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FILTER MONADS, CONTINUOUS LATTICES AND 
CLOSURE SYSTEMS 

ALAN DAY 

1. Introduction. The notion of a monad (triple) has become increasingly 
important as an extension of the classical universal algebraic approach to 
"algebraic" categories. Indeed the categories of algebras arising from a monad 
seem to be the most natural generalization of BirkhofFs equational classes. 
Moreover in [2], Barr's concept of a relational model of a monad also coincides 
nicely with both the concepts of partial algebras (when suitably restricted) 
and (Moore) closure systems. 

In this paper, we wish to examine two particular monads determined by 
filters. The first is the filter monad F = (F, 77, M) over Sets where FX is the set 
of all (not necessarily proper) filters on X. The second is the open filter monad 
<I> = ($, 7], /x) over Top0, the category of T0-spaces and continuous functions, 
where $X is the filter space of the lattice of open sets in X as described in 
Banaschewski [1]. We determine the algebras of both these monads and find 
these two categories to be naturally isomorphic, in fact both of them are in 
essence the category of continuous lattices as defined in Scott [5], together with 
directed ( = non-empty directed) join ( = sup) and arbitrary meet ( = inf) 
preserving functions as morphisms. Also, following [2], we find that a naturally 
defined reflective subcategory of the category of all relational F-algebras is 
naturally isomorphic to Clos, the category of all closure systems and their 
continuous (inverse image of a closed subset is closed) maps. 

2. Preliminaries. For the basic notions of category theory and in particu
lar the definitions and essential facts on monads, see MacLane [4]. Following 
Barr [2], a relational T-algebra, for a monad T = (T, 77, /x) over Sets, is a 
pair (X, r) where X is a set and r : TX —r X is a relation from TX to X 
satisfying lx Q r o X and r o Tr Q r o X. A morphism / : (X, r) —-> (F, s) 
is a function / : X —» Y with for Ç 5 0 Tf. We will identify a relation 
r : TX —, X with its graph r Q TX X X to ease notational complexity. 
Rel (T) is the category of relational T-algebras and their morphisms. 

A closure operator on a set X is a map T : PX —> FY that is extensive 
(M C TM), monotone (M Ç N implies Y M C YN) and idempotent 
(T(TM) = YM). A closure system on X is a system of subsets C C F(X) 
closed under arbitrary intersections. It is well-known that there exists for 
any set X a bijective correspondence between the closure operators and the 
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closure systems on X. Let Clos be the category of all closure spaces (pairs 
(X, T), T a closure operator on X) and continuous maps / : (X, V) —» (F, A) 
(== x G Y M implies f(x) G A ( / [ i f ] ) ) . Equivalently; the inverse image under 

/ of any A-closed set in F is T-closed in X. The main result in [2] then is: 

THEOREM (Barr [2]). For any monad T = (2", rj, /x) over Sets, there exists a 
faithful functor £T : Rel (T) —» Clos. 

A closure operator T : PX —» PX is called topological (algebraic) if r<£ = <f> 
and r ( i f U N) = Tif U TN (respectively TM = U { TF : finite F C J I f J ) , 
Top (Alg) is the full subcategory of all topological (respectively algebraic) 
closure spaces. 

Finally, for a lattice (L, ^ ), the Scott topology on L (see Scott [5]) is given 
by the directed-open ends of L. A subset U Q L is an end if x G U and x ^ y 
imply y G U. U is directed open if V LD G £7 implies D P\ U ^ </> for every 
(non-empty) directed subset of L. A lattice (L, ^ ) is called continuous if L is 
complete and for all x G L 

x = V { A U : x G U, U open in the Scott topology}. 

3. The filter monad over sets. A filter on a set X is a system / C PX that 
satisfies 

(Fi) xef, 
(F2) M,N G / imply i f Pi N G / , and 
(F3) i f G / and M Q N( Q X) imply N G / . 

If FX is the set of all filters on X then we can define an endofunctor F : Sets —> 
Sets by defining for 0 : X -> F, F<j> : FX -> F F by 

/ ^ { i V G P F : 0[if] £ iV for some M G / }. 

Equivalently: iV G / t y ( / ) if and only if jr^N] G / . If /* is the principal 
(ultra) filter generated by x G X then the map x *->fx (x G -X") defines a 
natural transformation 77 : 1 Se t s —> F. Also we can define fx : F2 —> F by 

j u X ^ ) = U { n ^ : ~ ^ G i H (^~G F2X). 

That is, ikf G M X ^ ) if and only if TX(M) t ^ (M Q X) where TTX : P X -> 
P(FX) by TX(M) = {f G FX : i f G / }. The computations to show that F 
is an endofunctor and that 77 and /x are natural transformation are straight
forward. We will also use the notation 

fM={NQX:MQ N} (where f{x] = fx). 

(3.1) THEOREM. F = (F, 77, M) is a monad over Sets. 

Proof. Let us first note the following obvious properties given M CI X: 
(1) (MX)- 1[7rX(if)] = 7rfX(7rX(i f ) ) , 
(2) i f - (r7X)-1[7rX(M)]. 
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Now for / G FX and M Q X, a n d , F G F2X: 
0) M G (vX orjFX)(f) ^TX(M) G yFX(f) <=»/ ^^x{M) <=> MG /. 

Therefore /zX o 77FX = lFx for any set X. 
(ii) M€(vXoFriX)(f) ^TX(M) G FriX(f) ^M= {^X)-l[irX{M)} ef 

by (2). Therefore ixX o F77X = 1FX for any set X. 
(iii) M G (fiXofxFX)^) ^ T T X ( M ) G IIFX(#~) 

<^WFX(TX(M)) G & 

«=> (MX)~1(7rX(ilf)) G ^ b y (1) 
<=»*•* (M) G F /XX(#~) 

^M e (vXoFnX)(#~). 
Therefore JU o JUF = /z o F/z 

We will also need the following properties. 

(3.2) PROPOSITION. 

(1) ixX : F2X —+ FX preserves directed joins and arbitrary meets ( = inter
sections) 

(2) For any <j> : X —» F, F<£ : FX —> FX preserves directed joins and arbitrary 
meets. 

Proof, (i) Let {3^d : d G F>} be a directed subset of F2X. Since /xX is clearly 
order-preserving and the join of a directed family of filters is its union, we have: 

M G j"X(U {^aid e D}) ^> TTX(M) G U {#~d:d G £>} 

<^ TrX(Jkf) G ^ for some d £ D 

<=» i f G M X ( ^ ) for some d G £ 

^ i k T G U { M ^ ( ^ ) : ^ D | 
= V {ixX^a) :d£D\. 

Since A 0 = P(FX) in F2X, 

JkT G fxX(P(FX)) ^irX(M) G P (F (X) ) 

^M G F ( X ) , 

i.e., MX(A *) = P ( X ) = A <t> in FX. 
For non-empty meets, the calculations are straightforward. 
(ii) Now consider <j> : X —> F and directed family {/d : d G F>} in FX. 

Again F</> is clearly order preserving hence the image of a directed family is 
again directed. For N Çj F then: 

iVG F<j>(KJ{j*:d G £>}) <=> ^ [ i V ] É U { / d : ^ D ) 

<=> 0_1[^V] £ / d for some d G F> 

<̂> iV G F 0 ( / d ) for some d G J5 

<^iVG W{F^( / r f ) : ^ Z ) } 

= V { F 0 ( / r f ) : d G P | . 
For arbitrary meets, the calculations are obvious. 
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We now wish to describe the F-algebras in a more natural way. A TMattice 
is a complete lattice L which for any family (Dt : i £ I) of directed subsets: 

(D) A{V Dt:ie 1} =\/{A(dt:ie I) :de U(Dt:iei)}. 

A morphism <£ : L —> M between TMattices is a directed join and arbitrary 
meet preserving function. D is the category of all TMattices and their mor-
phisms. Let us note that all algebraic lattices (in particular all FX) are in D 
and by (3.2), all F<t> : FX -> FY and all fiX : F2X -> FX are morphisms in D. 

(3.3) THEOREM. D is precisely monadic over sets by F. 

Proof. For TMattice L, define eL : FL —> L by 

e i ( / ) = V | A l : I f / | . 
We claim that eL is a D-morphism. 

Since eL(fM) = A -M for all M Q L and A FZ,4> = /* we have eL(/\FL4>) = 
eL(f4>) = AL4>- For nonempty family (g* : i £ I) in 7X, each set 
{AM, : Mi G g*} is directed and A (g* : i G 7) = {U (M* : i 6 7) : M G 
I l (g* : i G 7)}. Therefore, 

A(eL(g,) :ie I) = A{ V{A Jlf, : M, G g,} : i G 7} 
= V { A { A M, : i G 7} : M G l i f e , : i G 7)} by (D) 

= V { A U (M, : i G 7) : M G I l (g , : i G 7)} 
= eL(A ( g , : ^ G 7 ) ) . 

For directed subset {gd : d G 7>}, V (gd : d G T>) = U (gd : ^ G T>). Therefore 

V(eL(gd) : d G Z>) = V{ V{A M : M G gd} : d G £} 
= V{ A M : M G ga for some d G D} 

= eL(W (gd:de D)). 

By letting F : Sets —> D be F, lifted to Dt with the natural TMattice struc
ture imposed, we have e : FU —> lD and rj : lSets—• ^ = UF providing the 
back and front adjunctions, where U : D —> Sets is the natural forgetful 
functor. 

To check the monadic part, let 0 be a congruence relation on a TMattice L; 
that is, 0 is an equivalence relation L that is also a subalgebra of L X L 
(i : 0 >-» L X 7, is a 7>-map). Define on L/0 : x/6 ^ ;y/0 if and only if x 0 x A y. 
Now z* 0 x, and i; 0 y imply 

udxdxAyduAv 

hence S is well defined on L/0. Moreover it is clear that ^ is a partial order 
and that the canonical K : L —> L/0 is order preserving. We need that K also 
preserves directed joins and arbitrary meets and that L/0 is a TMattice. 

(i) For M Ç L , (A M)/0 = A {m/6 : m G M} : For M = 0 this is clear 
as x/0 S I/O for all x G L. If M 7e 4>, then A M ^ m for all m e M gives 
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(A M)/6 as a lower bound for this set. Now if u/6 ^ m/6 for all m G M, we 
have (u, u A m) G 6 for all m G M which gives A {(u, u A m) : m G M} = 
(u,u A A M) G 0. Therefore (A ikf)/0 = A{m/6 :m £ M}. 

(ii) For directed D Q L, ( V D)/0 = V{d/0 : d G D}: Again (V D)/6 is 
clearly an upper bound of the right hand set. If d/6 ^ u/6 for all d G Z>, we have 

V{ (d, « A d) : d € £} = (V D, V (« A Z>)) = (V A « A V D) G 0 

as {(d, u A d) : d £ D} is directed and L is a 12-lattice. 
(iii) L/6 is a ZMattice: 
Let ({x/6 : x G X*} : i G I) be a family of directed subsets of L/6. Then 

for each i £ I define Dt C L by Dj = j i : x f X*} where dx = 
V{^ G Xt : y/6 ^ x/0}. Clearly each D misdirected and for each x G Xtdx/6 = 
x/0. Since 

A{VDt:ie 7} = V { A (dt:ie I) :d£ II(Z>« : i G I)} 

we may apply K and obtain our result. 
Since the congruence relations on a D-lattice obviously form a closure 

system, the conditions of Linton [3, Proposition 3, p. 88] hold. Since U : D —» 
Sets clearly creates isomorphisms, the theorem is proven. 

4. The open filter monad over Top0. From Banaschewski [1], one can 
form the filter space of any partially-ordered set. One obtains the filter space of 
a To-space X by considering the filter space of OX, its lattice of open sets. 
That is, $X is the set of all filters in OX together with the topology generated 
by the standard open sets <t>X{U) = {u G |<£X| : U G u) for every U G OX. 
To obtain an endofunctor of Top0 one defines for continuous f : X —> Y, 
<£>/ : $X -> $ F by V G $/(«) if and only if f~l[V] G u (V G OF, u G j$X|) . 
The map x •—> OX(x), the open neighbourhoods of x G |X| is then an embed
ding of X into $X. To ease notation we will let vx(yM) be the filter of all open 
neighbourhoods of x G \X\ (respectively M C |X|). This embedding is natural 
and provides us with a natural transformation 97 : lTOp0 ~~* *• Moreover we 
can also define /x : <£>2 —> <ï> as in section 3 by U G MX ( £/) if and only if <j>X ( [/) G 
U. In fact idX(U) is the largest limit point of U in <£X (i.e. w G Lim$x6

/T if 
and only if u Ç fiX(U)). We can then show immediately that: 

(4.1) THEOREM. €> = (<3>, 77, /*) w a monad over Topo. 

(4.2) PROPOSITION. \XX : $2X -> $X awd $ / : $X -> <£F (for f : X -* F) 

preserve directed joins and arbitrary meets. 

As noted in [1] and [5], there is a natural partial order on any T0-space; viz: 

x <s >' <=> ^ C vy (x, 3/ G |X|) 

and that any continuous function between two T0-spaces preserves these 
orders. Moreover every filter space <£X is a continuous lattice in which the 
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induced T0-space order coincides with the natural order of set-theoretical 
inclusion of the open filters. 

(4.3) THEOREM. (X, a) G |Top0*| if and only if X is a continuous lattice and 
a : $X —> X is given by 

a(u) = A{A U: u e u). 
Proof. Let (X, a) be a <£-algebra and consider X with the induced To-order. 

Since a is continuous we have: 

(1) u Ç v implies a(u) ^ a(v). 

We need a few more properties. 

(2) a(u) G Limxu: 

For U G va{u)j there exists a standard open neighbourhood <t>X(V) of 
u G |$X| with a[<j>X{V)} Ç £/. Now w G £X(F) implies F e « . Since V is 
open, y £ V implies vy G #X(F) whence 3; = a(vv) G £/. That is F Ç [/ and 
therefore U £ u. Since J7 was arbitrary, va(M) C u and a(w) G Limxw. 

(3) x G Limx^ if and only if x ^ a(w): 

x ^ a(w) implies ^ C va(tt) Ç # by (2). Therefore x G Limx^. Conversely, 
x G Limx^ means vx ^ u and therefore by (1), x = a(vx) ^ a(w). 

(4) For any A ÇZ \X\, a(vA) = A A: 

Since ^ Q vx for all x G -4, <Z(Ï>A) is a lower bound for A. If x ^ a for all 
a £ A then ^ Ç H {^ :a Ç i ) = vA and so 

x = a(vx) ^ a(z/_4). 

(5) (\X\y S) is a complete lattice. 
(6) a preserves arbitrary meets: 

x ^ A (a(»0 : i É / ) ^ ^ ^ «(»«)(* € ^) 

<=>x G LimxVi(i G / ) 

<=» x G Lim x A (vt:i e I) 

<=>x r g a ( A (viiie I)); 

x ^ a(A*x<t>) <^x ^ a (OX) 
<=> x G L i m x O X 

<^ ^ ^ Ax^>. 

(7) Forz* G \*X\,a(u) = V {A tf : £/ G u): 
Clearly a(«) is an upper bound for S = {A U : U G ^ i . If x is an upper 

bound for 5 then a(Vuu{x]) = a(vv) for all U G w. For each U £ u, define 

U* = ( t i i r \ i i , : P Ç F | , and [7+ =»{»,: 17 C 7}. 
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Then by assumption, a[U*] = a[U]. Therefore 

a(u) C\ a(vx) = a(u H vx) = a ( U {vv C\ vx : U G u}) 

= ( a O / i i ) ( U {Vu* : U eu}) 

= ao < M U {Vu* '• U £ u}) 

= a ( U {va[u*] : U G u}) 

= « ( U { r̂cT+i : C/6 «}) 

= a o $ a ( U {y ĉ/H- : C7 G w}) 

= a o M I ( U { ^ V : C/6 «}) 

= a(u). 

Therefore a(u) ^ a(vx) = x. 
(8) X is a continuous lat t ice: 
For any x G |X| , x = a(z^) = V {A F : F G vx}. Therefore by the a rgument 

in [5, p . 67-78], X is a continuous latt ice with a as required (Note : T o know 
t h a t X is a continuous latt ice since it is a re t rac t of $ X is not sufficient as there 
could be m a n y possible retract ions a : <j>X —* X.) 

Conversely let X be a continuous lat t ice and define a : <ï>X -+ X by a(u) = 
V { A U : U G u). By [5, 2.4], a o T?X = lx. Also, a(w) G F G O X , the Scot t 
topology, implies A U G F for some U £ u. Noww G <t>X(U) implies £7 ^ a (w) 
hence a ( ^ ) G F. Therefore a [0X(£ / ) ] Ç F for this U and a is cont inuous. 
As a is a m a p between continuous lattices, it therefore preserves directed joins. 
Also by [5, 2.1], x G Limxu if and only if x ^ a(u) and therefore by the 
reverse a rgument of point (6) in the first half of this proof, a preserves a rb i t ra ry 
meets. Therefore to establish (X, a) as a ^-algebra, we need only consider 
open filters of the îormV u G | $ 2 X | . Bu t 

(a o 3>a)(Vu) = a(va(u) = a{u) = (a o »X)(VU). 

Therefore (X, a ) is a ^-algebra. 

(4.4) T H E O R E M . The category of continuous lattices with directed join ( = 
continuous) and arbitrary meet preserving maps is monadic over Top 0 . 

Proof. We need only check ou t the ^-algebra morphisms. For (X, a) and 
( F , 13) G |Top 0 ° | , / : X —» F is a ^-algebra morphism if and only if / o a = 
jS o $ / . Bu t for a rb i t ra ry A C X 

/ ( A 4 ) = / o a ( z ; i l ) a n d i 8 ( A / [ ^ ] ) = (0o*f)(vA) 

Since any filter is the direct union of its principal subfilters, the result follows. 

(4.5) T H E O R E M . D is precisley the category of continuous lattices with directed 
join and arbitrary meet preserving maps. 

Proof. Let L be a continuous latt ice, (Dt : i G I) a family of directed sets, 
x = A ( V Dt:i G / ) and £7 a (Scott) open set with x G £/. T h e n for every 
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i G / , Di C\ U 7* 4> and therefore there exists a du G H(Dt : i G J) with 
d,* 6 17. This forces A f / ^ A (dt

u : i 6 J) and 

x = V ( A î / : P G » J ^ V{A (dr.ie I):d£ U(Dt : i G / ) } . 

Therefore L is a ZMattice. 
Conversely let X be a ^-lattice. By (3.3) a : FX -> X by « ( / ) = 

V{ A M : Af G /} makes (X, a) an F-algebra with a directed join and arbitrary 
meet preserving. Now since FX is an algebraic lattice, it is a continuous lattice; 
moreover with the Scott topology on both FX and X, a is continuous. 

Define 0 : X -> FX by 

£(*) = A Î / G FX:x ^ « ( / ) } . 

0 then satisfies (1) /3(x) ^ / < ^ x ^ a ( / ) ; (2) x ^ ; y ^ / 3 ( x ) Q P(y); (3) 
/3(V Af) = is V P[M]; and (4) a o 0 = l x . We need also that 0 continuous. 

Now the basic open sets of FX are the irx(M), M Q X. Moreover 
x G p-^irXiM)] if and only if M G P(x). Therefore x G ^[TXÇM)] and 
x ^ y implies M G /3(x) Q P(y) and y G p-^irX(M)]. 

For directed £> C I , M G P(V D) = V / ^ ] = U {/3(d) : d G £>} implies 
AT G 0(d) for some d £ D. Therefore 0 is continuous and X as a retract of a 
continuous lattice is continuous by [5, 2.10]. 

5. Relational F-algebras and closure systems. As mentioned in the pre
liminaries, Barr's result can be generalized for an arbitrary monad over sets. 
In our particular case, the result becomes: 

(5.1) THEOREM. There exists a functor C : Rel (F) —» Clos given by: 

C(A,a) = (A, Ta) 
C(f: (A,a)-+(B,P)) =f: (A, Ta) -> (B, I » 

where x G Ta(M) if and only if there exists anf G FX with M G f and (f,x) G «. 

Now using the usual topological results, for any closure system (X, T) and 
/ G FX we may define the adherence or accumulation points of / by: Ace / = 
H { T(M) : M G / }. This allows us to define a functor J : Clos -> Rel (F) by: 

(a) J(X, r ) = (X, r r ) where (f,x) G ̂ r if and only if x G Ace/ ; 
(b) for / : (X, r ) -» (F, A), J / = / : (X, r r ) -» (F, rA). 

(5.2) THEOREM. The functors 

Rel (F) é Clos 

define Clos as a reflective subcategory of Rel (F) . 

Proof. First we must show that J is indeed a functor. For (X, T) G |Clos|, 
l z Ç ?T o 77X holds trivially. To show that r r o i*Vr Q rT o \xX follows the 
proof of [2, Proposition 3.2]. Namely for (^~,/ ) G ̂ r and (/ , x) G r r we must 
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show (nXÇ^), x) G rv. Now M G fiX(^) implies wX(M) G &~ which gives 

Y(M) = {y e X :y £ YM} 

= {y e X : (g, y) £ rv for some g G TTX{M)} 

= Fer Y o FdrT-lWX(M)] G / . 

Therefore x G Y(Y(M)) = YM for any M G uX{^). Therefore J(X, Y) G 
|Rel(F)| . The fact t h a t / : (X, r r ) —» (F,rA) is a relational F-algebra morphism 
is precisely [2, 3.3] and this gives in fact that / and C are both full and faithful. 

Now for (X, r ) G |Clos| and M ÇZ X, 

x G r r r (M) ^ there exists/ G Trx(ikf) with (/ , x) G r r 

<=» x G Ace / C YM. 

However x G rikf implies (fMj x) G r r whence x G r r r ( l i " ) . Therefore 
C~> = lcios-

For any set A, let p̂ 4 be the natural partial order on FA. {A, a) G | Rel (F) | is 
called p-closed if a o pA Qa. We claim that JC {A, a) — {A o pA) for any (A, a) G 
|Rel (F) | . Firstly, if (/ , x) G a and g Ç / then since A c e / Ç Ace g we have 
(g, x) G rr«. Now (g, x) G rr« if and only if for all M G g, x G YaM. That is: 
for all M G g there exists gM G 7rX(M) with (gM, x) G a. We define as in 
[2, 3.7] a filter $ on Fa (here the filters on the graph of a) by the filter base 

B = {(h,x) : (h,x) G a] 

BM = {(h,y) :h e TTX(M) and (h, y) G a} (M G g). 

Since Fda($>) = fx by the inclusion in $ of B and ca[J3M] Ç TTX(M) for all 
-M" G g we have as (̂ 4, a) is a relational F-algebra 

(ixX o Fca($), x) G « and g CI fiXFca(^). 

Therefore (g, x) G r o pA. 
To complete the proof let Relp(F) be the full sub-category of all p-closed 

relational F-algebras where (A, a) is p-closed if a o pA Ç a. It is clear that 
Relp(F) is isomorphic to Clos. To show the reflection then t a k e / : (.4, a) —> 
(5 , 0) with (5 , /3) G Relp(F). Then 

/ o a o p i Q (3o Ffo pA Q f3o PB o Ff Q (3o Ff 

with the second inclusion occurring since Ff o pA C PB o T7/ from 3.4(1). 

(5.3) COROLLARY. Clos w naturally isomorphic to the reflective subcategory of 
all p-closed relational ^-algebras. 

WTe should note at this time that the relation pA on FA has a natural defini
tion for any monad T = (T, 77, JLI) over sets, viz: for p, a G TX, (p, q) G pTX 
if and only if all e : M •-» X (p G Te[TM] implies q G re |TM]) . pTX is always 
a pre-order ( = reflexive and transitive) and a pT-closed relational 7^-algebra 
can be defined analogously. In order to make Relp(T) a reflective subcategory 

https://doi.org/10.4153/CJM-1975-008-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-008-8


FILTER MONADS 59 

one also needs at least that for any / : X —•> Y, Tfo pX Ç pF o 7J. These 
properties hold also for the following monads 

(a) Q, the ultrafilter or compact Hausdorff monad: (u, v) £ pttX if and only 
if u = v. 

(b) P, the power set monad: (M, N) £ pFT if and only if M ID N (M, 
N 6 P (X) ) . 

(c) Pw, the finite subset monad: (M, N) G pF"X if and only if M 3 ^ -
(d) I, the identity monad: (x, y) G pîX if and only if x = y. 
In cases (a) and (d), all relational T-algebras are p-closed and we obtain a 

natural isomorphism with Top. In (b), Relp(P) is naturally isomorphic wûth 
Clos (x G ra(ikf) if and only if (M, X) G a) and in (c) Relp(Pw) ~ 
Alg(x G Ta(M) if and only if there exists finite F Cl M with (F, x) G a). We 
do not know if Reg, the category of all regular closure systems 

(r(r(M) n JV) = T(M) n r(iV)) 
can be so obtained. Also we have not been able to find the precise conditions 
on a monad T to make its category of p-closed relational T-algebras naturally 
isomorphic to a full subcategory of Clos. 
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