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Abstract.
The detection of rapidly damped transverse oscillations in coronal loops by Aschwanden et al.

(1999) and Nakariakov et al. (1999) gave a strong impetus to the study of MHD waves and their
damping. The common interpretation of the observations of these oscillations is based on kink
modes. This paper reviews how the observed period and damping time can be reproduced by
MHD wave theory when non-uniform equilibrium models are considered that have a transversal
variation of the local Alfven velocity. The key point here is that resonant absorption cannot be
avoided and occurs as natural damping mechanism for kink waves in non-uniform equilibrium
models. The present paper starts with work by Hollweg & Yang (1988) and discusses subsequent
developments in theory and their applications to seismology of coronal loops. It addresses the
consistent use of observations of periods and damping times as seismological tools within the
framework of resonant absorption. It shows that within the framework of resonant absorption
infinitely many equilibrium models can reproduce the observed values of periods and damping
times.
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1. Introduction
In my view the detection of heavily damped transverse oscillations in coronal loops

by Aschwanden et al. (1999) and Nakariakov et al. (1999) was the real start of coronal
seismology. These oscillations have periods of the order of � 2 − 10 minutes and com-
paratively short damping times of the order of τd � 3 − 20 minutes. The common
interpretation of these oscillations is that they are fast standing kink mode oscillations.
Kink oscillations are singled out because they have azimuthal wave m = 1 so that the
axis of the loop is displaced. The big puzzle was the cause of their rapid damping

A possible mechanism for explaining the observed rapid damping might already have
been known in the 1980s. In 1988 Hollweg & Yang (1988) published a paper entitled Res-
onance Absorption of Compressible Magnetohydrodynamic Waves at Thin “Surfaces”.
In that paper Hollweg & Yang (1988) studied MHD surface waves in a planar geometry
with a thin transitional layer of thickness l as a possible means for heating the solar
corona by MHD waves. A plasma system with two infinite uniform plasmas separated
by a true discontinuity where the equilibrium plasma quantities f such as e.g. density ρ
change discontinuously supports the classic surface wave with its square of frequency ω
equal to the weighted mean of the squares of the local Alfvén frequencies

ω2 = ω2
k =

ρiω
2
A,i + ρeω

2
A,e

ρi + ρe
(1.1)

ωA is the local Alfvén frequency defined as

ωA = k‖vA , vA = B/
√

µρ (1.2)
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k‖ is the wave number along the equilibrium magnetic field and vA is the local Alfvén
velocity. When the true discontinuity is replaced by a continuous variation of the local
Alfvén frequency the ideal MHD equations are characterized by a singularity at position
where ω = ωA . A possible way to avoid this mathematical singularity is to include
dissipation in the MHD equations. However, this comes with a price, the dissipative
MHD equations are definitely more complicated to handle than their ideal counterparts.
Hollweg & Yang (1988) adopted a simple scheme that enabled them to include dissipation
in their analysis without having to solve the dissipative MHD wave equations. Their trick
was to assume that the Eulerian perturbation of total pressure, P ′ is constant across the
dissipative layer

[P ′] = 0 (1.3)

for resonant Alfvén waves. Here [f ] denotes the jump the quantity f undergoes when
crossing the dissipative layer. In their analysis the non-uniform transition layer, cfr. thin
surface, coincides with the dissipative layer. In doing so Hollweg & Yang (1988) had to
solve the ideal MHD wave equations in two uniform plasmas and connect the solutions
over the dissipative layer and also the thin non-uniform transitional layer by the use
of (1.3). Hollweg & Yang (1988) concentrated on propagation nearly perpendicular to
the equilibrium magnetic field. Damping of the surface wave is seen as energy being
transferred from the MHD wave to heating of the plasma.

For a linear variation of the equilibrium density we can write Eq. 69 of Hollweg &
Yang (1988) as

ω τd =
8 (ρi + ρe)

π (k l) | ρi − ρe | (1.4)

In this equation ω is the frequency, τd is the decay time, k ≈ k⊥ is the wave number
and l is the width of thin non-uniform layer. Note that (1.4) is not given in the paper
by Hollweg & Yang (1988). In their discussion Hollweg & Yang (1988) say that “ Even
though the above analysis assumes slab geometry, we shall here illustrate the foregoing
ideas using numbers appropriate to solar coronal active regions loops, for which toroidal or
cylindrical geometry might be more appropriate.” Let us use the following prescriptions
to transform (1.4) obtained for planar geometry into a corresponding expression for
cylindrical geometry (k⊥ is the wave number in the direction in the magnetic surfaces
perpendicular to the magnetic field lines) :

k⊥ =
m(= 1)

R
, k‖ =

π

L
, k‖ � k⊥ ≈ k, R = radius, L = loop length

This enables us to rewrite Eq. 69 of Hollweg & Yang (1988) as

τd

Period
=

4
π2

R

l

ρi + ρe

ρi − ρe
(1.5)

Again note that (1.5) is not given in the paper by Hollweg & Yang (1988). Also, note that
(1.5) is Eq. 79b of Goossens et al. (1992), but we shall come back to that in subsection
4.4. Hollweg & Yang (1988) take the numerical example

l/R = 2/5, ρi/ρe = 3

and find that
τd

Period
=

20
π2 ≈ 2 (1.6)

This result led Hollweg & Yang (1988) to conclude that “ the waves are very effectively
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230 M. Goossens

damped with an e-folding time of only two wave periods. This rapid damping of the sur-
face wave indicates that resonance absorption is a viable candidate for coronal heating.”

In retrospect it is difficult to understand that in 1999, when the rapidly damped kink
oscillations were detected in TRACE observations, nobody linked the fast damping found
by Hollweg & Yang (1988) in the context of coronal heating to the observed damping of
the TRACE loop oscillations. When I tried to understand the Hollweg & Yang (1988)
paper in the summer of 1989 I was puzzled by following questions. How relevant are results
obtained for planar geometry for cylindrical coronal loops? Is the ad hoc conservation
law (1.3) correct and is it possible to put it on a solid mathematical basis? What about
the thin transitional layer that coincides with the dissipative layer? In view of the large
values of the magnetic Reynolds number in the solar corona, this transitional layer must
be really very thin since l/R ∼ R

−1/3
m ≈ 10−4 while the numerical example of Hollweg &

Yang (1988) adopts l/R = 2/5. What about the Taylor expansion of dispersion relation
which is strictly speaking only valid if | ωi | / | ωR |� 1 while Hollweg & Yang (1988)
find that τd/Period ≈ 2 clearly violating that assumption.

2. MHD waves in 1-D cylindrical equilibrium models
2.1. Equilibrium model

The equilibrium model is a flux tube in static equilibrium. We use cylindrical coordinates
r, ϕ, z. The equilibrium quantities �B = (0, Bϕ (r), Bz (r)), p(r) and ρ(r) depend on the
radial distance to the axis of the cylinder. The equilibrium quantities satisfy the well-

known radial force balance equation d
dr (p + B 2

2µ ) = −B 2
ϕ

µr , B = (B2
ϕ + B2

z )1/2 .

2.2. MHD waves equations and coupling between MHD waves
On the equilibrium state we superimpose linear motions. The time dependence of these
linear motions is prescribed as exp(−iωt). As said before, ω is the frequency. In the driven
problem it is prescribed, in the eigenvalue problem it is a quantity to be determined.
Since the background is independent of (ϕ, z) we can Fourier-analyze the perturbed
quantities with respect to these two ignorable variables and put them proportional to
exp(i(mϕ + kz z)). m, kz = are the azimuthal and axial wave numbers and the wave
vector in the magnetic surfaces is �k = (0,m/r, kz ). When MHD waves are studied in
2-dimensional equilibrium models with longitudinal stratification of density, density is
also a function of z, ρ(r, z). In that case it is no longer possible to describe the MHD
waves with one value of kz (see e.g. Andries et al. (2005a)).

In what follows �ξ is the Lagrangian displacement, P ′ is the Eulerian perturbation of
total pressure, ξ⊥, ξ‖ are the components in magnetic surfaces perpendicular/parallel to
the magnetic field lines. To understand the physics of the waves it is important to note
that ξ⊥ characterizes the Alfvén waves, ξr characterizes the fast magneto-sonic waves and
ξ‖ characterizes the slow magneto-sonic waves. The equations for the linear MHD waves
on a 1-dimensional cylinder are (see e.g. Appert et al. (1974); Sakurai et al. (1991a);
Goossens et al. (1992), Goossens et al. (1995))

D
d(rξr )

dr
= C1rξr − C2rP

′,

D
dP ′

dr
= C3ξr − C1P

′,

ρ(ω2 − ω2
A )ξ⊥ =

i

B
CA,
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ρ(ω2 − ω2
C )ξ‖ =

ifB

B

v2
S

v2
S + v2

A

CS , (2.1)

The quantities D, C1 , C2 , C3 , CA and CS that appear in equations (2.1) can be found
in e.g. Sakurai et al. (1991a); Goossens et al. (1992), Goossens et al. (1995), and by
Tirry & Goossens (1996). The equations for MHD waves in a cylindrical plasma with an
equilibrium flow can be found in e.g. Goossens et al. (1992), Erdélyi et al. (1995) and
Erdélyi (1997). The Cartesian version (2.1) with a horizontal magnetic field and gravity
in the vertical direction are given in e.g. Tirry et al. (1998b) and Pintér et al. (2007).
Finally, the coefficients for a uniformly twisted magnetic flux tube are in Erdélyi & Fedun
(2006, 2007).

In view of what follows it is instructive to list the coefficient function D and the
coupling factor CA :

D = ρ(v2
S + v2

A )(ω2 − ω2
A )(ω2 − ω2

C ), CA = gB P ′ − 2fB BϕBzξr

µr
(2.2)

with

fB = �k · �B = kzBz +
mBϕ

r
, gB =

mBz

r
− kzBϕ

ω2
A =

(�k · �B)2

µρ
, ω2

C =
v2

S

v2
S + v2

A

ω2
A , v2

S =
γp

ρ
, v2

A =
B2

µ ρ
(2.3)

ωA and ωC are the local Alfvén and the local cusp frequency; vS and vA are the local
speed of sound and the local Alfvén velocity. In the approximation of a pressureless
plasma vS = 0 and ωC = 0. Hence, the slow magneto-sonic waves are removed from the
analysis and ξ‖ = 0. For the present discussion there are two points to be made. The
first point has to do with the function CA . It couples the equations for the magneto-sonic
waves, with that for the Alfvén waves. In general CA �= 0 and the fast magneto-sonic
waves and the Alfvén waves are coupled and do interact. There is one exception. In
case of an equilibrium with a straight field ( Bϕ = 0 ) the coupling factor CA = 0 for
m = 0 so that there is no interaction between the fast sausage waves and the torsional
Alfvén waves since they have m = 0. In short: there is always interaction between fast
magneto-sonic waves and Alfvén waves except for a straight field and m = 0.

For a straight field �B = B(r)�1z the magnetic surfaces are cylinders: r = constant and
the ϕ− direction and z−direction are the directions in the magnetic surfaces respectively
perpendicular and parallel to the equilibrium magnetic field. The r−direction is normal to
the magnetic surfaces. Consequently ξϕ characterizes the Alfvén waves, ξr characterizes
the fast waves and ξz characterizes the slow waves. The equations for the linear MHD
waves on a 1-dimensional cylinder with a straight field are

D
d(rξr )

dr
= −C2rP

′,

dP ′

dr
= ρ(ω2 − ω2

A )ξr

ρ(ω2 − ω2
A )ξϕ =

im

r
P ′,

ρ(ω2 − ω2
C )ξz = ikz

v2
S

v2
S + v2

A

P ′. (2.4)

These equations clearly show that for m = 0 the Alfvén waves and the magneto-sonic
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waves do not interact, while for m �= 0 they do interact. For more details in a twisted
tube see Erdélyi & Fedun (2006, 2007).

3. Resonant Alfvén waves in 1-D cylindrical equilibrium models
The second observation to be made has to do with the coefficient function D. In a

non-uniform plasma ωA (r) varies with position r and defines a continuous range

[min ωA (r), max ωA (r) ] (3.1)

known as the Alfvén continuum (we forget about the slow continuum as it does not
exist when we adopt the approximation of a pressureless plasma as we do in the present
analysis). D = 0 at the position rA where ω = ωA (rA ). Hence rA is a mobile regular point
of (2.1) and (2.4). The solutions that correspond to a frequency in the Alfvén continuum
have singular spatial functions in ideal MHD and are known as resonant Alfvén continuum
waves (see e.g Appert et al. (1974), Chen & Hasegawa (1974), Goedbloed (1983)). The
dispersion relation for Alfvén waves is locally satisfied on each magnetic surface and
each magnetic surface oscillates at its own Alfvén continuum frequency. The singular
(non-square integrable) spatial solutions in ideal MHD (s = r − rA ) are a logarithmic
singularity and a jump for P ′, ξ‖, ξr and a 1/s−singularity and a δ(s)− contribution
for ξ⊥. Hence the dominant dynamics is in the component in the magnetic surfaces
perpendicular to the magnetic field lines: ξ⊥.

Now recall that there is always interaction between fast magneto-sonic waves and
Alfvén waves except for a straight field and m = 0. For m = 0 and �B = B�1z the (real)
eigenvalues of discrete (fast) eigenmodes can lie in the Alfvén continuum, but there is no
coupling. For m �= 0 the discrete (fast) eigenmodes with an eigenfrequency in the Alfvén
continuum couple to a local Alfvén continuum eigenmode and produce quasi-modes. The
energy of the global eigenmode is transferred to local continuum waves. Large (infinite)
gradients are built up near the resonances so that dissipative effects become important
and have to be taken into account.

The driven problem for resonant Alfvén waves was studied by Sakurai et al. (1991a),
Goossens et al. (1992), Goossens et al. (1995), and Erdélyi & Goossens (1996) for 1-
dimensional cylindrical equilibrium models and by Tirry & Goossens (1995) for 2-dimen-
sional equilibrium models. The eigenvalue problem was investigated by Tirry & Goossens
(1996), Tirry et al. (1998a) and Tirry et al. (1998b) for 1-dimensional cylindrical and
Cartesian models respectively. Here we recall the essential steps in Goossens et al. (1995).
The analysis is restricted to linear motions that correspond to resonant Alfvén waves in
ideal MHD. This allows for a first simplification of the original linear dissipative MHD
equations. Subsequently the coefficient functions are replaced by their linear Taylor series
expansions around the ideal Alfvén resonance (r = rA , s = 0). This allows for obtaining
a simplified set of dissipative MHD equations valid in the interval [−sA , sA ] around the
point of resonance. These simplified dissipative MHD equations are free from singularities.
The solutions to these equations are finite everywhere but have steep gradients in the
vicinity of the ideal resonant point. The dissipative layer where dissipation is important
has a width that is measured by the quantity δA given by (see e.g. Kappraff & Tataronis
(1977); and Hollweg & Yang (1988))

δA =
(

ωη

| ∆ |

)1/3

, ∆ =
d

dr
(ω2 − ω2

A ) (3.2)

In view of the very large values of the magnetic Reynolds number Rm in the solar
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corona it follows that sA/δA � 1. This inequality is important because it guarantees
that the simplified dissipative MHD equations are valid in the dissipative layer and in
two overlap regions to the left and right of the dissipative layer where ideal MHD is
valid. It is convenient to introduce the scaled variable τ = s/δA which is of order 1 in the
dissipative layer, but s → ±sA corresponds to τ → ±∞. The simplified dissipative linear
MHD equations are a set of two ordinary differential equations of third order for the
variables ξr and P and an ordinary differential equation of second order for the variable
ξ⊥. The first step for solving this set of ordinary differential equations, is to obtain the
differential equation that determines the coupling function CA . The bounded solution
for CA (τ) is amazingly simple

CA (τ) = constant (3.3)

This is the fundamental conservation law for resonant Alfvén waves in dissipative MHD.
A similar conserved quantity was found by Erdélyi (1997) for resonant slow waves. Once
this conservation law is established the solutions for ξr , P ′, and ξ⊥ that remain finite for
|τ | → ∞ can be determined. Sakurai et al. (1991a) obtained solutions in terms of double
integrals of Hankel functions of complex argument of order 1/3. A set of more compact
solutions can be obtained by the aid of the F and G functions (see e.g. Goossens et al.
(1995), Goossens & Ruderman (1995), Tirry & Goossens (1996), Tirry et al. (1998b) and
Pintér et al. (2007)):

ξr = − gB CA

ρB2∆
G(τ) + Cξ , P ′ = −2fB BϕBzCA

ρB2µr∆
G(τ) + CP ,

ξ⊥ =
CA

δA | ∆ | ρB
F (τ)

(3.4)

Cξ and CP are constants of integration. The functions F and G are

G(τ) =
∫ ∞

0

(
eiusign(∆)τ−Λu − 1

) e−
u 3
3

u
du,

F (τ) =
∫ ∞

0
eiusign(∆)τ−Λu e−

u 3
3 du (3.5)

The quantity Λ is zero in case of the driven problem with a prescribed real valued
frequency ω; in case of the eigenvalue problem it is related to the imaginary part of the
frequency as Λ = −2ωRωI

δA |∆| In (3.4) the G and F functions recover the ideal singular

behaviour but only sufficiently far away from the ideal resonant position. (3.4) combined
with(3.5) give the solutions in the dissipative layer and in two overlap regions to the left
and the right of the dissipative layer. In the overlap regions the motions are accurately
described by the ideal MHD equations also. Hence, when we are interested in the details
of the behaviour of the waves in the dissipative layer then we have to use (3.4) combined
with(3.5). However, if we are primarily concerned with the global solutions then we can
suffice with jump relations that tell us how to connect the solution to the left of the
dissipative layer to that of the right to the dissipative layer. From (3.3) it follows that

[CA ] = 0 (3.6)

From Appendix B of Goossens et al. (1995) we learn that [G] = iπ Hence the jumps in
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ξr and P ′ are

[ξr ] = −iπ
gB CA

ρB2 | ∆ |
, [P ′] = −iπ

2fB BϕBzCA

ρB2µrA | ∆ |
(3.7)

The jumps and conservation law were first derived by Sakurai et al. (1991a) for the
driven problem and by Tirry & Goossens (1996) for the eigenvalue problem. The jumps
are independent of dissipation and hence the damping is independent of dissipation. The
jumps were in first instance used by Sakurai et al. (1991b) to compute the absorption
of acoustic oscillations in sunspots. They were used by Goossens & Hollweg (1993) to
determine the optimal conditions for absorption of driven resonant Alfvén waves and im-
plemented in a simple numerical scheme for the computation of driven resonant Alfvén
waves by Stenuit et al. (1995). The jumps and conservation laws in 1-d stationary equi-
librium models were obtained in ideal MHD by Goossens et al. (1992) and in dissipative
MHD by Erdélyi et al. (1995), Erdélyi (1997).

For a straight field Bϕ = 0 the jump relations (3.6) and (3.7) take a simpler form

[P ′] = 0, [ξr ] = −iπsign(ω)
m2/r2

ρ|∆| P ′, [FluxE] = −π|ω|m2

2ρ|∆| |P ′|2 . (3.8)

[FluxE] is the jump of energy when crossing the dissipative layer. In a static equilibrium
this jump is always negative, meaning that the dissipative layer is a sink for the energy
of the wave so that the wave gets damped. In equilibrium models with flow the quasi-
modes can become overstable as shown by e.g. Andries et al. (2000), Andries & Goossens
(2001a), Andries & Goossens (2001b) in solar wind, and Taroyan & Erdélyi (2002),
Erdélyi & Taroyan (2003) and Taroyan & Erdélyi (2003) in magnetospheric applications.
Note that in an equilibrium with a straight magnetic field the Eulerian perturbation of
total pressure does not undergo a jump when crossing the dissipative layer. Note that
[FluxE] is proportional to |P ′|2 so that the amount of energy absorbed is strongly
dependent on the absolute value of the pressure perturbation.

In addition, for an equilibrium with a straight magnetic field, ξr and FluxE do not
jump, [ξr ] = 0 and [FluxE] = 0 for waves with m = 0. Hence waves with m = 0 are not
resonantly absorbed in an equilibrium with a straight field. This comes as no surprise
since torsional Alfvén waves and sausage fast waves are not coupled in an equilibrium
with a straight field. Here is a good point to go back to the 1980s. The result (3.8),
i.e. [P ′] = 0 means that the assumption used by Hollweg & Yang (1988) is correct. In
addition, there is no need for the non-uniform transitional layer to coincide with the
dissipative layer. The assumption that the non-uniform transitional layer coincides with
the dissipative layer is used to connect analytical solutions for a uniform plasma to the
left of the transitional layer to those to the right of the dissipative layer. In what follows
we refer to this approximation as the thin boundary (TB) approximation.

4. Where is the damped eigenmode?
4.1. Quasi-modes in non-uniform plasma

The linear spectrum of MHD waves of a non-uniform static plasma equilibrium consists
of discrete (fast and slow magneto-sonic and Alfvén ) eigenmodes and continuum Alfvén
eigenmodes. Remember that there is always interaction between fast magneto-sonic waves
and Alfvén waves except for a straight field and m=0. This means that for an equilibrium
with a straight magnetic field the real eigenvalues of discrete fast sausage eigenmodes
can lie in the continuum of the torsional Alfvén continuum eigenmodes, but there is
no coupling and hence no damping. On the other hand for m �= 0 the discrete fast
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eigenmodes with an eigenfrequency in the Alfvén continuum couple to a local Alfvén
continuum eigenmode to form a damped quasi-mode. Energy of the global eigenmode is
transferred to local continuum waves. For a static equilibrium there is always extraction
of wave energy at the resonances and the quasi-modes are damped as can seen from the
expression (3.8) for [FluxE]. Tirry & Goossens (1996) gave a nice illustration of this
transformation of undamped sausage fast magneto-sonic eigenmodes with frequencies
in the Alfvén continuum into kink fast magneto-sonic eigenmodes damped by resonant
absorption. These authors considered a pressureless cylindrical plasma equilibrium with
a straight magnetic field and a density profile that varies with distance r to the axis of the
cylinder as ρ(r) = ρ(0)

[
1 + 0.9 exp

(
−(r/R)4

)]
. Tirry & Goossens (1996) computed the

first three sausage (m = 0) fast magneto-sonic eigenmodes of this equilibrium model for
31 equidistant values of kzR from 0 to 3. For each kz the corresponding Alfvén continuum
was computed. For kzR � 1 the fundamental fast sausage mode has its frequency in the
Alfvén continuum. This happens for the first overtone for kzR � 2 and for the second
overtone for kzR � 3. Hence there are many sausage modes with frequencies in the Alfvén
continuum. In order to see what happens with these modes when going from a sausage
mode m = 0 to a kink mode m = 1 Tirry & Goossens (1996) carried out a numerical
experiment in which they varied the value of m in a continuous manner from 0 to 1. The
outcome of this mathematical exercise is that the frequency becomes complex with a non-
zero negative imaginary part and a real part that undergoes a shift. The excursion of the
frequency in the complex plane has been computed for different values of the magnetic
Reynolds number Rm = 107 , 108 , 109 , 1010 . The result is a numerical confirmation of the
damping being independent of dissipation for sufficiently small dissipation as could have
been predicted on the basis of the expression (3.8) for [FluxE]. The same conclusion was
reached by Poedts & Kerner (1991) in a study of the kink mode in a fusion related setup.
Quasi-modes are the natural oscillation modes of a system. They combine properties of
a localized resonant Alfvén wave and of a global fast eigenmode. They are damped due
to resonant coupling and the damping is independent of dissipation for small dissipation.
The role of the quasi-modes for coronal heating was studied by e.g. Poedts et al. (1989)
and Poedts et al. (1990). The excitation of the quasi-modes by given initial perturbation
was studied by e.g. Terradas et al. (2006) and Terradas et al. (2007).

4.2. Non-leaky eigenmodes of uniform plasma cylinders
The non-leaky eigenmodes of a uniform plasma cylinder with a constant axial magnetic
field can be described by a 2nd order ordinary differential equation for P ′

d2P ′

dr2 +
1
r

dP ′

dr
+

{
(ω2 − k2

z v2
S )(ω2 − ω2

A )
(v2

S + v2
A )(ω2 − ω2

C )
− m2

r2

}
P ′ = 0 (4.1)

k2
⊥ = ± (ω2 − k2

z v2
S )(ω2 − ω2

A )
(v2

S + v2
A )(ω2 − ω2

C )
is the square of the local radial wave number. The solutions to equation (4.1) can be
obtained in terms of Bessel and Hankel functions. The dispersion relation follows from
the requirements that the normal displacement and total pressure are continuous at the
boundary r = R

D(ω, kz ,m) ≡ ξr,i(R)
P ′

i (R)
− ξr,e(R)

P ′
e(R)

= 0 (4.2)

When kz and m are chosen the dispersion relation (4.2) has to be solved for the eigenvalue
ω. The equilibrium model has constant values of the local Alfvén frequency inside and
outside the loop with a discontinuous variation at the boundary and MHD radiation
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is not considered (see e.g. Spruit(1982), Cally (1986), Stenuit et al. (1998) and Stenuit
et al. (1999)). Hence, there is no damping. Edwin & Roberts (1983) solve the dispersion
relation (4.2) for photospheric flux tubes and for coronal loops. The present discussion
focusses on the eigenmodes of coronal loops. For coronal loops Bi ≈ Be, ρi > ρe so that
vA,i < vA,e , ω2

A,i < ω2
A,e On Figure 4 of Edwin & Roberts (1983) it can be clearly seen

that vA,i < ω
kz

< vA,e for kink waves. Hence

ωA,i < ωkink < ωA,e (4.3)

In the thin tube (TT) approximation which assumes that the local radial wave length is
much longer than the radius R of the tube or equivalently that the radius of the loop
is much shorter than the length L of the loop k⊥,i,eR � 1, R/L << 1 we can use
expansions of Bessel functions and find the following simple result

ω2
kink =

ρi ω2
A,i + ρe ω2

A,e

ρi + ρe
(4.4)

Both (4.3) and (4.4) show that the frequency of the kink modes for a uniform coronal
loop lies in between the internal and external value of the local Alfvén frequency. Hence
when the true discontinuity is replaced with a continuous variation, the kink mode has
its frequency in the Alfvén continuum and as a consequence will be damped by resonant
absorption. We shall come back on this damping of kink modes by resonant absorption
in a following subsection. First we shall look at a seismological application of (4.4).

4.3. Seismology I
Nakariakov (2000) and Nakariakov & Ofman (2001) used TRACE observations of July 4,
1999 and the approximate expression for the frequency of the kink mode under the TT
assumption to estimate the magnetic field strength. When we assume that Bi = Be = B0
(4.4) can be written as ω/kz ≈ (2/(µ(ρe + ρi)))1/2B0 which can be solved for B0 giving

B0 ≈
√

2
L

Period
(µ(ρi + ρe))

1/2 (4.5)

If reliable estimates for density are available then (4.5) can be used to obtain an estimate
for the magnetic field strength. The large uncertainties on density invariably lead to large
error bars on B.

4.4. Damped kink (m � 1) quasi-mode (TTTB-approximation)
Recall from (4.3) and (4.4) that the kink eigenmodes for a uniform coronal loop have their
frequency in between the internal and external value of the local Alfvén frequency. Hence
when the discontinuous transition vA,i to vA,e is replaced with a continuous variation,
the kink mode has its frequency in the Alfvén continuum and as a consequence will be
damped by resonant absorption. The classic kink mode is always a quasi-mode damped by
resonant absorption. Its eigenvalues are complex, with their imaginary part independent
of dissipation. Hence we write ω = ωR + iγ, exp(−iωt) = exp(−iωRt) exp(γt). Goossens
et al. (1992) confine the inhomogeneity to the interval

b = R − l/2 � r � a = R + l/2

and adopt the so-called thin boundary (TB) approximation: l/R << 1. The TB approx-
imation of the dispersion relation is

D(ω, kz ,m) ≡ ξr,i(R)
P ′

i (R)
− ξr,e(R)

P ′
e(R)

+ iπsign(ω)
m2/r2

A

ρ(rA )|∆| = 0 (4.6)
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The third term in the left hand side of the dispersion relation (4.6) is due to the resonance.
Goossens et al. (1992) solve the dispersion relation (4.6) in the TT approximation. We
shall refer to the combination of these two approximations as TTTB. The result is

ω2
R =

ρi ω2
A,i + ρe ω2

A,e

ρi + ρe
= ω2

k

γ = −| m | π

2R

ρ2
1ρ

2
2

ρ(rA )(ρ1 + ρ2)3

(ω2
A,2 − ω2

A,1)
2

| ωk || ∆ | (4.7)

This is equation 77 in Goossens et al. (1992). For equal and constant magnetic fields
Bi = Be = B (4.7) reduces to

γ = − π

2R

ρA | ωk |3
| ∆ |

(ρ2 − ρ1)2

(ρ1 + ρ2)3 (4.8)

This is equation 56 of Ruderman & Roberts (2002). Finally, for equal and constant
magnetic fields Bi = Be = B and a linear variation of density, (4.7) takes the simple
form

γ = −π

4
l

R

| ρi − ρe |
ρi + ρe

ωk (4.9)

This is equation 79b of Goossens et al. (1992). Now rewrite (4.9) in terms of the damping
time τd and the period to find

τd

Period
=

4
π2

R

l

ρi + ρe

ρi − ρe
(4.10)

which is (1.5). This is the result that we have obtained in Section 1 from equation 69 of
Hollweg & Yang (1988) by replacing the planar geometry into cylindrical geometry.

5. Revival of damping of kink quasi-mode by resonant absorption
5.1. Proof of principle

Ruderman & Roberts (2002), slightly ahead of Goossens et al. (2002), were the first to
study the damped kink quasi-mode in explicit relation to the damped oscillations seen in
the TRACE observations. In the same way as Goossens et al. (1992) they confined the
inhomogeneity to the interval

b = R − l/2 � r � a = R + l/2

They used the TB approximation and the TT approximation, but instead of a linear
profile for the variation of density in the transitional layer, they adopted a sinusoidal
profile. Their result for the damping time τd is

τd

Period
=

2
π

R

l

ρi + ρe

ρi − ρe
(5.1)

This expression is remarkably similar to (1.5), the only difference being that the factor
4/(π2) in (1.5) is replaced with the factor 2/π in (5.1). The aim of Ruderman & Roberts
(2002) was to give a proof of the principle that resonant damping can explain the observed
rapid damping. They took as an example period ≈ 300 sec , τd ≈ 900 sec and ρi + ρe

ρi − ρe
≈ 1

and found that l R ≈ 0.2. Ruderman & Roberts (2002) concluded on the basis of their
analysis and this example that the observed damping of coronal loop oscillations can be
explained as damping of quasi-mode due to resonant absorption. A particular attraction
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of quasi-mode resonant damping is that it is fully consistent with the current estimates
of very large coronal Reynolds numbers.

5.2. Seismology II
Goossens et al. (2002) used the data on damping times of 11 loop oscillation events in
order to estimate radial inhomogeneity length scales. Again the estimates for the density
and in particular the density contrast ρi/ρe are the weak link. Goossens et al. (2002)
take ρi/ρe = 10 and use the TTTB approximation (5.1) to estimate l/R for 11 loops.
They find values of l/R in the range 0.16 to 0.49. Goossens et al. (2002) confirm the
conclusion by Ruderman & Roberts (2002) and by Hollweg & Yang (1988) that damped
quasi-modes give an excellent explanation of the observed fast decay of oscillating loops if
the inhomogeneity length scale is allowed to vary from loop to loop. The values found for
l/R by Goossens et al. (2002) are not entirely consistent with the assumption of a thin
boundary layer adopted by Hollweg & Yang (1988), Goossens et al. (1992), Ruderman
& Roberts (2002) and Goossens et al. (2002). There was an obvious need to relax the
assumption of a thin boundary layer and to compute eigenmodes of fully non-uniform
loops. A first attempt in this direction was made by Hollweg (1990), again in the context
of coronal heating. Hollweg (1990) used the width of the resonance curves to estimate the
free decay times of undrive surface quasi-modes. Van Doorsselaere et al. (2004) were the
first to address the eigenvalue problem to determine numerically periods and damping
times of quasi-modes in fully non-unform 1-dimensional equilibrium models.

5.3. Damped kink quasi-modes for fully non-uniform 1-d loop models
The complex eigenvalue problem based on the linear resistive MHD equations is solved
numerically with the use of the eigenvalue code LEDA originally developed by van der
Linden (1991). The first investigators to use LEDA in the context of coronal loop oscilla-
tions were Van Doorsselaere et al. (2004). With results for fully non-uniform oscillating
loops available, it was possible to determine how accurate the TTTB results are. It turned
out that the TTTB results are accurate with errors for the normalized damping rate not
exceeding 5% for l/R < 0.4. Hence this asymptotic formula is accurate far beyond its
domain of validity. Note that for a fully non-uniform loop l/R = 2. Caution is necessary
when linking linear relations for the normalized damping rate in terms of l/R, l/a and
l/b. Recall that Goossens et al. (1992), Ruderman & Roberts (2002) confine the inhomo-
geneity to the interval b = R − l/2 � r � a = R + l/2. When l/R << 1 it follows that
b ≈ R ≈ a. However when l/R ≈ 1 a linear relation in l/R is no longer a linear relation
in l/a or l/b. As consequence analytical results that are equivalent for thin layers give
rather differing results when extended to thick layers.

5.4. Seismology III
Aschwanden et al. (2003) used the observational info on damping times for 11 loops.
They used the numerical results of Van Doorsselaere et al. (2004). Aschwanden et al.
(2003) focussed on the density contrast ζ = ρi/ρe . The aim of Aschwanden et al. (2003)
was to compare values of ζ derived from observations of oscillating loops with values
of that quantity determined by forward fitting of the cross-sectional density profile and
line-of-sight integration of the cross-sectional fluxes observed with TRACE 171 Å. The
part of this method that is related to the oscillations can be illustrated as follows. It is
straightforward to rewrite the TTTB expression for the decay time ( 5.1) as

τd

Period
=

2
π

R

l

ζ + 1
ζ − 1

. (5.2)
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The idea is then to observe τd/Period , to estimate l/R and then to compute the density
contrast ζ. Recall that (5.2) is for thin non-uniform layers while there is strong suggestion
that the non-uniform layers are thick. However, there is no need to use (5.2) since

Period
τd

= f2(ζ, l/R) (5.3)

with f2(ζ, l/R) a function that can be determined numerically as we shall explain in more
detail in the following section.

Aschwanden et al. (2003) determined cross-sectional density profiles from observed
emission measures (EM) and find values for l/R, ζ. The loops turn out to be are fully
non-uniform with l/R = 2. Aschwanden et al. (2003) inverted the LEDA results (5.3) to
obtain ζ from observed values of Period/τd Comparison of the values of ζ determined
from the oscillation data ζLEDA with those obtained from forward modelling ζEM leads
to ζLEDA/ζEM ≈ 0.3 · · · 0.8. It is not clear where the differences come from. Probably
both methods are inaccurate to some extent. Anyway, note that again only half of the
observational info is used.

6. Seismology of coronal loop oscillations
So far we have referred to the seismological studies on TRACE observations of coronal

loop oscillations by Nakariakov (2000) and Nakariakov & Ofman (2001), Goossens et al.
(2002) and Aschwanden et al. (2003). These studies only used part of the observational
information. Nakariakov (2000) and Nakariakov & Ofman (2001) used the observed pe-
riods to derive estimates for the strength of the magnetic field. The weak link in their
analysis is the uncertainties on the density. Goossens et al. (2002) used the observed
damping rates to derive estimates for the radial inhomogeneity length scale. Again, the
weak link is the uncertainties on the density. Aschwanden et al. (2003) used the ob-
served damping rates to determine the density contrast. The first study that used the
observational information on both periods and damping times in the context of resonant
damping in a consistent manner is by Arregui et al. (2007). Arregui et al. (2007) use
the same 1-d cylindrical equilibrium models and the same numerical code LEDA as Van
Doorsselaere et al. (2004).

The equilibrium models are characterized by the quantities: radius R, length L, density
on axis ρi , density contrast ζ = ρi/ρe , length of the radial inhomogeneous layer l/R and
the strength of the constant magnetic field B. The MHD waves are characterized by the
wave numbers m = 1, kz = π/L, the real part of the frequency ωR (or Period) and the
damping time τd . The internal Alfvén velocity vA,i and the the Alfvén travel time τA,i

are defined as vA,i = B/(
√

µρi), τA,i = L/vA,i . The relevant dimensionless quantities
are

ζ = ρi/ρe ,
l

R
, k�

z = kz R = πR/L, (6.1)

ω�
R = ωR τAi, Period� = Period/τAi τ �

d = τd/τAi (6.2)

The dimensionless wave number, frequency, period and damping time are indicated by
�. The input for the eigenvalue calculations with LEDA are values for the dimensionless
quantities given in (6.1). The output are the corresponding results for the dimensionless
quantities given in (6.2). Hence we have the following functional relations

Period� = f̃1(k�
z , ζ, l/R), τ �

d = f̃2(k�
z , ζ, l/R). (6.3)

The functions f̃1 and f̃2 are to be determined numerically which requires computation of
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eigenvalues for a sufficiently large domain in the relevant 4-dimensional parameter space.
If R and L are known with sufficient accuracy so that k�

z = πR/L can be considered as
known, (6.3) can be simplified to

Period
τAi

= f1(ζ, l/R),
Period

τd
= f2(ζ, l/R) (6.4)

where now the functions f1 and f2 are to be determined numerically again with com-
putation of eigenvalues for a sufficiently large domain now in the relevant 3-dimensional
parameter space. Equations (6.4) contain two quantities that can be determined by obser-
vation, namely Periodobs and (Period/(τd))obs . They contain three unknown theoretical
quantities, namely ζ, l/R and τAi . Hence we have two equations for three unknown
quantities

Periodobs = τAif1(ζ, l/R), (
Period

τd
)obs = f2(ζ, l/R) (6.5)

As a consequence there are infinitely many equilibrium models that reproduce the ob-
served period and damping time of a given oscillation event. In the 3-dimensional space
(ζ, l/R, τAi) the solutions define a 1-dimensional curve. This is illustrated in Fig. 3 of
Arregui et al. (2007) where the solution curves for two oscillation events are shown. The
conclusion is that the observed values of the period and the damping time do not allow
a unique determination of even a 1-dimensional equilibrium model. However it turns out
that the range of allowable values of τAi is rather restricted with a variation of typically
10%.

7. Conclusions and outlook
The prediction by Hollweg & Yang (1988), which was well well hidden in their paper,

is correct. Resonant absorption can explain the fast damping of the loop oscillations
observed by TRACE. The resonant damping requires thick non-uniform layers and rel-
atively low density contrasts. For single mode oscillating loops the consistent use of the
available information on periods and damping times shows that in the context of resonant
damping of kink quasi-modes infinitely many 1-dimensional cylindrical equilibrium mod-
els can reproduce the observations. As it turns out the range in allowable Alfvén velocities
on axis is small for most oscillation events putting definite constraints on this quantity.
The theoretical studies on damped quasi-modes that this review has reported on are for
1-dimensional equilibrium models. Extensions to 2-dimensional equilibrium models are
due to Andries et al. (2005a), Arregui et al. (2005), MacEwan et al. (2006), Dymova &
Ruderman (2005), Dymova & Ruderman (2006). These studies have been triggered by
the detection of double mode oscillating loops in a pioneering paper by Verwichte et al.
(2004) and later confirmed by Van Doorsselaere et al. (2007). In particular the deviation
of the ratio of the period of the fundamental mode to that of the first overtone from the
canonical value of 2 has become a tool for investigating the longitudinal variation of den-
sity (see e.g Andries et al. (2005b), Goossens et al. (2006), Dymova & Ruderman (2006),
MacEwan et al. (2006).) In addition to seismology in the time domain using periods and
damping times the detection of longitudinal stratification invites studies in the spatial
domain focussing on the eigenfunctions (see e.g. Verth (2007), Erdélyi & Verth (2007),
Verth et al. (2007)). I am pretty sure MHD waves and coronal seismology will continue
to intrigue us for at least the following two decades.
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Erdélyi, R. & Fedun, V. 2007, Solar Physics, 246, 101
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