area in which OD is of value to engineering is 

in automating part recognition and search, where the system automatically identifies and retrieves 

digital models. There are numerous valuable applications of such technology within engineering. With 

the growth of the ‘prosumption’ society (Hermans, 2015), large online CAD repositories have 

emerged containing open-source models for individuals to download and print. Here, OD has value in 

retrieving models for desired products, where a user may photograph a product or part that they would 

like to fabricate, and the ML system automatically returns CAD models sourced from online 

repositories. This has been demonstrated by researchers, who trained ML systems on surrogate models 

of CAD renders to create such search algorithms (Gopsill and Jennings, 2020; Real et al., 2021). 

Further utility exists for larger engineering firms where it is common to have products that feature 

similar components and it is often the case that duplicate designs are generated by the different design 

teams working on those projects. Reducing and/or unifying designs of standard components can have 

significant benefits for a firm in terms of reducing supply chain complexity, component data and 

information management, and inventory management. Here, OD techniques may identify similar or 

duplicate designs automatically by parsing product data management systems, enabling unification.  

With specific regard to recognition of standard components, as will be presented as the focus of this 

work, OD may enable such capabilities as automatic generation of a Bill of Materials (BOMs), and 

automated stock monitoring, tracking of assembly and disassembly processes. Further, as standard 

components are present in near-all engineering systems, OD via their forms may allow generalisation 

of OD techniques whereby the costly training process (which would require repetition for each 

bespoke component) may be avoided.  

However, while of substantial potential benefit, accuracy of classification of objects using OD is often 

too low to be considered robust in an engineering context, and decreases as the number of objects 

increases. Further, the time to generate a functional OD system can be prohibitively long, with a need 

for full regeneration should any updates or extensions be desired. 

3 A HIERARCHICAL WORKFLOW FOR DETECTION OF ENGINEERING 

OBJECTS 

This work proposes a hierarchical ML approach that leverages the established taxonomy of 

engineering standard components to reduce the size of the dataset, and hence aim to increase accuracy. 

This workflow leverages the existing digital structure of the mechanical sector to streamline training 

and detection, resulting in increased accuracy.  

Counter to many OD applications, the structure and digital data present in the engineering sector 

provides advantages for the detection of mechanical parts. Firstly, the objects to be detected are tightly 

defined, precise, and often fully taxonomised. Where OD techniques must often manage high variety 

or ambiguity of that to be detected (i.e., the class ‘dog’ contains many 1000s of breeds, with each 

‘dog’ being distinct), engineering parts often belong to specific and defined types with little geometric 

ambiguity (i.e., bolt, washer, nut). For object detection this provides unambiguous models and data 

structures which may be leveraged to support detection methods.  

Secondly, the prevalence of geometric models as counterparts to physical objects supports faster and 

more robust training. Geometric modelling and product data management systems are ubiquitous 

across engineering industry, with a high proportion of parts, products, and machines having 

corresponding digital geometries created regularly throughout their development. As a result, where 

other sectors require the capture of a large number of images of objects of interest to create a training 

set, the engineering domain may employ pre-existing precise models to generate controlled datasets 

automatically. This process, known as Surrogate Modelling (Zaki et al., 2016; Gopsill and Jennings, 

2020), generates an optimised training dataset using rendered images of geometric models. This 

process has been shown to enable detection accuracies of >90% for small numbers of objects (Gopsill 

et al., 2021; Real et al., 2021), with flexibility to account for different lighting conditions and 

materials. Together, these pre-existing taxonometric structures, precise and defined geometries, and 
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abundant digital models allow refinement of ML workflows and potential for increased accuracy. 

While previous work has included all objects to be detected in a single set from which all objects are 

detected (Real et al., 2021), the proposed workflow leverages known taxonomies of engineering 

components to partition the dataset into subsets of known types. These partitions are then used to train 

individual CNNs for OD, each with a decreased quantity of object classes. The workflow of the 

proposed approach is shown in Table 1 and Figure 1. 

 

 

Figure 1. Proposed two-layer hierarchical ML workflow 

Table 1. Steps within the hierarchical workflow 

Step Description 

1: Data Capture Extract classes of objects and geometry from known taxonomies. 

Partition dataset according to object classes. 

2: Workflow Layer One Create ML model for classes of interest 

3: Detect Class For target part, detect which class it belongs to 

4: Workflow Layer Two Generate ML model for objects only in class of interest 

5: Detect Object For target part, identify which object it is within class of interest 

 

As noted in other work, reduction of dataset size greatly increases detection accuracy (Real et al., 

2021). Using predefined taxonomies of components as a basis (Step 1 in Figure 1), the proposed 

workflow first trains (Step 2) against defined object classes (e.g., for standard components bolts, 

washers, collars, hinges). Following detection of the target part as belonging to a specific class (Step 

3), a further CNN is trained against only objects belonging to that specific class (Step 4) before final 

detection in Step 5. Each step in this workflow reduces the required size of the relevant dataset. In 

Layer One this workflow only identifies the class of object (i.e. not the specific object) using a small 

set of exemplar components as a training set. In Layer Two, only those objects belonging to the class 

of interest need be included in the dataset, reducing size of the classified set and potentially increasing 

accuracy while reducing relative training time. 

4 EXPERIMENTAL SETUP 

The proposed workflow was tested through a simulation study, trained on 184 objects split over 3 

classes of standard component. For reference, expected detection accuracy over this quantity of 

objects is approx. 60% (see Real et al. (2021). This section details the six steps taken to generate the 

CNNs and run the simulation. 

4.1 Dataset Selection 

There are many possible representations of artefacts and approaches to the curation or generation of 

datasets. Appropriate datasets are time-consuming to create, and several large open databases of CAD 

repositories are available. This paper uses the Mechanical Components Benchmark (MCB) (Kim et al., 

2020), a dataset containing 58,696 models separated into 68 classes. The taxonomy of classes, objects 

and geometric models that this database provides forms the basis for Step 1 of the workflow. The 

models are scraped from a variety of sources and each model is in the open .obj format. This dataset 
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was selected as it is an open dataset, annotated in alignment with the International Classification for 

Standards (ICS) guidelines published by the International Organization for Standardization (ISO).  

To maintain feasible scope for this study, three different classes of object from the database are 

considered. Each of the classes has roughly the same number of contained models (i.e. versions of that 

object), but with differing geometric variation between models within a class. Table 2 shows the three 

selected classes. 
Table 2. Selected classes of standard component and models 

Class Name Geometry Consistency Models [#] 

Slotted Nuts Small variation in geometry 78 

Collars Medium variation in geometry 52 

Hinges Large variation in geometry 54 

 
Table 3. Model used 

 
Figure 2. Surrogate model image 

creation 

Layer (type) Output Shape Param 

[#] 

rescaling_1 (Rescaling) (None, 640, 600, 3) 0 

conv2d (Conv2D) (None, 640, 600, 16) 448 

max_pooling2d 

(MaxPooling2D) 

(None, 320, 300, 16) 0 

conv2d_1 (Conv2D) (None, 320, 300, 32) 4640 

max_pooling2d_1 

(MaxPooling2D) 

(None, 160, 150, 32) 0 

conv2d_2 (Conv2D) (None, 160, 150, 64) 18496 

max_pooling2d_2 

(MaxPooling2D) 

(None, 80, 75, 64) 0 

flatten (Flatten) (None, 384000) 0 

dense (Dense) (None, 128) 49152128 

dense_1 (Dense) (None, 54) 6966 

  

 

Figure 3. Generated images during data augmentation step 

Of note is that the objects within each class are all standard components, and hence have limited 

between-component variation compared to many other cases in which object detection is applied. This 

is for two reasons; with high similarity inherent in many engineering components it is useful if OD can 

distinguish even between objects that humans may struggle to identify; and second, high similarity 

presents a difficult challenge for OD to stress-test accuracy and capability. As such, detection accuracy 

would intuitively be lower here than seen in other works. 

4.2 Data augmentation 

To overcome the challenge of requiring large manually-generated datasets to train a CNN, a common 

approach is to perform a data augmentation step. Here this involved extending the dataset using a 

virtual surrogate model and a series of generated representations of that model for training (see  

Zaki et al. (2016); Gopsill and Jennings (2020); Real et al. (2021). The Unreal Engine was used to 

augment the dataset. To generate the images the objects were imported and 640x600 pixel renders 

were captured at 20 degree increments, rotating around the y and z axis (shown in Figures 3 and 2). 

The background is a colourless void to neutralise any potential environmental noise. Three point-lights 
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are used to illuminate the model and a realistic brushed aluminium texture is applied. This led to the 

creation of 324 images for each object, with a selection shown in Figure 3. 

4.3 CNN development 

The CNN was developed using Keras and trained using TensorFlow 2.11, using Colab Pro+. The 

instance is a high RAM shape with 51GB RAM. The dataset is shuffled and split into three sets before 

being processed (normalised). The split is 70% training data, 20% validation data, and 10% test data 

previously unseen to the CNN. Table 3 shows the CNN model, the shape and dimensionality. The 

final row is dependant on the number of models in the class (see Table 2). 

4.4 Hyperparameters 

A batch size of 9 was used to speed up the learning with ‘Adam’ optimisation, with a learning rate of 

0.001. 10 epochs were used to illustrate the model progress, as the complete model evolution is not 

required for this study. 3 convolutional layers were used with ‘relu’ as the activation function, with 

two dense layers. These hyperparameters were found to balance accuracy of model output and training 

time using cloud computing capability. Increased number of epochs would be beneficial to increase 

accuracy, while incurring a time-cost. 

4.5 Evaluation 

The CNN was evaluated in terms of its effectiveness at recognising the test dataset, with the 

effectiveness measure achieved algorithmically as part of the model training process. Both accuracy 

on the training set (i.e., detect a part from the image set used to train) and validation set (i.e., detect a 

part from images not previously seen by the model) are reported. The key performance indicators are 

that each of the three models are able to successfully identify the learned classes. For Layer 1 (see 

Figure 1) of the proposed workflow, this refers to ability to detect the class of object (i.e., hinge, 

collar, or slotted nut). For Layer 2, this refers to ability to detect the specific collar, hinge, or slotted 

nut from the objects within the class (i.e., hinge A, hinge B, etc.). 

4.6 Simulation cases 

The model was trained and evaluated according to two pipelines, see Table 4. The first trained and 

detected against all 184 objects. The second followed the proposed workflow, training and detecting 

first against the three class types (Layer 1), and then against the objects within the target class (Layer 

2). This required generation of five CNNs: one for the All in one case, one for Layer One of the 

proposed workflow, and one for each class in Layer Two.  

Notably, the CNN for Layer 1 attempts only to identify the type of object rather than the specific 

object itself. To achieve this the objects of each type were aggregated into a single class, with the 

model then asked to recognise the class to which an object belonged. I.e. Class one contained all 

images for all 78 models of the slotted nuts type, with objects recognised just as a slotted nut, rather 

than the specific object. 

5 RESULTS 

The model was trained and tested in each case presented in Table 4. This section presents general 

results for training times, followed by results for each workflow in isolation. 

5.1 Training time 

Training an ML model is a computationally intensive task, with training time increasing as number of 

classified objects increases. As all pipelines within this study used identical hardware, training time 

may be used as a relative measure. Table 5 shows training time for each CNN. Training of the entire 

proposed workflow (total of 7988s) is approximately equivalent to training of the all-in-one approach 

(7423s) should all classes require training. However, substantial time may be saved should elements of 

Layer 2 not be required (i.e. 64% time saving vs. All-in-One to train only Layer One and Collars 

within Layer Two). 
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Table 4. Model test cases 

Case Pipeline Description 

1: All in one Trained against all 184 objects, each as its own class. Test attempts to identify 

specific object from entire set. 

2: Proposed 

Workflow 

Layer 1: Trained against all 184 objects, but separated into only 3 classes by 

object type. Test attempts to identify to which class the target object belongs. 

Layer 2: Trained against all objects in target class, Test attempts to identify 

specific object within the class. 

Table 5. Training times and parameters across workflows. Times are per epoch. 

Training 

Case 

Objects Models [#] Accuracy Precision Recall F1 Training 

time [s] 

All in one All 184 69.5% 73.3% 72.3% 71.2% 7423 

Layer 1 All 184 98.2% 98.3% 98.1% 98.2% 596 

Layer 2 Slotted 

Nuts 

78 50.5% 54.8% 52.0% 50.7% 3116 

Layer 2 Collars 52 93.0% 94.1% 94.5% 94.2% 2071 

Layer 2 Hinges 54 87.7% 88.2% 87.6% 87.6% 2205 

 

 

Figure 4. Loss and accuracy for training and validation steps for all in one 

   

(a) Hinges (b) Collars (c) Slotted Nuts 

Figure 5. Loss and accuracy for training and validation steps for layer two 

5.2 Case 1: All-in-One 

Figure 4 shows test and validation accuracy and loss for the All-in-One, which trained against all 184 

objects within a single CNN. Detection accuracy can be seen to be stable at approx. 70% from epoch 

6, approximately in line with detection accuracies seen in other works with similar scale of classes 

(Real et al., 2021). It is notable that the validation loss is higher than the training loss, which typically 

indicates over-fitting and an inability for the model to generalize to new data. This is perhaps due to 
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the high similarity between the parts, where the model struggles to identify features in new data that 

distinguish from existing models and hence creating an over-fit. 

5.3 Case 2: Hierarchical workflow 

Results for each workflow layer are presented in Table 5 and Figure 5. Looking first at Layer One, it is 

evident that the CNN has substantially exceeded the accuracy of the all-in-one case ( 98% vs. 70%). 

The improvement over the all-in-one is due to the separation of the 184 objects into only 3 classes, 

with accuracy in line with expected results seen in similar studies (Real et al., 2021).  

Looking at Layer Two, in which a CNN was trained for each class of object, it is evident that the object 

under consideration impacts accuracy of detection. Both the CNNs trained on hinges and on collars 

achieved detection accuracies of approx. 90%, while the CNN trained on slotted nuts achieved an 

accuracy of only approx. 50%. This may be due to the higher size of the slotted nut dataset (78 objects 

vs. 52-54 for other classes), or some feature of the object geometries themselves confounding detection. 

With high similarity of distinguishing features within geometries (i.e., slots on slotted nuts) it is possible 

that training is causing overfitting. A further potential cause is the high between-view variation present 

for each single object (i.e., visual variation for a slotted nut is large across views), requiring the CNN to 

recognise that despite a lack of consistency two images may be of the same object. Remedying this issue 

may require the implementation of a multi-view CNN (i.e., see Su et al. (2015)).  

However, while further work should investigate how model geometry influences accuracy and may be 

improved, these results show viability of the process. The substantially higher detection accuracy even 

between highly similar objects, with models generated in substantially less time, creates potential for 

higher feasibility of use of CNNs for automatic part detection. 

6 DISCUSSION 

The discussion considers three perspectives; the performance of the hierarchical workflow, benefits 

for engineering, and limitations and future work.  

Viability of the Proposed Workflow: Results presented in Section 5 show technical viability of the 

proposed workflow to increase feasibility of CNN-driven object detection for engineering components. 

In some cases accuracy is increased by the two layer approach by greater than 20%; detection accuracy 

across layers for collars is 91.3% (98.2% layer one and 93.0% layer two collars), also with a reduction in 

training time of 64.1% (7423s all-in-one, 2667s layer one + layer two collars). However, they also 

highlight some of the challenges that creating such CNNs presents, and highlight sources of error.  

The case in which the workflow was applied is inherently challenging for CNNs. Standard Components 

of a single type do not vary substantially from each other and class sizes here are reasonably large - that 

the CNN was able to achieve accuracy in some cases of >90% despite this challenge shows promise. 

That training times for the proposed workflow were at worst equivalent to the all-in-one approach with 

potential to substantially reduce time-cost (by as much as 74% if training for only the first layer (Layer 

One) and a single class of Layer Two) also suggest feasibility and scalability.  

There remain however elements of the workflow that require further investigation. The lower accuracy 

of the Layer Two CNN trained on slotted nuts ( 51%) compared to both hinges ( 88%) and collars 

(93%) requires further investigation. This may be due to over-fitting due to geometry of parts, an 

insufficiently small set of representative parts trained for Layer One, or imply the need for a multi-

view CNN implementation, and requires further investigation. As such, while results show promise, 

improvements must be made before the workflow could be considered technically robust. It may be 

that measures of similarity of a dataset can be created that describe suitability for and ML approach.  

Workflow Value for Engineering: A key strength of the proposed workflow lies in its pragmatic, 

consistent, and step-wise approach to CNN implementation. It enables a train-as-needed approach, 

where each CNN in Layer Two need only be created when the objects within it become of interest. 

Further, each CNN may be updated as needed without re-training the whole set should additional 

objects or classes be added. In typical implementations, the entire CNN must be retrained following 

every change, incurring the full associated time-cost. An additional value is in the consistent pipeline 

that the workflow uses, that does not require any reconfiguration to accommodate new classes or 

objects. The surrogate model approach allows automated training on any digital file (which are 

abundant in the engineering sector), with the training pipeline then identical for each CNN at each 
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layer. As such maintenance of the CNNs over time is viable for non-expert parties in industry, where 

once the pipeline is created, it may be updated and expanded by users with no required configuration.  

Limitations and Future Work: Key limitations of the work lie in investigating and improving 

accuracy in certain areas. The low accuracy of Layer One is unexpected in comparison to the accuracy 

of the all-on-one workflow, requiring investigation into potential over-fitting, size of training set for 

Layer One, or interplay between geometry and accuracy. Further, the varying accuracy at Layer Two 

implies a geometric dependence between some standard components and classification accuracy that 

should be investigated. Finally, it is apparent that for some CNNs accuracy had not yet plateaued and 

that further epochs would bring benefits. As the number of required epochs directly impacts training 

time, the cost/benefit of increasing epoch quantity should be established.  

Once such issues are understood, further work should then probe the capabilities of the approach. The 

extendability of the workflow across classes should be evaluated to identify both number of classes and 

sizes of class to maintain suitable accuracy. Further, while the CNN has shown capacity to distinguish 

between very similar standard components, it may struggling with issues of geometric invariance. For 

example, where an object changes in scale alone (i.e. all features remain consistent relative to one 

another), there is little on the object for the CNN to discriminate against. Finally, quality of input data is 

critical for CNN training, and the impact of the readily available databases of lower-poly geometries 

should be evaluated to determine whether they are sufficient for robust accuracy.  

Following such investigations, further work should then investigate implementation in real cases. Here 

both the training and validation data were 3D renders. While surrogate modelling has shown capability 

when detecting from images of real components (Gopsill and Jennings, 2020), the proposed workflow 

should also be validated using this approach. Following, utility to solve real problems should be 

verified, such as automated Bill of Materials generation, or assembly search and retrieval. Such 

implementations will require detection of single objects in scenes of several, creating further 

challenges of occlusion, image segmentation, and nested assemblies. 

7 CONCLUSION 

This paper has presented and evaluated a two-layer hierarchical workflow for object detection in the 

context of engineering, using convolutional neural networks (CNNs). While object detection using 

CNNs has huge potential in a range of engineering applications, the time-cost of training and 

decreasing accuracy as number of objects increases decrease feasibility of implementation. While 

further investigation of some results is required, two-layer workflow shows potential to achieve 

detection accuracy of >90% for datasets of approx. 200 objects (20-30% higher than using other 

workflows) while also decreasing training time by up to 64%, and allowing streamlined updating and 

extension without full retraining of the CNN. By leveraging existing taxonomies of components and 

digital models that are abundant within the engineering sector, this paper then demonstrates potential 

for feasibility of object detection in the engineering sector to be substantially increased. 
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