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To extract information about biology from microscopy images, researchers rely on features that measure 

relevant image properties, like the shape and size of cells, or the intensity of fluorescent markers
1,2

. 

However, developing a set of features that robustly represents the biology of interest is challenging. A 

good representation usually involves either extensive engineering by experts to produce manually-

designed features
3,4

, or annotating large labeled training datasets to enable supervised deep learning
5,6

. 

Both options are laborious, creating a bottleneck in computational analysis.  

To address this problem, we investigated self-supervised learning. Self-supervised learning methods train 

deep learning models to solve autonomous proxy tasks
7
. The proxy tasks do not need to produce useful 

outputs, and are only meant to teach the models transferable skills and perceptions of data: self-supervised 

proxy tasks often resemble puzzles, like solving jigsaw puzzles or determining how an image has been 

rotated. We created a self-supervised method
8
, called “paired cell inpainting”, designed to learn 

representations of protein biology from multi-channel fluorescent microscopy images (Figure 1). Given 

one cell, the model is asked to produce a synthetic image of inferred protein expression for another cell 

from the same well. As our proxy task can be defined using the structure of microscopy data alone, our 

models do not require any manual labelling efforts to train. 

We show that our self-supervised models learn effective representations of protein biology, that 

outperform other feature representations when purposed for analyses like classifying protein subcellular 

localization in images of single cells. Our method is highly general: we learned similarly high-quality 

representations for proteome-wide image screens
9–12

 originating from different labs employing different 

imaging modalities and fluorescent markers (Figure 2), including two technically-challenging datasets 

that have never been analyzed computationally previously. 

Self-supervised methods learn representations unbiased by expert pre-conceptions of biology, as they 

learn through problem-solving on data directly. Consequentially, our representations can be used to 

identify biologically-relevant subclasses in high-throughput image screens, which are not as evident in 

other representations trained using expert labels for pre-defined classes. This property makes our method 

especially useful for exploratory analysis: I will demonstrate how our representations can be analyzed 

with unsupervised clustering methods to discover novel hypotheses. 

https://doi.org/10.1017/S1431927620015548 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1431927620015548&domain=pdf
https://doi.org/10.1017/S1431927620015548


Microsc. Microanal. 26 (Suppl 2), 2020 691 
 

 

 
Figure 1. Training inputs and targets. We crop a source cell (green box) and a target cell (orange box) 

from the same image. Then, given all channels for the source cell, and the shape of the target cell (in this 

dataset, given by the nucleus and the microtubule channels), a convolutional neural network is trained to 

create an image of the protein channel in the target cell. Images shown are of human cells, with the nucleus 

colored blue, microtubules colored red, and a specific protein colored green. 

 
Figure 2. UMAP scatterplots of protein-level paired cell inpainting representations for three independent 

yeast image datasets: A) the CyCLOPS dataset, B) a brightfield dataset from YeastRGB, C) a nuclear pore 

dataset published by Tkach et al. (2012). We generate UMAPS with the same parameters (Euclidean 

distance, 20 neighbors, minimum distance of 0.3). We show representative images from each dataset. In 

all images, protein expression is shown in green; each image shows a distinct fluorescently tagged protein. 
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