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Summary

A simple model of migration between two populations, each in a balance between mutation and

stabilizing selection on a polygenic trait, is explored. Below a critical migration rate, genetic

differences between the two populations can be maintained, even if the populations are selected

towards the same phenotypic optimum. Gene flow then maintains genetic variance within each

population. For this process to account for heritable variation, there must be some mechanism

that causes divergence. The possibility that fluctuating selection could lead to the initial

differentiation of the populations is explored.

1. Introduction

There are many questions as to the genetic basis of

divergence and speciation that still remain unsolved.

How readily can populations adapt to local conditions

despite gene flow? Can reproductive isolation evolve

within an interconnected network of populations?

Can gene flow between divergent subpopulations

maintain genetic variation? Though these questions

have received much attention (for example, Felsen-

stein, 1976; Endler, 1977; Barton & Turelli, 1989),

almost all theoretical discussion has been based on

models of single genes (exceptions include Lande,

1976, 1980; Slatkin, 1978).

A key difficulty in extending the theory to quan-

titative traits based on many genes is that, even

assuming additive inheritance, the outcome depends

in a non-trivial way on the genetic basis of such traits.

This has become clear from the debate over the

amount of genetic variation that theoretical models

can explain. Genetic variation is essential for the

process of adaptation, and high levels of quantitative

genetic variation are found in natural populations

(Mousseau & Roff, 1987; Houle, 1991). However, the

reduced fitness of extreme phenotypes and the long

periods of evolutionary stasis observed in most species

provide strong support for the existence of stabilizing

selection, which on its own will act to eliminate

genetic variability within populations (Lande, 1976;

Maynard Smith, 1983; Turelli, 1984; Barton & Turelli,

1989).

One possible mechanism which might explain the

abundant quantitative genetic variation found in

nature is recurrent mutation (Kimura, 1965). Various

population genetic models have been developed that

describe this ‘mutation}selection balance’, such as the

‘Gaussian’ (Lande, 1976) and the ‘House of Cards’

(Turelli, 1984) continuum-of-alleles models, and vari-

ous discrete allele models (Wright, 1935a, b ; Latter,

1960; Bulmer, 1972; Barton, 1986). In the Gaussian

model mutations at each locus have a continuous

range of effects drawn from a normal distribution,

and if the effects are much smaller than the standing

variance at a single locus the distributions of allelic

effects will be approximately Gaussian. In contrast,

the House of Cards model assumes that new mutations

have effects much larger than the standing genetic

variance so that most of the variance is contributed by

rare alleles.

Discrete allele models were introduced by Wright

(1935a, b). Wright showed that for an additive

quantitative genetic trait under stabilizing selection in

a diploid organism, where each of the loci segregate

for two alleles of equal and additive effect, a whole

series of stable equilibria exist (Wright, 1935a, b) in

the absence of mutation. For example, if selection

favours a state in which 50 loci are close to fixation for

a ‘ ’ allele, and 50 are close to fixation for a ‘® ’

allele, any of the 10#* optimal gene combinations will

be a local equilibrium. With mutation at a low rate

this multitude of equilibria remain stable and genetic

variation is maintained at each locus (Latter, 1960;

Bulmer, 1972). Moreover, there are also stable

equilibria where the mean of the population differs

from the optimum (Barton, 1986). Thus, in the

example above, for particular levels of mutation and

https://doi.org/10.1017/S0016672397002644 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672397002644


K. A. Lythgoe 50

selection some populations may have stable equilibria

such that only 47 of the loci are close to fixation for

the ‘ ’ allele, and the mean is slightly below the

optimum. These can be considered different ‘classes ’

of equilibria or genotype. The stable equilibria can be

thought of as peaks on Wright’s ‘adaptive landscape’

(Wright, 1932), where mean fitness (height of the

peak) is measured against the frequency of the ‘ ’

allele at each of the 100 loci ; this adaptive landscape

will have 101 dimensions. If loci have equal effects, all

peaks in which the mean phenotype of the population

is equal to the optimum phenotype will have the same

height. We refer to these as optimal peaks.

In Barton’s 1986 model, the genetic variance is

given by the House of Cards approximation when the

mean is near the optimum, but it increases towards a

value of the same order as that given by the ‘Gaussian’

approximation when the mean deviates from the

optimum. Although these models clearly show that

mutation can counter the unifying effects of stabilizing

selection, the mutation rates that would be required to

explain all the genetic variation observed in natural

populations are unrealistically high, especially if there

is pleiotropy (Turelli, 1984). Other factors are thus

also required to explain these high levels of quan-

titative variation, of which fluctuating selection is one

possibility. Compared with constant selection, fluctu-

ating selection can increase the genetic variance within

a single population by several orders of magnitude

(Kondrashov & Yampolsky, 1996) due to allele

frequencies continually moving towards new equi-

libria. At any one time, most of the variation will be

due to one, or only a few, of the loci, which are in the

process of shifting. Spatial polymorphism may also

help to explain the high levels of quantitative genetic

variation found in natural populations (Goldstein &

Holsinger, 1992; Phillips, 1996). However, migration

must not be too high, since otherwise the whole

population will become uniform. Only below some

critical level of migration will local adaptation be

possible (Karlin & McGregor, 1972; Slatkin, 1973;

Nagylaki, 1975; Endler, 1977; Phillips, 1996).

Although spatial polymorphism may be maintained

in the presence of migration, it is not clear how

populations might come to have different genetic

structures. The various populations that make up a

species may diverge, either because selection varies

from place to place, or because even under uniform

selection different gene combinations evolve due to

the effects of random genetic drift. However, the

extent to which such divergence can occur in the

presence of gene flow is unclear. Such questions are

fundamental if we are to understand the processes of

reproductive isolation and speciation (Coyne, 1992).

This paper analyses a simple model of polygenic

variation, extended from that of Barton (1986), in

which stabilizing selection acts on an additive quan-

titative trait in each of two demes in the presence of

mutation and gene flow. This model will be used to

investigate the effects of gene flow on the genetic

structure of the two populations under stabilizing

selection to the same or different optima, and address

questions such as whether population differences, and

possibly eventual reproductive isolation, can arise in

the presence of gene flow. This simple optimum model

is unrealistic in that it assumes equal allelic effects on

a single character under stabilizing selection. However,

it provides a useful starting point for a more general

understanding of spatial variation in quantitative

traits.

I will first describe Barton’s (1986) model of

mutation}selection and then extend this to include the

effects of migration between two demes. The key

assumption throughout is one of linkage equilibria.

This is reasonable if selection and migration are much

slower than recombination. In the first part of the

analysis we assume that the mean phenotypes of both

demes are close to their respective optima. This is

similar to the model of migration}selection balance

developed by Phillips (1996), in which migrants move

from a fixed into a polymorphic population. The

model presented here differs from Phillips’s since

mutation is included in the model, and the populations

exchange migrants as opposed to one of the popu-

lations being held fixed. The more general case, which

is not investigated by Phillips, in which one of the

demes occupies a suboptimal peak on the adaptive

landscape, is then considered. Supporting Phillips’s

results, we find that if migration rates are low then

genetic differentiation can be maintained between the

two demes, and genetic variation within these demes

can be two or three orders of magnitude higher than

if there were no genetic differentiation. Once migration

exceeds a critical level, migration swamps selection,

and the two demes become genetically homogeneous

and migration can no longer maintain genetic vari-

ation. Finally I consider how populations might

diverge in the first place in the presence of gene flow,

and consequently whether under the assumptions of

this model differentiation and eventually reproductive

isolation could evolve in the presence of gene flow.

2. The model

The analysis assumes weak selection, such that change

is approximately continuous in time, and the popu-

lation is in linkage equilibrium; the latter is a

reasonable assumption if recombination is much faster

than selection and migration. The notation is sum-

marized in Table 1.

(i) Mutation}selection balance

I begin by briefly describing Barton’s notation.

Consider a single character z«, which is determined by

the sum of the effects of n loci. Each gene can be in one

of two states : 0 (the ‘® ’ allele) or 1 (the ‘ ’ allele).

In this, the diploid case, the state of the gene at locus
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Table 1. Summary of the notation

z« Phenotype of an individual
s Strength of stabilizing selection
α The effect of each allele (assumed equal across

all loci)
δ
X

Deviation of the mean from the optimum in
deme X

µ Mutation rate
γ Scaled mutation, γ¯µ}sα#

λW Migration rate
λ Scaled migration, λ¯ 2λW }sα#

t Time measured in generations
T Scaled time, T¯ tsα#}2
p
Xi

Frequency of the ‘ ’ allele at locus i in deme
X (q

Xi
¯1®p

Xi
)

z
!

Optimum phenotype
z
X
; z

Tot
Mean phenotype in deme X; mean phenotype
of total population

V
X
; V

Tot
Genetic variance of deme X; genetic variance
of total population

n Number of loci
c Number of clashing loci
m

X
Number of loci close to loss for the ‘ ’ allele
in deme X

i from the maternal chromosome is denoted l
i
, and

from the paternal chromosome l$
i
. Thus, if we ignore

any epistatic effects, z« is defined as:

z«¯α3
i

(l
i
l$

i
®1), (1)

where α is the effect of each allele, assumed equal

across loci. The character is assumed to be completely

heritable, and the fitness of an individual with

phenotype z« is assumed to follow a Gaussian curve

centred on some optimum, z
!
, with variance 1}s,

where s is the strength of stabilizing selection, which is

assumed to be weak. Environmental variance is

neglected, but this could be included by rescaling the

parameters.

By rescaling time relative to sα#}2 such that T¯
tsα#}2, where t denotes time measured in generations,

the equation for the effects of selection is :

dp
i
}dT¯ p

i
q
i
[(p

i
®q

i
)®2δ] (2a)

(Equation 4 in Barton, 1986). Here, p
i

and q
i
are the

frequencies of the two alleles ‘ ’ and ‘® ’ at the ith

locus, and δ is the deviation of the mean phenotype, z,

from the optimum, z
!
, relative to the effect of a single

gene, α :

δ¯ (z®z
!
)}α¯ 23

i

(p
i
®1}2)®z

!
}α. (2b)

This rescaling greatly simplifies the analysis, but is

possible only if selection is weak. The first term in (2a)

represents selection acting against the genetic variance,

and the second term represents selection on the mean

towards the optimum phenotype.

If we now introduce recurrent mutation at an equal

rate µ in each direction, (2) becomes:

dp
i
}dT¯ p

i
q
i
[(p

i
®q

i
)®2δ]®2γ (p

i
®q

i
). (3)

Here γ is a measure of the rate of mutation, relative to

the selection pressure on a single locus : γ¯µ}sα#.

(ii) Mutation}selection balance with migration

between two demes

Suppose now that we have two demes, A and B, which

have both independently reached equilibrium to the

same or differing optima, as described by setting (3) to

zero. Now assume that migration occurs at an equal

rate, λW , between these two demes. Migration will

restore linkage disequilibrium every generation, and

moreover the number of linkage disequilibrium

coefficients will increase with the square of the number

of loci involved in the system. Consequently migration

will have to be very low if the combined effects of

selection and migration are to be much less than the

effects of recombination, which is necessary for the

assumption of linkage equilibrium. In the following

analysis we will find that differences between the two

populations can only be maintained at these very low

migration rates, making this assumption of linkage

equilibrium reasonable. Now (3) can be extended to

each of the two demes. The subscript A denotes results

for deme A, and similarly for deme B:

dp
Ai

}dT¯ p
Ai

q
Ai

[(p
Ai

®q
Ai

)®2δ
A
]

®2γ (p
Ai

®q
Ai

)λ (p
Bi

®p
Ai

), (4a)

dp
Bi

}dT¯ p
Bi

q
Bi

[(p
Bi

®q
Bi

)®2δ
B
]

®2γ (p
Bi

®q
Bi

)λ (p
Ai

®p
Bi

), (4b)

where λ is a measure of the rate of migration, relative

to the selection pressure on a single locus such that

λW }sα#. At equilibrium we have a pair of simultaneous

equations, each of third order as in the one-deme case,

resulting in a ninth-order polynomial giving nine

solutions for p
Ai

and p
Bi

. That is, at equilibrium, the

‘ ’ allele at each of the loci controlling the

quantitative trait could be at one of nine possible

frequencies.

The means and the variances of the quantitative

trait z« are :

z
x
¯ 2α3

i

(p
xi
®1}2), (5a)

V
x
¯ 2α#3

i

(p
xi
q
xi
), (6a)

where X denotes the deme A or B. For the population

as a whole the mean, z
Tot

, and the variance, V
Tot

, are

given by:

z
Tot

¯
z
A
z

B

2
, (5b)

V
Tot

¯
V

A
V

B

2
"

%
(z

A
®z

B
)#. (6b)

Thus the genetic variance for the population as a

whole depends on both the variance within the two

demes, and the difference between the means in the

two populations.
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3. Results

(i) No de�iation from the optimum phenotype

I first consider the case where the mean phenotype

matches the optimum in each deme, described by (4a)

and (4b) with δ
A
, δ

B
¯ 0. Note that the optima may or

may not be the same across the demes. Although this

is a very special case, it lends itself to analysis and will

give a good guide to the full problem. The situation

may arise if the mean can evolve to match the

optimum in each deme, although in reality this is very

unlikely to occur. In the absence of migration, two

isolated demes could evolve to match the optimum in

each of their habitats, especially in the absence of

epistasis and pleiotropy. However, once migration

between the two demes is allowed the populations will

be pulled away from their optima due to the migration

pressure, and consequently the mean phenotype will

no longer match the optimum in each deme. For the

mean to match the optimum in the respective demes,

in the presence of migration, a situation must be

imagined in which the migration itself pulls the demes

from sub-optimal mean phenotypes to optimal ones.

Not all the nine equilibria will be feasible and stable

(see Appendix for a description of the multilocus

linear stability analysis). For this system, at most five

of the equilibria are stable (Table 2). The first of the

solutions (p
A
¯ p

B
¯1}2) is stable only when mutation

is so high that all effects of selection are effectively

swamped, resulting in the ‘ ’ and ‘® ’ alleles reaching

intermediate frequencies in both the demes. Conse-

Table 2. The solutions to (4a, b), and the criteria for their existence and stability, in the case where δ
A
¯δ

B
¯ 0

p
A
q
A

p
A

p
B

Conditions
for existence
of solution

Conditions
for stability
of solution

p
A
¯ p

B
1}4 1}2 1}2 Always γ"1}8

p
A
¯ p

B
2γ 1®o1®8γ

2

1®o1®8γ

2

γ!1}8 γ!1}8

p
A
¯ p

B
2γ 1o1®8γ

2

1o1®8γ

2

γ!1}8 γ!1}8

p
A
¯ q

B
2γλ 1®o1®8γ®4λ

2

1o1®8γ®4λ

2

γ!1}8®λ}2 γ!1}8®3λ}4

p
A
¯ q

B
2γλ 1o1®8γ®4λ

2

1®o1®8γ®4λ

2

γ!1}8®λ}2 γ!1}8®3λ}4

(xy)}8 2o2(xy)

4

2®o2(x®y)

4

γ!1}8®3λ}4 Never

(xy)}8 2®o2(x®y)

4

2o2(xy)

4

γ!1}8®3λ}4 Never

(xy)}8 2®o2(xy)

4

2o2(x®y)

4

γ!1}8®3λ}4 Never

(xy)}8 2o2(x®y)

4

2®o2(xy)

4

γ!1}8®3λ}4 Never

Where x¯18γ2λ, and y¯o1®16γ64γ#®4λ32γλ®12λ#.

1

0
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Deme A

Deme B

Fig. 1. A sketch showing allele frequencies in a 12-locus
system. The dashes show the frequency of the ‘ ’ allele
in the two demes at each of the loci numbered 1 to 12.
Loci 1, 2 and 3 are close to loss for the ‘ ’ allele in both
the demes, and loci 9, 10 and 11 are close to fixation for
the ‘ ’ allele in both the demes. These loci are ‘non
clashing’. Loci 4, 5, 6 and loci 7, 8, 9 are ‘clashing’ since,
for each of these loci, in one of the demes the ‘ ’ allele
is close to fixation, whereas in the other it is close to loss.

quently, for the purpose of this analysis, it will be

assumed that this solution is unstable. Of the

remaining eight solutions, four can be stable : the

solutions where p
A
¯ p

B
¯ (1³o1®8γ)}2 are feas-

ible and are stable whenever γ!1}8. These are called

‘non-clashing’ solutions since the ‘ ’ allele is either

close to loss in both the demes, or close to fixation in

both the demes. The solutions where p
A
¯ q

B
¯
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Fig. 2. Solutions to (4a, b), where δ
A
¯ δ

B
¯ 0, s¯1 and

α¯ 0±1. The continuous lines represent the stable
solutions, and the dashed lines the unstable solutions. The
solutions form a series of pitch-fork bifurcations. (a) For
γ held fixed at 0±1 (corresponding to a mutation rate of
0±001), the frequency of the ‘ ’ allele at non clashing loci
remains constant as λ increases, but at clashing loci the
frequency approaches 0±5. Once λ reaches 0±033
(migration rate¯ 0±000167) the solution at clashing loci
becomes unstable. The maximum value of λ for which a
solution exists is 0±050 (migration rate¯ 0±000250). The
non-clashing solutions always exist and are always stable.
(b) For λ held fixed at 0±05, the frequency of the ‘ ’
allele at clashing and non-clashing loci approaches 0±5 as
γ increases. Once γ-reaches 0±0875 (mutation rate¯
0±000875) the solution at clashing loci becomes unstable,
and the maximum value of γ for which a clashing
solution exists is 0±100 (mutation rate¯ 0±001). The non-
clashing solutions both become unstable and cease to
exist when γ¯ 0±125 (mutation rate¯ 0±00125).

(1³o1®8γ®4λ)}2 are feasible and stable whenever

γ!1}8®3λ}4. These are called ‘clashing’ solutions

since the ‘ ’ allele is close to loss in one of the demes

and close to fixation in the other (Fig. 1).

The multilocus stability analysis shows a remark-

ably simple result : the stability of the system does not

depend on the state of all the loci. If there are any

clashing loci the system will be stable if ®18 γ6 λ

is negative, and if there are no clashing loci the

solution will be stable if ®18 γ is negative.

Fig. 2 shows how the gene frequencies change for

varying levels of migration and selection. If the

mutation rate is kept constant (γ¯ 0±1), then, as

migration is increased (Fig. 2a), the frequency of the

‘ ’ allele at non-clashing loci remains constant,

whereas at clashing loci the allele frequencies gradually

become more intermediate, since at these clashing loci

migration will tend to reduce the discrepancy in allele

frequencies between the two demes. When λ exceeds

0±0333, the solutions at clashing loci become unstable,

and when λ exceeds 0±05 the solutions at clashing loci

become imaginary. If migration is now held constant

(λ¯ 0±05), the clashing and non-clashing allele fre-

quencies become more and more intermediate as

mutation increases (Fig. 2b). Once γ exceeds 0±0875

the clashing solutions become unstable, and they no

longer exist when γ exceeds 0±100. The non-clashing

solutions both become unstable and imaginary when

γ¯ 0±125. Thus as migration and}or mutation in-

crease, it becomes less likely that we will see divergence

between two populations.

So, if two demes within a population independently

adapt optimally to the selection pressures in their

respective environments, differences can bemaintained

between the two populations if ®18 γ6 λ is

negative, that is if λW ! (sα#}12)®(2µ}3) (the criterion

for stability). Migration must therefore be very low in

relation to selection if migration is not going to

swamp selection and the two demes are to remain

distinct. If, for example, sα#¯ 0±01 and µ¯ 0±0001,

then λW must be less than 0±00077. This value of

migration is very low, amounting to fewer than 8

migrants per 10000 individuals per generation in each

population. This small value implies a very large

barrier to migration, which may be very uncommon in

nature. This criterion for the maintenance of poly-

morphism differs from Phillips’s (1996) critical mi-

gration rate. He does not consider mutation, and since

he deals with unidirectional migration there are only

three possible equilibria. Only one of these equilibria

can be stable, and it is stable wherever it exists. Thus

Phillips’s criterion for the maintenance of poly-

morphism is λW ! (sα#}16). This differs from the

criterion for the existence of clashing loci in the model

presented here (λW ! (sα#}8), for µ¯ 0) by a factor of

2 since here gene flow occurs in both directions.

Consequently, for low mutation rates, the conditions

for the maintenance of polymorphism are less re-

strictive than in Phillips’s model. In effect, when the

mean equals the optimum, the critical migration rate

calculated under unidirectional migration gives a

lower bound to the rate, whereas the assumption here

of balanced migration rates provides an upper bound.

If migration rates are unbalanced between the two

populations, as will be the most likely scenario in

natural populations, the actual critical migration rate

will fall somewhere between the two bounds.

If the deviation of the mean from the optimum in

the two demes is negligible, the genetic variance within

the two demes can be found analytically :

V
A
¯V

B
¯ 2α# (2nγcλ)¯

4

s
(nµcλW ), (7)
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Fig. 3. The genetic variance within demes, for increasing
migration (λ¯ 2λW }sα#), where δ

A
, δ

B
¯ 0, and

consequently V
g
¯ 4}s(µnλW c). Genetic variance increases

with the mutation rate at all the loci, and with the
migration rate at each of the clashing loci.

where n is the total number of loci, and c is the

number of clashing loci. Thus, the genetic variance

within the demes is dependent on the mutation rate at

all the loci, and on the migration rate between

clashing loci. Interestingly (7) is the sum of the two,

although the equations are non-linear. The first term

corresponds to the variation in a system of mutation}
selection balance (Latter, 1960; Bulmer, 1972; Turelli,

1984), and the second term to a system in migration}
selection balance (Phillips, 1996).

Fig. 3 shows how the genetic variance within each

deme increases with increasing migration, mutation

and number of clashing loci. For example, for γ¯
0±01, increasing the number of clashes from 0 to 20

doubles the quantitative genetic variance within the

two demes.

The minimum genetic variance for each deme can

be estimated, given the difference in the optima

between the two demes at equilibrium. The increase in

genetic variance due to linkage disequilibrium caused

by incoming migrants for a quantitative trait can be

1

0
0 1

p(B)

p(
A

)

(a) (b) (c)

Fig. 4. The nine dots show the solutions to (4a, b). The filled circles represent the stable solutions, open circles the
unstable solutions. In all cases γ¯ 0±01, λ¯ 0±05 and δ

B
¯ 0. (a) Solutions where δ

A
¯ 0. The arrows show how the

solutions move on the plane if γ or λ are increased (the non-clashing solutions do not move if λ is increased). (b)
Solutions where δ

A
¯ 0±149. Two of the solutions in this case have almost converged. (c) δ

A
¯ 0±150. Two of the

solutions have formed a conjugate pair with imaginary parts, and are therefore no longer shown on the plane.

expressed as (∆z)#λW (1®λW )}r, where r is recombination

fraction and ∆z¯ z
A
®z

B
(Barton & Gale, 1993). The

minimum number of clashes will be ∆z}2α. At low

migration rates, such as for the value 0±00077

calculated above, the minimum genetic variance, V
g
,

expected in each of the demes will therefore be:

V
g
¯

4nµ

s


2∆zλW

sα


(∆z)#λW

r
, (8)

where the first term represents the increase in the

genetic variance attributable to mutation, the second

term the increase due to clashing loci, and the last

term is the increase in the variance created by linkage

disequilibrium due to incoming migrants. We can see

from (8) that the ratio between the amount of genetic

variance generated from linkage disequilibrium from

incoming migrants and that generated by increased

heterozygosity is sα∆z (if r is taken to be 1}2). We can

express this in terms of dimensionless quantities by

defining L¯ (s∆z#}2) as the difference in fitness

between a native individual at the optimum for its

own deme, and an immigrant at the mean value of the

other deme. Then, the ratio becomes 2L (α}∆z). Thus,

if the typical fitness difference between immigrants

and natives is small (L'1), and if several loci have

diverged (α'∆z), then increased heterozygosity will

generate much more genetic variance than will linkage

disequilibrium. For example, if we take s¯1, α¯ 0±1
and ∆z¯1, then L will equal 1}2 and the ratio of the

amount of genetic variance generated from linkage

disequilibrium to that created by increased hetero-

zygosity will be only 0±1. Heterozygosity will therefore

account for 10 times more genetic variance than will

linkage disequilibrium produced from incoming

migrants. The Bulmer effect, where negative linkage

disequilibrium is produced due to stabilizing selection,

will reduce the genetic variance by s(V
s
)#}r each

generation, where V
s
is the standing genetic variance

(Bulmer, 1985). However, since sV
s
is small and r¯

1}2, the reduced genetic variance resulting from the

Bulmer effect will be small. Thus for the range of
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migration rates expected to maintain differences

between populations, the effects of linkage dis-

equilibrium on the genetic variance are small.

Note also that (8) represents the increased genetic

variance within the two demes due to selection for

different optima in the twodemes. The genetic variance

will increase further if there is also cryptic genetic

divergence between the two demes, resulting in more

than the minimum number of clashes. In this case the

genetic variance due to both migration and linkage

disequilibrium will increase.

(ii) De�iation from the optimum

So far I have only considered the case where the mean

equals the optimum in each of the demes. In general,

however, the mean will deviate from the optimum.

Migration may, for example, pull the mean away from

the optimum in the two demes if the genetic structure

of the demes differs. In many cases this deviation will

be very small if the demes are at optimal adaptive

peaks, but if one or both of the demes are at sub-

optimal peaks then the discrepancy is likely to be

larger (Barton, 1986). It may be that even in this case

the deviation will be small enough that the preceding

analysis provides a good approximation, but this can

not be assumed. Barton (1986) showed that in the

one-deme case, δ will always be less than 1}2. Although

this deviation is small, it could nevertheless have a

substantial effect on the genetic variance.

For δ
A

and δ
B

not equal to zero, (4a) and (4b) can

no longer be solved analytically, but solutions can be

found numerically, given the number of loci and

clashes and given the optima in the two demes. In the

following analysis, the equations were solved nu-

merically using the secant method, and stability

determined from the eigenvalues of the matrix S

(Appendix).

Suppose that the deviation of the mean from the

optimum in deme B (δ
B
) is zero, but in deme A it

varies. Note again that the optima in the two demes

may or may not be the same; it is the deviation of the

mean from the optimum that is important. Fig. 4

shows the nine possible solutions, and their stability,

for each locus for increasing δ
A
. If δ

A
¯ δ

B
¯ 0,

clashing solutions become unstable when any of the

neighbouring unstable solutions become imaginary.

In all other cases, the four solutions that can be stable

will be stable if they exist. For the subsequent analysis

we have assumed that the other five solutions are

always unstable, which, considering the outcomes of

the numerical iterations of the equations, I think is a

reasonable assumption. Wright (1935b) has shown

that in some circumstances intermediate allele fre-

quencies can be stable, but only if just one of the loci

is at this intermediate state. Moreover, this requires

low mutation rates such that (n1)#γ!1 (Barton,

1986).

0·2

0·15

0·1

0·05

0
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Fig. 5. The areas of the graph show which solutions can
be stable as δ

A
deviates from zero and as migration

increases, where δ
B
¯ 0 and γ¯ 0±01 (corresponding to a

mutation rate of 0±0001, if s¯1 and α¯ 0±1). }®
represents the solution where deme A is close to fixation
for the ‘ ’ allele, and deme B is close to loss for this
allele.

Fig. 5 shows the range of values of migration for

which the four possibly stable solutions exist given a

value of δ
A

(δ
B

is fixed at zero). We can see that, as the

mean phenotype of deme A deviates from the optimum

phenotype, the maximum migration rate at which

differences can be maintained between the populations

decreases.

If we have a system in which both }® (the ‘ ’

allele is close to fixation in deme A, and close to loss

in deme B) and ®} clashes exist, we can define λ
max

as the maximum level of migration, above which the

system can no longer exist because one or other of the

clashing solutions becomes imaginary. This is anal-

ogous to the critical migration rate defined above. Fig.

6a shows how λ
max

varies as the optimum phenotype

of deme A changes, and as the number of loci close to

loss for the ‘ ’ allele in deme A, m
A
, differ, for γ¯

0±01. We see that the migration rate between the two

demes dictates the possible values of m
A
, and hence

the number of peaks on the adaptive landscape for

deme A. If the optimum for deme A is equal to zero,

for example, then the higher the migration rate the

less m
A

can deviate from 50, and consequently fewer

combinations of genes, or classes of genotypes, are

possible in deme A. If λ remains less than 0±1533

(corresponding to an actual migration rate of 0±00077),

divergence between the two demes can be maintained,

but once λ exceeds this the only stable system is one

in which there are no clashes, leaving us with a single

monomorphic population. Consequently the variance

within the two demes would also decrease.

Fig. 6b shows the maximum genetic variances

within deme A, obtained by setting migration to λ
max

.

Comparing the numerical calculation of genetic

variance, and the value that an analytical approxi-

mation would give (that is, where the mean equals the

optimum in both the demes, and hence where δ
A

and
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0·1

0
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m(A) = 49

m(A) = 48

m(A) = 51

m(A) = 52

Fig 6. (a) The maximum migration, λ, at which the
system can exist and be stable as the optimum phenotype
of deme A varies, for γ¯ 0±01 and optimum of deme B
fixed at 0. m

B
is fixed at 50, and consequently δ

B
assumed

to be negligible. The five lines represent varying values of
m

A
. For m

A
¯ 52, 50 and 48 the number of clashes is 20,

for m
A
¯ 49 there are 21 clashes; and for m

A
¯ 51 there

are 19 clashes. (b) The corresponding genetic variances in
deme A, the arrows indicating the genetic variance if δ

A

and δ
B

are assumed to equal zero. The asymmetry arises
because of the varying number of clashes.

δ
B

are assumed to be zero, as shown by the arrows), it

can be seen that in most cases, where migration is at

the critical rate, the analytical approximation would

tend to overestimate the variance. If the mean is close

to the optimum in both the demes, the analytical

approximation is fairly close both for the maximum

level of migration at which the system can be

maintained and for the genetic variance within the

populations.

(iii) Di�ergence of populations

Finally, I consider how clashes can be created

between populations. They may simply result from

random genetic drift (Wright, 1932; Barton, 1989;

Barton & Rouhani, 1991 ; Goldstein and Holsinger,

1992), or alternatively could originate deterministi-

cally if selection is fluctuating in time or space.

Suppose we begin with a single monomorphic popu-

lation where the optimum phenotype is zero and

where 50 of the 100 loci are close to fixation for the

‘ ’ allele. Next, suppose there is a change in optimum

for one deme within this population (call this deme

A), such that the optimum is now less than ®0±483,

where λ¯ 0±1. By calculating δ
A

from (2b), we find δ
A

will exceed 0±351 for this system, and thus from Fig. 5

we see that the solutions where both demes are close

to fixation for the ‘ ’ allele are no longer feasible.

However, if m
A

changes to 51 (that is, if one of the loci

close to fixation for the ‘ ’ allele in deme A changes

such that it becomes close to loss for the ‘ ’ allele),

we see from Fig. 6a that the equilibrium now exists

and is stable. If the optimum phenotype changes

further in this direction more switches become

necessary (in practice, random genetic drift will play a

role in determining which of the loci switch). If the

optimum fluctuates back to zero or beyond, loci in

deme A would switch from close to loss, to close to

fixation, for the ‘ ’ allele. However, the loci which

switch in this process will not necessarily be the ones

that switched originally (although since the variance

at clashing loci is greater this will tend to be the case).

Hence, in the space of one environmental fluctuation

we can envisage four clashing loci being created, and

consequently the variance within the two demes

increases from 0±040 to 0±048. If 20 clashes were

created in such a process the genetic variance within

the two demes would equal 0±080.

If the unscaled versions of (4a, b) are iterated for 20

loci, adding a Binomial expression for genetic drift

with mean p and variance pq}(2n) during each iteration

of the calculation of the gene frequencies, then each of

the loci settles down to either clashing or non-clashing

solutions as expected. Moreover, the more clashing

loci there are in the system, the greater the genetic

variance when the system settles down close to

equilibrium. However, if the optimum changes in one

of the demes such that one of the loci must switch, the

tendency of the system will be to reduce, and not

increase, the number of clashes. This is because the

genetic variance at clashing loci is greater than at non-

clashing loci and so these loci respond quicker to

changes in selectionpressures. Thus, if there is constant

migration during environmental fluctuations, clashes

will continually be created or lost because the two

demes are adapting to different optima, but there will

not be a tendency for the number of clashes to

escalate. Consequently, the highest genetic variance

within the two demes is observed when the optima of

the demes are most different. An accumulation of

clashing loci could occur if fluctuations are accom-

panied by isolation (no migration) or by a large

amount of genetic drift. The numerical iterations of

the equations were checked by comparing the output

with the expected analytical results and the amount of

variance expected due to random drift.
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Fig. 7. The genetic variance within both the demes when
(4a, b) are iterated for 8000 generations with 20 loci in
the presence of random genetic drift (number of
individuals in each population, N, is 5000) where s¯1,
α¯ 0±3 and γ¯ 0±01. The optimum of deme B remains
constant at 0 (continuous line), while the optimum of
deme A fluctuates between 0 and 3 every 1000
generations (dotted line). The numbers represent the
number of clashing loci. (a) The two demes are isolated.
The average genetic variance in deme A is 0±132, and for
deme B is 0±072. (b) There is gene flow between the two
demes such that λ¯ 0±05. The average genetic variance in
deme A is 0±127, and for deme B is 0±093.

Fig. 7 shows how the genetic variance within the

two demes varies in time, as the optimum in one of the

demes fluctuates. In both cases the random component

added to the iterations describes the expected drift if

the two demes each contain 5000 individuals, and the

mutation rate, µ, equals 0±0009. In the first simulation

(Fig. 7a) the two populations are isolated, whereas in

the second simulation (Fig. 7b) the rate of migration,

λW , is 0±00225. In the case where there is no migration

the genetic variance within the two demes remains

close to that predicted by the analytical results (V
A
¯

V
B
¯ 0±0720). The peaks in the genetic variance in

deme A are a consequence of the switching of five of

the loci each time the optimum phenotype of deme A

changes from 0 to 3, or vice versa, since these loci

temporarily find themselves at intermediate gene

frequencies (Kondrashov & Yampolsky, 1996). At

these switches V
B

remains close to 0±0720, but V
A

reaches up to 0±60. There is a high genetic variance in

deme A for the first 1000 generations (V
A

approxi-

mately 0±15) because one of the loci is at an

intermediate gene frequency.

For the case where there is migration, we see that

when the optimum in the two demes is the same (0 in

both cases) the genetic variance is close to 0±0720,

which is as expected since there are no clashing loci.

However, when the optimum in deme A changes to

3, a few of the loci in deme A switch causing some

of the loci to clash. The genetic variance within the

demes consequently increases due to two processes.

Firstly, as for the case where there is no migration, the

switching of some of the loci temporarily increases the

genetic variance within the deme where the switching

is occurring, resulting in the peaks of genetic variance

observed (V
A

reaches up to 0±45). Secondly, some of

the loci are clashing, and moreover the mean may

deviate from the optimum in each of the demes,

resulting in an increased genetic variance within the

two demes at equilibrium (where there are five clashes

V
A

and V
B

are both close to 0±11). Typically five

clashes are created when the optimum in deme A

changes from 0 to 3, which is close to what we

would expect since the expected number of clashes

when the mean equals the optimum in the two demes

is ∆z}2 α, which is five in this case. However, at

generation 4000, six clashes were created. Conse-

quently the differences in the means of the two demes

are larger than when there are only five clashes, and

each clash has a greater effect on the variance in this

deme (V
A

and V
B

are approximately 0±18 and 0±12

respectively).

Taking the average genetic variance in each of the

two demes for the two cases shown (the first 2000

generations are not included in this calculation since

the system is still settling down) the addition of

migration increases the mean genetic variance in deme

B from 0±072 to 0±093. However, within deme A

migration has the opposite effect and the mean genetic

variance decreases from 0±132 to 0±127 since in the

presence of migration the switching of loci from

clashing to non-clashing happens faster than in its

absence. If fluctuations were less frequent, the effects

of switching on the variance would become less, and

the mean genetic variance in deme A would then be

greater in the presence rather than in the absence of

migration.

4. Discussion

In this model of two demes, each in a mutation}
selection balance, divergence between the populations

can be maintained if migration is very low. For the

assumptions made here on mutation and selection,

migration must typically be less than 8 individuals

migrating per 10000 individuals in each population

per generation (from Table 2). When migration is

even lower than this many possible classes of stable

equilibria exist for each of the demes, but as migration

increases the number of possible equilibria decreases.

Once migration exceeds the threshold, divergence

between the populations can no longer be maintained,

leaving a single undifferentiated population. These

migration rates are tiny, requiring a very strong

barrier to gene flow which may be relevant to few

natural populations. Moreover, the model is un-

realistic for a number of reasons: pleiotropic effects
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have been ignored, and selection is assumed to be very

weak. Where selection is strong, the effects of linkage

disequilibrium can no longer be ignored, and the

critical migration rate is likely to increase (Phillips,

1996).

If the optima in the two demes are the same, the

process modelled here is a special case of the ‘shifting

balance’ between drift, intrapopulation selection and

interpopulation selection (Wright, 1932). The process

is divided into three phases. In phase 1 genetic drift

causes sub populations to cross adaptive valleys, and

consequently occupy different regions of the adaptive

landscape to one another. Phase 2 involves local

selection taking populations to new optima, and

during phase 3 adaptive peaks compete with each

other so that fitter peaks spread through the whole

species. This third phase is controversial for several

reasons. For example, it is argued that analyses which

model this last process (Crow et al., 1990; Phillips,

1993) are in fact only demonstrating how migration

swamps selection. This process is not adaptive because

populations could move towards suboptimal peaks

(Barton, 1992) . Here, however, we can see that if we

have two subpopulations, one occupying an optimal

peak on the adaptive landscape (deme B) and the

other a suboptimal peak (deme A), then as migration

increases symmetrically between the two populations

the possible number of classes of equilibria for deme

A decreases until eventually the only stable class is

where deme A occupies one of the possible optimal

adaptive peaks. If migration increases further the only

stable equilibrium will be one in which the two

populations occupy the same adaptive peak. Thus, as

migration increases, it is the fitter peaks that spread

through the whole species under the assumptions of

this model. The consideration of only two demes may

not be what Wright had in mind when he envisioned

the shifting balance (Gavrilets, 1996), although it does

provide a useful starting point for the analysis. If a fit

deme were to be surrounded by unfit demes in a island

type model, the fit deme would get swamped by the

unfit migrants if migration is too high. At lower levels

of migration the fit peak could still sweep through the

population, although the critical migration rate will

be higher (Gavrilets, 1996) .

We find also that divergence between demes within

a population can greatly increase the quantitative

genetic variance within these demes. Suppose, for

example, that the strength of stabilizing selection, s, is

1, that the effect of each locus, α, is 0±1 and that

migration between the two demes exceeds 0±005. If the

two demes are undifferentiated such that there are no

clashes, then in the absence of mutation there will be

no genetic variance. If there are 20 clashes between the

two demes, however, the genetic variance within each

of these demes will increase to over 0±04 even if both

populations occupy the optimal adaptive peaks and

are subject to the same selection pressures. These

clashes could be built up if the two populations are

isolated, and then subject to differing selection regimes.

Alternatively, if the selection pressures of the two

demes are divergent, clashes could be built up even in

the presence of gene flow, leading to possible

reproductive isolation. For example, if the mean

equals the optimum in the two demes, and for s and

α as above, then if the difference in the means of the

two populations is 2, there will be at least 10 clashing

loci. This corresponds to the estimated minimum

number of genes involved in producing large dif-

ferences in quantitative traits between natural popu-

lations (Castle, 1921 ; Wright, 1952; Lande, 1981) .

This estimate assumes that none of the loci act in

opposition. That is, in the context of the model

presented here, clashes are due to differing selection

pressures and not cryptic genetic divergence. More-

over, for this number of clashes, the genetic variance

attributable to migration is 5 times greater than that

due to linkage disequilibrium (8), and as such the

omission of linkage disequilibrium from the model

should not greatly bias the results.

If the selection pressures are not divergent, but

fluctuating, an escalating build-up of clashes is unlikely

unless accompanied by peripheral isolation or high

levels of genetic drift. Fluctuating selection does,

however, increase the genetic variance within the two

demes, since during the periods in which clashes occur

the variance is increased. Moreover, when loci switch

from near fixation for the ‘ ’ allele to near loss, or

vice versa, the genetic variance increases dramatically

during the switch. This is a similar observation to that

found in single populations, where fluctuating selec-

tion can increase the genetic variance within a single

population by several orders of magnitude, provided

the fluctuations are in the right range of frequencies

(Kondrashov & Yampolsky, 1996). Kondrashov &

Yampolsky attribute the increase in variance to two

factors. First, the population will often find itself at

suboptimal equilibria leading to a higher genetic

variance (Barton, 1986). The second, and far greater,

effect comes when the population switches to a new

equilibrium due to the changing optimum, since the

actual process of substitution at a locus then greatly

increases the variance. So, fluctuating selection in a

system of two demes increases the genetic variance

within each of the demes due to the intermediate gene

frequencies of switching loci, and due to the existence

of clashing loci in the presence of migration. As the

frequency of fluctuation decreases, the latter will

contribute more to the genetic variance than will the

former.

This model shows that polymorphism can be

maintained between two populations if levels of

migration are sufficiently low, and that gene flow can

then increase the genetic variance within the popu-

lations by several orders of magnitude. However,

escalating divergence of the populations is unlikely in

the presence of gene flow unless they experience

persistently different selection pressures.
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Appendix

Table A1. Eigen�alues

Condition for the
existence of the
eigenvalues Eigenvalues

No. of repeats of
the eigenvalues

Always ®18γ6λ
®18γ4λ

(c®1) times

When n®c¯ 0 ®1–8(n®1)γ®4(n®1)λ
®1–8(n®1)γ®4((n®1)®2)λ

Once

When n®c&1 ®18γ
®18γ®2λ

(n®c®1) times

When c¯ 0 ®1–8(n®1)γ
®1–8(n®1)γ®2®λ

Once

Always 1}2[®2®8(n®2)γ®(4c®6)λ
³o[(28(n®2)γ(4c®6)λ)#®
4(18(n®2)γ®64(n®1)γ#(4c®6)λ®
16(2n®2®c)γλ)]]

Once

1}2[®2–8(n®2)γ®(4c®2)λ
³o[(28(n®2)γ(4c®2)λ)#®
4(18(n®2)γ®64(n®1)γ#(4c®2)λ®
16(2n®1®c)γλ8(c®1)λ#)]]

n, number of loci ; c, number of clashes.

In the model used here, a particular solution will be

stable if the eigenvalues of the matrix :

s¯ 0(¦pd
Ai

}¦p
Aj

)

(pd
Bi

}¦p
Aj

)

(¦pd
Ai

}¦p
Bj

)

(¦pd
Bi

}¦p
Bj

)1, are negative, where

¦pd
Ai

¦p
Ai

¯ 2p
Ai

q
Ai

®4γ®λ®1®2δ
A
(q

Ai
®p

Ai
) if i¯ j

¦pd
Bi

¦p
Bi

¯ 2p
Bi

q
Bi

®4γ®λ®1®2δ
B
(q

Bi
®p

Bi
) if i¯ j

¦pd
Ai

¦p
Aj

¯®4p
Ai

q
Ai

if i1 j

¦pd
Bi

¦p
Bj

¯®4p
Bi

q
Bi

if i1 j

¦pd
Ai

¦p
Bi

¯
¦pd

Bi

¦p
Ai

¯λ if i¯ j

¦pd
Ai

¦p
Bj

¯
¦pd

Bi

¦p
Aj

¯ 0. if i1 j

In the case where δ is assumed to be equal to zero, we

have explicit expressions for the values pq in terms of

λ and γ, and as a result the matrix, S, and its

eigenvalues can be found analytically. For example, if

we have three loci, where one of the loci is clashing, we

have:

S ¯

E

F

®8γ®4λ

®8γ

®1®λ

λ

0

0

®8γ®4λ

®1®λ

®8γ

0

λ

0

λ®1

®8γ

®8γ

0

0

λ

0

0

λ

®1®λ

®8γ

®8γ®4λ

0

λ

0

®8γ

®1®λ

®8γ®4λ

λ

0

0

®8λ

®8λ

λ®1

G

H

.

If delta is equal to zero and the number of loci is

greater than two, then eigenvalues are as in Table A1.

Thus, when the deviation of the mean phenotype from

the optimum phenotype is zero and when there are

two or more clashing loci, the eigenvalue

®18γ6λ always exists, independent of the num-

ber of loci. Moreover, by simple algebraic manipu-

lation we find that if this eigenvalue is negative, then

all the other eigenvalues are also negative. Hence, if

®18γ6λ is negative, the system is stable. If there

are no clashes, the system will be stable if ®18γ is

negative.

For the case where delta is not necessarily equal to

zero, the eigenvalues of the matrix need to be found

numerically (e.g. using ‘Mathematica’ : Wolfram,

1991).
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