WEAK MIXING MANIFOLD HOMEOMORPHISMS PRESERVING AN INFINITE MEASURE

STEVE ALPERN AND VIDHU PRASAD

Introduction. Let $\mathscr{H} = \mathscr{H}(M, \mu)$ denote the group of all homeomorphisms of a σ -compact manifold which preserve a σ -finite, nonatomic, locally positive and locally finite measure μ . In two recent papers [4, 5] the possible ergodicity of a homeomorphism h in \mathscr{H} was shown to be related to the homeomorphism h^* induced by h on the ends of M. An end of a manifold is, roughly speaking, a distinct way of going to infinity. Those papers demonstrated in particular that $\mathscr{H}(M, \mu)$ always contains an ergodic homeomorphism, paralleling the similar result of Oxtoby and Ulam [11] for compact manifolds with finite measures. Unfortunately the techniques used in [4] and [5] rely on the fact that a skyscraper construction with an ergodic base transformation is ergodic, a result which cannot be extended to finer properties than ergodicity.

In this paper we use different techniques, but still related to the ends of M, to establish sufficient conditions that \mathcal{H} contains homeomorphisms that are weak mixing (by which we mean ergodic Cartesian square). Actually our results apply equally well to any "typical property" \mathscr{V} , that is, to any conjugate-invariant property which constitutes a dense G_{δ} subset of the group $\mathscr{G} = \mathscr{G}(M, \mu)$ of all automorphisms of the infinite σ -finite Lebesgue space (M, μ) with respect to the coarse topology. This sufficient condition (Theorem 2) on (M, μ) is that there is a homeomorphism h in $\mathcal{H}(M, \mu)$ such that h^* is topologically weak mixing on the ends of M with infinite measure. A very special case is the manifold R^n , $n \ge 2$, (which has a single end) with Lebesgue measure, since the identity on this singleton end space is trivially topologically weak mixing. That case was treated separately in [2] from a different point of view. However manifolds which have more than one but finitely many ends are never covered by our condition, since topological weak mixing is not possible on a nonsingleton finite space. Indeed an important open question is whether such a manifold, for example the infinite cylinder (two ends) can support a weakly mixing homeomorphism. To show that our condition is not vacuous we give an example (the disk with a deleted Cantor set) of a manifold with uncountably many ends which supports a homeomorphism inducing topological weak mixing on the ends.

Received September 2, 1986 and in revised form February 27, 1987. The second author was supported by a grant from NSERC.

The main new technique introduced in this paper is an extension (Theorem 1) of a purely measure theoretic "conjugacy approximation" theorem of Choksi and Kakutani [8, Theorem 6]. They showed that given two ergodic automorphisms τ and θ of an infinite σ -finite Lebesgue space one can always find a conjugate θ' of θ which agrees pointwise with τ on a given set of finite measure. We show that if τ additionally satisfies a certain mixing type property, then θ' can be also made to agree with τ setwise on a finite collection of infinite measured sets. In our application to manifolds these infinite measured sets correspond to the ends of the manifold.

The paper is organized as follows. Section 1 presents the definitions of the terms mentioned in this introduction and states precisely our main result (Theorem 2). Section 2 gives the proof of our extension (Theorem 1) of the Choksi-Kakutani result. In Section 3 we prove Theorem 2, and in Section 4 we give an example of a manifold with uncountably many ends which supports a weak mixing homeomorphism preserving an infinite σ -finite measure.

1. Definitions and statement of results. An end of the manifold M is a map e which assigns to every compact subset K of M a nonempty connected unbounded component e(K) of M - K. The only restriction on the map is the monotonicity condition: $K_1 \subset K_2$ implies $e(K_2) \subset e(K_1)$. The set of all ends is denoted by E. When M is compactified by adjoining E, the relative topology on E is given by typical neighborhoods $N_K(e_0)$ of the following form. For any e_0 in E and any compact subset K of M,

$$N_K(e_0) = \{e \text{ in } E: e(K) = e_0(K) \}.$$

For any compact set K, let \mathscr{P}_K be the finite partition of E obtained by letting e vary over E in $N_K(e)$. Let \mathscr{Q}_K be the finite algebra generated by \mathscr{P}_K and observe that

$$\mathcal{Q} = \bigcup_{K \text{compact}} \mathcal{Q}_K$$

is the algebra of clopen subsets of E. An end e in E is said to be of finite measure if $\mu(e(K)) < \infty$ for some compact subset K; otherwise e is said to have infinite measure. Let \hat{E} denote the set of ends of infinite measure. Observe that \hat{E} is a closed and therefore compact subset of E. Every homeomorphism h in $\mathscr{H}(M, \mu)$ induces a homeomorphism $h^*: E \to E$ such that

$$(h^*(e))(K) = h(e(h^{-1}(K)))$$

for every end e in E and compact subset K of M. In particular h^* leaves \hat{E} invariant so we may consider the restriction \hat{h} of h^* to \hat{E} . We will classify \hat{h} according to its topological dynamics using the following definitions.

Definition. A homeomorphism σ of a compact space onto itself is called *topologically weak mixing* if for any two nonempty open sets U, V, the set

 $\{n:\sigma^{-n}U\cap V\neq\emptyset\}$

is thick, i.e., contains arbitrarily long intervals. If the above condition is satisfied for all clopen sets U and V (a weaker condition) we will say that σ is *componentwise weak mixing*.

To state our main result we consider the embedding of $\mathscr{H}(M, \mu)$ in the space $\mathscr{G} = \mathscr{G}(M, \mu)$ of all bimeasurable μ -preserving automorphisms of an infinite σ -finite Lebesgue space. We endow \mathscr{G} with the coarse topology, under which a sequence of automorphisms g_n in \mathscr{G} converges to a limit g if and only if $\mu(g_n B \Delta gB) \rightarrow 0$ for every finite measured subset B of M.

THEOREM 2. Suppose the space $\mathscr{H}(M, \mu)$ contains a homeomorphism h which induces a componentwise weak mixing homeomorphism on the ends of M with infinite measure. Then for any conjugate-invariant subset $\mathscr{V} \subset \mathscr{G}(M, \mu)$ which is dense and G_{δ} in the coarse topology, $\mathscr{V} \cap \mathscr{H}(M, \mu)$ is nonempty.

2. Conjugacy theorem. This section is devoted to proving a generalization of the conjugacy theorem of Choksi and Kakutani (see below). This material is entirely measure theoretic, so we consider M only as an infinite σ -finite Lebesgue space, forgetting the manifold structure. Recall that $\mathscr{G} = \mathscr{G}(M, \mu)$ is the group of all μ -preserving bijections of M.

THEOREM 1 (Conjugacy Theorem). Let τ , $\theta \in \mathcal{G}$ with θ ergodic. Let $M = E_0 \cup E_1 \cup \ldots \cup E_n$ be a measurable partition with $0 < \mu(E_0) < \infty$ and $\mu(E_i) = \infty$ for $i = 1, \ldots, n$. Assume that

1) There are no non-null τ -invariant subsets of E_0 , and

2) The $n \times n$ 0 - 1 matrix $T = T(\tau, E_1, E_2, \dots, E_n)$, defined by $t_{ij} = 1$ if $\mu(\tau E_i \cap E_j) = \infty$ and $t_{ij} = 0$ if $\mu(\tau E_i \cap E_j) \neq \infty$, is primitive. (This means that T^N has all positive entries, for some positive integer N.) Then there exists $\pi \in \mathcal{G}$ such that $\theta' = \pi^{-1}\theta\pi$ satisfies

1') $\theta'(x) = \tau(x)$ for μ -a.e. x in E_0 , and

2') $\theta'(E_i) = \tau(E_i)$ for i = 0, ..., n.

In other words, there is a conjugate of any ergodic transformation which agrees with τ pointwise on the finite measure set E_0 and agrees with τ setwise on each of the infinite measured sets. The Choksi-Kakutani Theorem [8, Theorem 6] established the first part, that 1) implies 1'), under the weaker assumption that θ is antiperiodic rather than ergodic. A finite measure version of the Choksi-Kakutani Theorem was proved by Alpern [1, Theorem 4], giving pointwise agreement on E_0 , assuming that

$$\mu(E_0 \cup \tau E_0) < \mu(M) < \infty.$$

To prove Theorem 1 we will need two constructions used by Choksi and Kakutani, which we state below as Lemmas.

LEMMA 1 [8, Theorem 6, Step I]. Let $\tau \in \mathcal{G}$ and a finite measured set $B \subset M$ be given. Assume that there are no non-null τ -invariant subsets of B. Then there are disjoint sets $B_{k,i} k \in \mathbb{N}$, $1 \leq i \leq k + 1$, such that

$$\tau B_{k,i} = B_{k,i+1} \quad 1 \leq i \leq k \quad and$$
$$B = \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{k} B_{k,i}.$$

LEMMA 2 [8, Theorem 6, Step II]. Let $\theta \in \mathcal{G}$ be antiperiodic and incompressible and let d_m , $m = 1, 2, \ldots$, be nonnegative numbers with finite sum. Then there exist disjoint sets $F_{m,i}$, $m \in \mathbb{N}$, $1 \leq i \leq m + 1$, such that

$$\mu(F_{m,i}) = d_m \quad \text{for all } m, i \quad \text{and}$$
$$\theta(F_{m,i}) = F_{m,i+1} \quad \text{for } i \leq m.$$

Proof of Conjugacy Theorem (Theorem 1). We first reduce the theorem to the case where the additional assumption * holds.

*
$$\mu(\tau E_i \cap E_j) = 0$$
 if $\mu(\tau E_i \cap E_j) < \infty$,

i.e., if $t_{ii} = 0$.

Suppose the theorem holds under assumption * and let τ , E_i satisfy the hypotheses of the theorem (but not necessarily *). For pairs $i, j \ge 1$ with $t_{ii} = 0$ define

$$W_{ii} = \tau E_i \cap E_i.$$

Observe that the sets W_{ij} have finite measure. For all $i, j \ge 1$ with $t_{ij} = 0$ choose measurable sets Z_{ij} satisfying $Z_{ij} \subset E_i$, $\mu(Z_{ij}) = \mu(W_{ij})$ and with $\tau(E_0)$, all the W_{ij} , and all the Z_{ij} disjoint. This is clearly possible since

 $\mu(E_i) = \infty$ for $i = 1, \ldots, n$.

Let $\alpha \in \mathscr{G}$ transpose the pairs of sets $\tau^{-1}W_{ij}$ and Z_{ij} , for all $i, j \ge 1$ with $t_{ii} = 0$ and be the identity off these sets. Define

$$Z = \bigcup_{t_{ij}=0} Z_{ij}, \quad \widetilde{E}_0 = E_0 \cup Z \text{ and}$$

 $\widetilde{E}_i = E_i - Z \text{ for } i = 1, \dots, n.$

Then the automorphism $\tilde{\tau} \in \mathscr{G}$ defined by $\tilde{\tau} = \tau \alpha$, together with the partition \tilde{E}_i , i = 0, ..., n, satisfy the hypotheses of the theorem and also condition *. According to our assumption that the theorem holds with additional hypotheses *, there is an automorphism $\theta' = \pi^{-1}\theta\pi$ which satisfies 1') and 2') with respect to $\tilde{\tau}$ and the partition \tilde{E}_i . But it is easily

seen that θ' also satisfies 1') and 2') with respect to τ and the partition E_i , i = 0, ..., n.

So without loss of generality, we may assume that condition * holds.

Main part of proof. Let $B = E_0$ and apply Lemma 1 to produce disjoint sets $B_{k,i}$, $k \in \mathbb{N}$, $1 \le i \le k + 1$ such that

$$\tau B_{k,i} = B_{k,i+1}, \quad 1 \leq i \leq k, \text{ and}$$
$$B = \bigcup_{\substack{k=1 \ i=1}}^{\infty} \bigcup_{\substack{k=1 \ i=1}}^{k} B_{k,i}.$$

Define

$$d_m = 0$$
 for $m = 1, ..., N$ and
 $d_{N+k} = \mu(B_{k,i})$ for $k \in \mathbf{N}$,

where N is the least positive integer with $T^N > 0$, where T is the primitive matrix of transitions. Apply Lemma 2 to the $\theta \in G$ given in the theorem and the numbers d_m just defined. This yields a family of disjoint sets $F_{m,i}$, $m = N + 1, N + 2, ..., 1 \le i \le m + 1$, with

$$\mu(B_{k,i}) = \mu(F_{N+k,i}) \text{ for all } k, i \text{ and}$$
$$\theta F_{m,i} = F_{m,i+1}.$$

Let

$$F = \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{k} F_{N+k,i}.$$

We now define a μ -preserving invertible transformation

 $\hat{\pi}: B \cup \tau B \to F \cup \theta F$

in such a way that

 $\hat{\pi}^{-1}\theta\hat{\pi}x = \tau x$

for all x in $B = E_0$. Later we will extend $\hat{\pi}$ to an automorphism $\pi \in \mathscr{G}$ so as to satisfy condition 2'. Define $\hat{\pi}$ so that

 $\hat{\pi}B_{k,1} = F_{N+k,1}$ for all $k = 1, 2, \ldots$

Extend $\hat{\pi}$ to $B \cup \tau B$ by the following formula: If $x \in B_{k,i}$ for some *i*, let

$$\hat{\pi}x = \theta^{i-1}\hat{\pi}\tau^{1-i}x.$$

Since θ is ergodic, the forward and backward θ -orbits of every x in $\sim (F \cup \theta F)$ will both eventually hit $F \cup \theta F$. The forward orbit will first hit $F \cup \theta F$ at some point of $F - \theta F$, and the backward orbit, at some point of $\theta F - F$. Let r = r(x) denote the length of the orbit of x in $\sim (F \cup \theta F)$ and let

 $k = k(x) \in \{1, \ldots, r\}$

denote the position of x in this orbit. Thus

 $\theta^{-k}(x) \in \theta F - F, \theta^{r-k+1}(x) \in F - \theta F$ and

$$\theta^l(x) \in \sim (F \cup \theta F) \text{ for } -k < l < r-k+1.$$

Partition $\theta F - F$ into *n* sets

$$D_i = \hat{\pi}((\tau B - B) \cap E_i) = (\theta F - F) \cap \hat{\pi} E_i, \quad i = 1, \dots, n.$$

Similarly partition $F - \theta F$ into *n* sets

$$A_{i} = \hat{\pi}((B - \tau B) \cap \tau E_{i}) = (F - \theta F) \cap \hat{\pi} \tau E_{i}, \quad j = 1, \dots, n.$$

Hence for some i, j with $1 \leq i, j \leq n$,

 $\theta^{-k}(x) \in D_i$ and $\theta^{r-k+1}x \in A_j$.

Call the set of all such points x, S(i, j, r, k). It is clear that

$$\sim (F \cup \theta F) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{r=N}^{\infty} \bigcup_{k=1}^{r} S(i, j, r, k)$$

and

$$\theta S(i, j, r, k) = S(i, j, r, k + 1)$$
 for $k < r$.

The reason that the orbit length r is at least N is that we chose the height of the columns $F_{N+k,i}$ to be N more than the corresponding columns of $B_{k,i}$.

The isomorphism $\hat{\pi}^{-1}$ will be extended to $\sim (F \cup \theta F)$ by assigning labels $l \in \{1, \ldots, n\}$ to the sets S(i, j, r, k). Let L(i, j, r, k) be the label assigned to S(i, j, r, k). If

$$L(i, j, r, k) = l$$
 and $L(i, j, r, k + 1) = m$

we will map $\pi^{-1}(S(i, j, r, k + 1))$ into

$$E_{l,m} = \tau E_l \cap E_m.$$

The labeling process involves the notion of a universal word

 $u = u_1 u_2 \ldots u_W$

for the primitive matrix T. The word u is universal for T if

$$t_{\mu,\mu_{n+1}} = 1$$
 for $p = 1, \ldots, W - 1, t_{\mu_n,\mu_n} = 1$

and for any pair *i*, *j* with $t_{ij} = 1$ there is a *p* with $u_p = i$ and $u_{p+1} = j$. It is easy to construct a universal word for any primitive matrix (irreducibility is sufficient).

To define L(i, j, r, k) fix i, j and r, and denote

 $l_k = L(i, j, r, k)$ for k = 1, ..., r.

Denote $l_0 = i$ and $l_{r+1} = j$. For (orbit lengths) r with $N \le r < 2N + W$ simply choose the l_k so that

 $t_{l_k l_{k+1}} = 1$ for $k = 0, \ldots, r$.

This is possible because $r \ge N$ and $T^N > 0$. For all other r there is an integer a with

 $2N + aW \leq r < 2N + (a + 1)W,$

where W is the length of a universal word u. Choose l_1, \ldots, l_N so that

 $t_{l_{1}l_{1+1}} = 1$ for k = 0, ..., N

where $l_{N+1} = u_1$, the first entry of u. Let

 $l_{bN+m} = u_m$ for $1 \leq b \leq a$ and $m = 1, \dots, N$,

so that l_N is followed by repetitions of the word u. Finally, define l_{N+aW+1}, \ldots, l_r so that

 $t_{l_{k+1}} = 1$ for $k = N + aW, \dots, r$

where

 $l_{N+aW} = u_W$ and $l_{r+1} = j$.

The sequence l_0, \ldots, l_{r+1} looks like:

 $i \sim [u_1 \ldots u_W][u_1 \ldots u_W] \ldots [u_1 \ldots u_W] \sim j$

Observe that for large values of r, most of the labels come from the repetitions of the word u.

For pairs l, m in $\{1, ..., n\}$ with $t_{lm} = 1$, define R(l, m) as the union of all sets S(i, j, r, k) with

L(i, j, r, k - 1) = l and L(i, j, r, k) = m.

(Recall that L(i, j, r, 0) = i and L(i, j, r, k + 1) = j.) Since the pair l, m appears in that order somewhere in the universal word u, the labelling process ensures that

 $\mu(R(l, m)) = \infty.$

The set

 $E_{l,m} = \tau E_l \cap E_m$

also has infinite measure, because $t_{lm} = 1$. Consequently we may define an invertible μ -preserving transformation

 $\hat{\pi}_{lm}: E_{l,m} \to R(l, m).$

If we piece together-the maps $\hat{\pi}$ and $\hat{\pi}_{lm}$, with $t_{lm} = 1$, we obtain the automorphism $\pi \in \mathscr{G}$ required by the theorem.

3. Proof of theorem 2. Our proof of Theorem 2 is based on viewing the space of homeomorphisms $\mathscr{H} = \mathscr{H}(M, \mu)$ as a subset of the automorphisms $\mathscr{G} = \mathscr{G}(M, \mu)$. We "extend" the compact-open topology to $\mathscr{G}(M, \mu)$ in such a way that the relative topology on $\mathscr{H}(M, \mu)$ is the usual compact-open topology. Specifically we define, for any automorphism g in \mathscr{G} , compact subset K of M, and positive ϵ , the sub-basic open neighborhood

 $\mathscr{C}(g, K, \epsilon) = \{ f \text{ in } \mathscr{G}: d(f(x), g(x)) < \epsilon \text{ for } \mu\text{-a.e. } x \text{ in } K \},\$

where d is the metric on M (σ -compact implies metrizable). The compact-open topology on \mathscr{G} thus defined, is finer than the coarse topology. The relative topology on \mathscr{H} is the usual, topologically complete, compact-open topology. It is shown in our previous paper [4, Lemma 0] that we may restrict the compact sets K to sets called "special compact sets", since every compact set is contained in a special compact set. A compact set K is called special if it is a connected manifold with boundary, of the same dimension as M, such that M - K has no bounded components and the boundary of K has μ measure zero. The significance of the special compact sets is that they are needed in the following result.

THEOREM A (Proposition 3, [4], see also [10], [13], or [3]). Let K be a special compact subset of M, $\delta > 0$, and g in $\mathscr{G}(M, \mu)$ satisfying

(i) g(K) = K

(ii) $d(x, g(x)) < \delta$ for μ -a.e. x in K

(iii) g(P(K)) = P(K) for every set of ends P in \mathcal{P}_{K} .

Then any coarse topology neighborhood of g contains a compactly supported homeomorphism \overline{h} in $\mathcal{H}(M, \mu)$ which satisfies (i), (ii) and (iii) (with \overline{h} replacing g).

A proof of Theorem 2 can be based on the following proposition which yields an automorphism $g = h^{-1}f$ satisfying the hypotheses of Theorem A.

PROPOSITION 1. Let h be an ergodic homeomorphism in $\mathcal{H}(M, \mu)$ whose induced end-homeomorphism $\sigma = h^*$ is componentwise weak mixing on the ends of infinite measure \hat{E} . Let K be a compact subset of M such that M - K has no bounded components (in particular, K can be any special compact set). Let θ be any ergodic automorphism in $\mathcal{G}(M, \mu)$. Then there is an automorphism f in $\mathcal{G}(M, \mu)$ which is conjugate to θ and satisfies the following conditions:

(i) f(K) = h(K)

(ii) f(x) = h(x) for μ -a.e. x in K(iii) f(P(K)) = h(P(K)) for all P in \mathcal{P}_{K} .

Proof. Let
$$\mathcal{P}_K = \{F_1, \ldots, F_m, I_1, \ldots, I_n\}$$
 where
 $\mu(F_r(K)) < \infty, \quad r = 1, \ldots, m, \text{ and}$
 $\mu(I_i(K)) = \infty, \quad i = 1, \ldots, n.$

Thus

$$M = K \cup F_1(K) \cup \ldots \cup F_m(K) \cup I_1(K) \cup \ldots \cup I_n(K)$$

is the partition of M into K and the connected components of M - K. Apply Theorem 1 with

$$E_0 = K \cup F_1(K) \cup \ldots \cup F_m(K),$$

$$E_i = I_i(K), i = 1, \ldots, n, \quad \tau = h, \text{ and } \theta = \theta.$$

Hypothesis 1) of Theorem 1 is satisfied by the assumed ergodicity of h.

We now demonstrate how condition 2) of Theorem 1 follows from the assumption that σ is componentwise weak mixing on the ends of infinite measure. To this end we first show that

 $t_{ij} = 1$ if $\sigma \hat{I}_i \cap \hat{I}_j \neq \emptyset$,

where $\hat{I}_r = I_r \cap \hat{E}$. So suppose there is an end *e* of infinite measure with *e* in I_i and σe in I_i . It follows that

$$h(I_i(K)) \cap I_j(K) \supset h(e(K)) \cap \sigma e(K)$$

= $h(e(K)) \cap h(e(h^{-1}(K)))$
= $h[e(K) \cap e(h^{-1}(K))]$
 $\supset h[e(K \cup h^{-1}(K))].$

Consequently

$$\mu[h(I_i(K)) \cap I_j(K)] \ge \mu[h(e(K \cup h^{-1}K))] = \mu[e(K \cup h^{-1}K)] = \infty,$$

because e is an end of infinite measure. More generally we have that for any natural number p,

 $t_{ij}^p = 1$ if $\sigma^p \hat{I}_i \cap \hat{I}_j \neq \emptyset$.

Since the sets I_i are clopen in E, the sets \hat{I}_i are clopen in the relative topology on \hat{E} . By assumption the restriction of σ to \hat{E} is component-wise weak mixing, so by the definition it follows that each set

$$S_{ij} = \{ p : t_{ij}^p = 1 \}$$

is thick. The finite intersection

$$S = \bigcap_{i,j=1}^{n} S_{ij}$$

is therefore nonempty. For any positive integer N in S,

 $t_{ii}^N = 1$ for all i, j = 1, ..., n.

So we have demonstrated that condition 2) of Theorem 1 is satisfied, and now the conjugate $f = \theta'$ of θ produced by Theorem 1 satisfies the requirements of this proposition.

THEOREM 2. Suppose the space $\mathscr{H}(M, \mu)$ contains a homeomorphism whose induced end-homeomorphism σ is topologically weak mixing on the ends \hat{E} of M of infinite measure. Then for any conjugate-invariant subset \mathscr{V} of $\mathscr{G}(M, \mu)$ which is dense and G_{δ} in the coarse topology,

$$\mathscr{V} \cap \mathscr{H}(M, \mu) \neq \emptyset.$$

Proof. Observe that the space

$$\mathscr{H}_{\sigma} = \{h \text{ in } \mathscr{H}(M, \mu): h^* = \sigma\}$$

is a closed subset of $\mathscr{H}(\mathcal{M}, \mu)$ in the compact-open topology, hence it is topologically complete. Using a Baire category argument we will show that $\mathscr{V} \cap \mathscr{H}_{\sigma}$ is a dense G_{δ} subset of \mathscr{H}_{σ} in the compact-open topology.

It has been shown by Sachdeva [12] and by Choksi and Kakutani [8] that the ergodic automorphisms \mathscr{E} in $\mathscr{G}(M, \mu)$ constitute a dense G_{δ} set in the coarse topology. Since \mathscr{V} is also a dense G_{δ} set the intersection $\mathscr{V} \cap \mathscr{E}$ is nonempty. Therefore \mathscr{V} contains an ergodic automorphism θ and consequently its entire conjugacy class. Write

$$\mathscr{V} = \bigcap_{m=1}^{\infty} \mathscr{V}_m$$

where each \mathscr{V}_m is coarse topology open and contains the conjugacy class of θ . The theorem will follow by a Baire category argument if we can establish that for each *m* the set $\mathscr{V}_m \cap \mathscr{H}_{\sigma}$ is a dense open subset of \mathscr{H}_{σ} in the compact-open topology.

The set $\mathscr{V}_m \cap \mathscr{H}_{\sigma}$ is open because the compact-open topology is finer than the coarse topology. To prove denseness we must show that

$$\mathscr{V}_{m} \cap \mathscr{H}_{\sigma} \cap \mathscr{C}(h, K, \epsilon) \neq \emptyset,$$

where $\mathscr{C}(h, K, \epsilon)$ is a compact-open basic neighborhood of some homeomorphism in h in \mathscr{H}_{σ} . We now make use of a result established in a previous paper to show that we may assume that h is ergodic. Corollary 1 of [5] says that if the restriction of σ to \hat{E} is transitive (topologically ergodic) then the ergodic homeomorphisms are dense in \mathscr{H}_{σ} with respect to the compact-open topology. Since componentwise weak mixing implies transitivity, we may use that result to assume without loss of generality that the compact-open basic open set \mathscr{C} is centered at an ergodic homeomorphism h. As mentioned above, we may also assume that K is a special compact set. Now apply Proposition 1 to this h and K and the

ergodic automorphism θ found in \mathscr{V}_m . Let f be the conjugate of θ given by Proposition 1, and observe that consequently f belongs to \mathscr{V}_m . Let $\delta = \omega(\epsilon)$ where ω is the uniform modulus of continuity of h on K.

Thus the automorphism g defined by $g = h^{-1}f$ belongs to the coarse topology open set $h^{-1}\mathscr{V}_m$ and satisfies the following (actually g(x) = x on K):

(i) g(K) = K

(ii) $d(x, g(x)) < \delta$ for μ -a.e. x in K

(iii) g(P(K)) = P(K) for all P in \mathcal{P}_{K} .

Applying Theorem A, we may approximate the automorphism g by a compactly supported homeomorphism \overline{h} which belongs to the coarse open set $h^{-1}Y_m$ and satisfies

$$\overline{h}(K) = K$$
 and $d(x, \overline{h}(x)) < \delta$ for all x in K.

We claim that the homeomorphism $h\bar{h}$ belongs to

 $\mathscr{V}_m \cap \mathscr{H}_{\sigma} \cap \mathscr{C}(h, K, \epsilon)$

proving that set to be nonempty, thus completing the proof. Clearly $h\bar{h}$ belongs to \mathscr{V}_m because \bar{h} belongs to $h^{-1}\mathscr{V}_m$. Next observe that since \bar{h} has compact support, its induced end-homeomorphism \bar{h}^* is the identity. The *-operation is a group homomorphism so

 $(h\bar{h})^* = h^* \bar{h}^* = h^* = \sigma$

and $h\bar{h}$ belongs to \mathscr{H}_{a} . Finally, for all x in K we have

 $d(h(x), h\overline{h}(x)) < \epsilon,$

so $h\bar{h}$ belongs to $\mathscr{C}(h, K, \epsilon)$, completing the proof.

The above proof of Theorem 2 used the fact (established in [5]) that ergodicity is generic in \mathscr{H}_{σ} when σ is transitive on *E*. We now outline a modification of the arguments given in this section which gives a proof of Theorem 2 which is independent of that fact. We begin by observing that two hypotheses of Proposition 1 can be weakened. First observe that the ergodic automorphism *h* need not be a homeomorphism. Secondly, *h* need not be ergodic on *M* since the weaker condition, that there are no non-null *h*-invariant subsets of the set

$$E_0 = K \cup F_1(K) \cup \ldots \cup F_m(K)$$

is sufficient to achieve condition 1) of Theorem 1.

These observations lead to the following alternate proof of Theorem 2. Let $\mathscr{C} = \mathscr{C}(h, K, \epsilon)$ be the compact-open neighborhood of an h in \mathscr{H}_{σ} given in the previous proof of Theorem 2. While we no longer assume that h is ergodic, a simple perturbation argument [4, Lemma 6] enables us to assume that none of the sets K or e(K), e in E, is h-invariant. That is, sets $\mathscr{C}(h, K, \epsilon)$ with this property form a sub-basic family. Let $\delta = \omega(\epsilon)$ be the uniform modulus of continuity of h on K. We now approximate the given homeomorphism h by an automorphism h' satisfying the (weakened) hypotheses of Proposition 1, using the following result which is step 1 of [4, Proposition 2].

LEMMA 3. Let h be a homeomorphism in $\mathscr{H}_{\sigma}(M, \mu)$ and let K be a special compact subset of M such that none of the sets K or e(K), e in E, are h-invariant. Then for any positive number δ there is an automorphism h' in $\mathscr{G}(M, \mu)$ such that h'(e(K)) = h(e(K)) for every end e in E, there are no non-null h'-invariant subsets of

$$K \cup \bigcup_{e \in E - \hat{E}} e(K) \quad (= K \cup F_1(K) \cup \ldots \cup F_m(K)),$$

and

$$d(h^{-1}(y), (h')^{-1}(y)) < \delta$$
 for μ -a.e. y in $h(K)$.

Now we proceed as before. First apply Proposition 1 to h' (instead of h), obtaining an automorphism f in $\mathscr{G}(M, \mu)$ which agrees with h' pointwise on K and setwise on each set e(K), and belongs to the coarse topology open set \mathscr{V}_m . Let $g = h^{-1}f$ and observe that g(K) = K, g(e(K)) = e(K) for all ends e in E, and

$$d(g(x), x) = d(h^{-1}f(x), x) = d(h^{-1}(y), f^{-1}(y)) < \delta$$

for μ -a.e. $x = f^{-1}y$ in K. So applying Theorem A to g we get a compactly supported homeomorphism \overline{h} such that $h\overline{h}$ belongs, as before, to the required set

$$\mathscr{V}_m \cap \mathscr{H}_{\sigma} \cap \mathscr{C}(h, K, \epsilon).$$

4. Example. To see that the conditions for Theorem 2 are not vacuous we give an example of a σ -compact manifold (M, μ) which supports a homeomorphism h in $\mathcal{H}(M, \mu)$ that induces a topologically weak mixing homeomorphism on the ends E of M.

The manifold is given by M = D - C where D is the unit disk

$$\{(x, y): x^2 + y^2 \leq 1\}$$

and C is the standard Cantor ternary set lying on the line I = [-1/2, 1/2]along the x-axis. The Cantor set may be identified with the set E of ends of M. Let μ be any infinite σ -finite non-atomic Borel measure on M which is locally positive and locally finite and for which all the ends have infinite measure. We will give some explicit constructions of such a measure later. Let σ be any homeomorphism of C onto itself which is topologically weak mixing, for example the two sided shift when C is viewed as the countable product of a two-symbol set. Antoine [6] proved that any homeomorphism of C can be extended to a homeomorphism of D. Let $g:D \rightarrow D$ be a homeomorphism which extends σ . The restriction f of g to M

is a homeomorphism of the manifold M which induces the homeomorphism σ on the ends C. Unfortunately the homeomorphism f of M need not preserve the measure μ . This can be remedied as follows. Observe that the Borel measure μf^{-1} defined by

$$\mu f^{-1}(A) = \mu(f^{-1}(A))$$

for Borel subsets A of M is, like μ , a good (non-atomic, locally positive and locally finite) measure. Since all ends have infinite measure with respect to μ (by assumption) they all have infinite measure with respect to μf^{-1} . It has been recently proved by Berlanga and Epstein [7] that whenever two good Borel measures on a σ -compact manifold have the same set of infinite measured ends, there is an end-preserving homeomorphism of the manifold which takes one measure into the other. Applying this result to the measures μf^{-1} and μ , we obtain an end-preserving homeomorphism $r: M \to M$ such that

$$(\mu f^{-1})r^{-1} = \mu.$$

The μ -preserving homeomorphism h of M described in the previous paragraph can now be defined by $h = r \cdot f$. The construction of r ensures that h preserves μ and that h induces the homeomorphism

$$h^* = (rf)^* = r^*f^* = \sigma$$

on the (infinite measured) end set C.

We now outline the construction of a good σ -finite Borel measure μ on M such that all ends (points of C) have infinite measure. Let I(0) and I(1) denote the left and right thirds of the interval I = [-1/2, 1/2] on the x-axis. For $i_k = 0$, 1 and $n \ge 1$ let $I(i_1, \ldots, i_n, 0)$ and $I(i_1, \ldots, i_n, 1)$ denote the left and right thirds of $I(i_1, \ldots, i_n)$, respectively. Let m_1 and m_2 denote respectively one and two dimensional Lebesgue measure. For each Borel subset A of M define $\mu(A)$ by the formula

$$\mu(A) = m_2(A) + \sum_{n=1}^{\infty} \sum_{i_1,\ldots,i_n} 3^n m_1(A \cap I(i_1,\ldots,i_n)).$$

Another construction of a suitable measure μ goes as follows. Let $R(i_1, \ldots, i_n)$ be the closed rectangular 3^{-n} -neighborhood of $I(i_1, \ldots, i_n)$ in D and let

$$K_n = D - \bigcup_{i_1,\ldots,i_n} \text{ int } R(i_1,\ldots,i_n).$$

Then the sets $L_n = K_{n+1} - K_n$ consist of 2^n congruent components each with measure

$$a_n = m_2(L_n)/2^n.$$

Set

$$\mu(A) = m_2(A) + \sum_n (1/a_n)m_2(A \cap L_n).$$

Finally, we note that there is nothing special in our example about dimension two. We could have taken our manifold to be $M = D^n - C$ where D^n is the unit *n*-dimensional ball and *C* is a Cantor set. The Cantor set however cannot be wild. For n > 2 Antoine's result can be replaced by the extension theorems of Keldys [9] or Oxtoby [10] for certain suitably chosen Cantor subsets of D^n .

References

- 1. S. Alpern, *Return times and conjugates of an antiperiodic transformation*, Erg. Th. and Dyn. Sys. 1 (1981), 135-143.
- 2. ——Nonstable ergodic homeomorphisms of R⁴, Indiana Univ. Math. J. 32 (1983), 187-191.
- 3. S. Alpern and R. Edwards, Lusin's theorem for measure preserving homeomorphisms, Mathematika 26 (1979), 33-43.
- 4. S. Alpern and V. Prasad, End behaviour and ergodicity for homeomorphisms of manifolds with finitely many ends, Can. J. Math. 39 (1987), 473-491.
- 5. Dynamics induced on the ends of a noncompact manifold, Eng. Th. and Dyn. Sys. 7 (to appear).
- 6. L. Antoine, Sur l'homéomorphie de deux figures et de leurs voisinages, J. Math. Pures Appl. 4 (1921), 221-325.
- 7. R. Berlanga and D. Epstein, Measures on σ-compact manifolds and their equivalence under homeomorphisms, J. London Math. Soc. 27 (1983), 63-74.
- 8. J. Choksi and S. Kakutani, Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure, Indiana Univ. Math. J. 28 (1979), 453-469.
- 9. L. Keldys, *Topological embeddings in Euclidean space*, Proc. Steklov Inst. Math. 81 (1966) (Translation, Amer. Math. Soc., 1968).
- J. Oxtoby, Approximation by measure preserving homeomorphisms, Recent Advances in Topological Dynamics, Springer Lecture Notes in Math. 318 (1973), 206-217.
- 11. J. Oxtoby and S. Ulam, Measure preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), 874-920.
- 12. U. Sachdeva, On the category of mixing in infinite measure spaces, Math. Systems Th. 5 (1971), 319-330.
- 13. H. E. White Jr., *The approximation of one-one measurable transformations by measure preserving homeomorphisms*, Proc. Amer. Math. Soc. 44 (1974), 391-394.

London School of Economics, London, England; York University, North York, Ontario