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FACIAL STRUCTURES FOR THE POSITIVE 
LINEAR MAPS BETWEEN MATRIX ALGEBRAS 

SEUNG-HYEOKKYE 

ABSTRACT. Let £ denote the convex set of all positive linear maps from the matrix 
algebra M„(C) into itself. We construct a join homomorphism from the complete lattice 
?{&) of all faces of (P into the complete lattice 3(V) of all join homomorphisms be
tween the lattice V of all subspaces of C . We also characterize all maximal faces of 
<P. 

1. Introduction. LetMw be the C*-algebra of all n x n matrices over the complex 
field, and fP the convex set of all positive linear maps on M„, that is, those linear maps that 
send the set of positive semi-definite matrices into itself. The structure of fP turns out to 
be very complicated, and several authors have tried to decompose *P into another simpler 
convex subsets. We say that a positive linear map <j> between C*-algebras is decomposable 
if it is the sum of a completely positive linear map and a completely copositive linear 
map. Although every positive linear map between M2 is decomposable [8, 9], this is 
not the case in general [1, 2, 5]. Such an example of an indecomposable positive linear 
map was obtained by adjusting diagonal entries and attaching minus signs at offdiagonal 
entries. In order to find another class of such maps, the author [4] has considered positive 
linear maps which fix diagonal entries, and showed that these maps are decomposable in 
M3, but there are indecomposable positive linear maps among them whenever n > 4 [3]. 

In the course of studying positive linear maps which fix diagonals., it turns out that the 
boundary structure of (P plays an essential role. Because the boundary of *P consists of 
nontrivial faces, this leads us naturally to study general facial structures of (P. We denote 
by !F((P) the complete lattice of all faces of the convex set fP. We also denote by V the 
complete lattice of all subspaces of the «-dimensional vector space C", and 3CV) the 
complete lattice of all join homomorphisms from V into itself. 

In this note, we show that there is a well-defined join homomorphism O from jF(^P) 
into 3(V), and characterize all maximal faces of the convex set FÇP). After we collect 
some elementary facts on faces of a general convex set in a Euclidean space in Section 2, 
we apply these to the convex set fP in Section 3 to construct the above mentioned join 
homomorphism. In Section 4, we show that every maximal face of fP is of the form 

F\p,ri] = {<l>efP:<i>(pyn = o}, 
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POSITIVE LINEAR MAPS 75 

where p is a one dimensional projection and 77 is a nonzero vector. We also examine 
the face arising from the Choi map [1, 2] to see that the join homomorphism O is not 
injective. For the case of the convex set of all completely positive linear maps from a C*-
algebra into a matrix algebra, we note that there is an another approach [7] to investigate 
the facial structure, as was pointed out by the referee. Throughout this note, we write 
a > 0 if a is a positive semi-definite matrix. 

2. Faces of a convex set. Let C be a nonempty convex subset of a Euclidean space 
By. Recall that a point x of C is said to be a relative interior point (we will just call an 
interior pointy in short) of C if for eachjy G C there is t > 1 such that {\ —i)y + tx £ C. 
We will denote by int C the set of all interior points of C, which is nothing but the relative 
interior of C with respect to the affine manifold generated by C (see [6, Theorem 6.4]). 
Note that int C is nonempty whenever C is nonempty. A point >> G C is also said to be a 
boundary point if it is not an interior point, and the set of all boundary points of C will 
be denoted by dC. If C is a closed convex subset of W, then dC coincides with the set 
C \ int C. The following simple proposition will be useful to find boundary points of a 
convex set. Note that this proposition has been already used implicitly in [3,4]. 

PROPOSITION 2.1. Let xo be a fixed interior point of a convex set C. Then a point 
y Eds a boundary point if and only if the following condition holds: 

(2.1) sup{/ : (1 - 0*o + (y G C} = 1. 

PROOF. It is clear that if y satisfies the condition (2.1) then y is a boundary point. 
Assume that j> does not satisfy the condition. Then there is t > 1 such that (1 — t)xo+ty G 
C For a given z EC there is s < 0 such that (1 — s)xo + sz G C, because JCO is an interior 
point. Put r = ^jzp-. Then we see that r < 0 and 

(1 -r)y + rz= — ^ [ ( 1 - 0*o + ty] + ^ — [(1 -s]x0+sz] G C. 
t — s t — s 

This shows that y is an interior point of C • 
Recall that a convex subset F of a convex set C is said to be a face of C if the following 

property holds: 

(2.2) x,y G C,(l -t)x + ty GFforsome/G ( 0 , l ) = > x , y GF. 

A proper face of F is a face of C which is neither C itself nor empty. Note that every 
proper face of C is contained in the boundary of C. It is clear that a face of a face is a 
face. It is also clear that the intersection of faces is again a face, and so there is a unique 
smallest face containing a given subset. For a family {Ft : i E 1} of faces, we denote 
by V/e/F/ the smallest face containing every Ft. In this way, the set 7(C) of all faces of 
a convex set C is a complete lattice with respect to the partial order induced by the set 
inclusions. It is well known [6, Corollary 18.1.2] that if two faces of C have a common 
interior point then they coincide. The following Lemma is actually contained in the Proof 
of [6, Theorem 18.2]. 
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LEMMA 2.2. Let C\ be a convex subset of a convex set C, and F the smallest face of 
C containing C\. Then we have int C\ Ç int F. 

LEMMA 2.3. Let Ci be a convex subset of a convex set C for i = 0, 1, and C2 the 
convex subset of C generated by Q and C\. Then we have xt = (1 — t)xo + tx\ is an 
interior point ofCifor each t G (0, 1) andxi G int Q with i — 0, 1. 

PROOF. Take an arbitrary pointy = (1 —s)yo +sy\ G C2 with s G [0, 1] andj>/ G C/ 
for / = 0, 1. We denote by [x, y] the line segment between points x and y. Since */ is an 
interior point of Q, we can take z,- G Cz such that x, G int[y/? z,-] for / = 0, 1. We denote 
by C3 the convex subset generated by the line segments [yo, ̂ 0] and [y\, z{\. It is clear 
then that xt is a relative interior point of C3. (Note that the hyperplane generated by C3 
is at most 3-dimensional.) Therefore, there is w G C3 such that x, G int\ys, w]. Since 
w G C3 Ç C2, the conclusion follows. • 

PROPOSITION 2.4. Letxt be an interior point of a face Ft of a convex set, for i — 0, 
1. Then the point xt = (1 — t)xo + tx\ is an interior point ofFo V F\ for each t G (0, 1). 

PROOF. Let C2 be the convex subset generated by F$ and F\. Then by Lemma 2.3, 
we see that xt is an interior point of C2. Because F\ V F2 is the smallest face containing 
C2, the Proof is complete by Lemma 2.2. • 

A proper face F of a convex set C is said to be maximal if every proper face containing 
F coincides with F. Note that every proper face F of C is contained in a maximal face 
because C is of finite dimension. With above Lemmas, it is easy to characterize maximal 
faces. 

PROPOSITION 2.5. Let F be a proper face of a convex set C. Then the following are 
equivalent: 

(i) F is a maximal face ofC. 
(ii) If F is a face ofF\ and F\ is a face ofC then F — F\ or F\ == F. 

(Hi) IfxemtF,y£C\Fthen (l-t)x + tye intCfor each t G (0, 1). 
(iv) Ifx emtF,yedC\F then (\-t)x + tye int Cfor each t G (0, 1). 
(v) There is x G int F with the property: If y G dC\F, then (1 - t)x + ty G int Cfor 

each t G (0, 1). 
(vi) There is x G int Fwith the property: If y edC\ F, then (1 - t)x + ty G int Cfor 

somet£(0, 1). 
(vii) There isx G F with the property: If y G dC\F, then (1 — t)x + ty G int Cfor some 

t G (0, 1). 

PROOF. The directions (i) => (ii) and (iii) => (iv) => (v) => (vii) => (vii) are clear. 
For the direction (vii) => (i), assume that x is a point of F with the property in (vii) and 
Fi is a proper face of C with F Ç F\. If there is y G Fi \ F, then j G S C \ F and so 
(1 — i)x + ty G int C for some t G (0, 1). On the other hand, the convexity of F\ implies 
that (1 — t)x + ty £F\ Ç ôC, which is a contradiction. For the remaining implication (ii) 
=> (iii), let x G int F and y G C\F. We denote by F\ the smallest face containing the 
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convex set generated by F and y. Then, we have (1 — t)x + ty G intFi for each / G (0, 
1), by Lemmas 2.2 and 2.3. But, we have F\ = C by the condition (ii), because F is a 
proper face of F\. • 

3. Join homomorphisms between lattices. Let L be a complete lattice. We denote 
by J(L) the set of all join homomorphisms from L into L. We define the partial order in 
J(L)by 

h<k «=> h(p) < k(p) for each/? G L. 

We note that an arbitrary subset of J{L) has the least upper bound. Indeed, if {ht : / G 1} 
is a family of join homomorphisms between L, then it is easy to see that their least upper 
bound in J(L) is given by 

Vieihi:pt->Vi£lhi(p), p G L. 

Therefore, J{L) is a complete lattice. If L has 0 and 1, then J(L) also has 0 and 1 with 
the constant homomorphisms. 

We denote by fP the convex set of all positive linear maps from Mn(C) into itself, and 
V the complete lattice of all self-adjoint projections in Cw. For <f> G fP, we define a map 

(3.i) m = R\m\, ptv, 

where R[x] denotes the range projection of JC G M„(C). 

LEMMA 3.1. The function $ //i (3.7̂ ) w ay'oi/i homomorphismfrom V into itself. 

PROOF. For/?, g G ^ , we denote by A and /i the smallest and largest positive eigen
values of/? + q, respectively. Then we have 

A(/?Vtf)</? + tf</i(pVtf). 

Therefore, we have X(j>(p V q) < <j>(p) + <j>{q\ which implies that 

0(P v , ) < *[#?>+</>(<?)]=i?[^(p)] v *w(?)] = m v to 
From the relation/? <pVq, we infer that </>(/?) < </>(/? Vgr), and </>(/?) < </>(/? V#). Similarly, 
we also have (j){q) < <j>{p V q\ and so we conclude that 

4>(p)vkq)<4>(pvq\ • 

LEMMA 3.2. Let C be a nonempty convex subset offP, and F a face ofC. Ifcf) G F 
and xjj G intF, then we have $ < t/>. 

PROOF. Note that there is a p G F such that -0 = (1 - 00 + 'P with f G (0, 1). Let 
p G V. If £ is a null vector of i/>(p), then it is also a null vector of </>(p), because </>(/?) 
and p{p) are positive semi-definite. This says that the null space of<j>(p) includes the null 
space of %l)(p). Therefore, we have <j>(p) < $(/?). • 
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Let C be an arbitrary convex subset of (P. If <j> and -0 are interior points of a common 
face in C, then we see that </> = $ by Lemma 3.2. For a given face of C, we define 

(3.2) Oc(F> = <£ 

with an interior point <f> of F. We also define Oc(0) = 0 ^ ^ . In this way, we get a 
function O c from the lattice J(C) into the lattice J{V). The above Lemma says that O c 

is order-preserving. Actually, it is a join homomorphism. 

THEOREM 3.3. For any convex subset C of 2, the map O c : !F(Q —• J(V) is a join 
homomorphism. 

PROOF. Let F, be a face of C for / = 0, 1. If one of F, is empty., then it is clear that 

(3.3) Oc(Fo V Fx) = a>c(F0) V O c(F0. 

Assume that Ft is nonempty with an interior point </>/, for / = 0, 1. By Proposition 2.4, 
we see that t/> = (̂</>0 + </>i ) is an interior point of Fo V Fi. For each/? G ^ , we have 

RMp)] = J?[^>(p) + 0j(p)] = JÎ[^o(p)] V tf [^ (p)]9 

and so, it follows that ^ = (^V ^ . Therefore, we have the relation (3.3). • 

4. Maximal faces. We note that the trace map 

tr:Xi->tr(X)/ 

is a typical example of an interior point of {P. We also note that tr = 1 ^ ^ . It follows from 
Lemma 3.2 that $ = 1 J,^K whenever </> is an interior point of (P. For a nonzero vector £, 
we denote by [£] G V the one-dimensional projection onto the subspace spanned by £. 

PROPOSITION 4.1. For a positive linear map </> G (P, the following are equivalent: 
(i) <f> is an interior point of!P. 

(ii) $ = 1 ^ . 
(Hi) (/>([£]) w nonsingularfor each one-dimensional projection [£] G ^ . 

PROOF. It suffices to prove the direction (iii) => (i). We denote by V\ the subset of 
V consisting of all one-dimensional projections. By the assumption (iii), we see that the 
function 

Kl'-'IWKir'lh'tf-'R 
is a continuous function on l/\, which is compact under the usual topology. Therefore, 

we can choose s > 1 such that || </>([£])"! II < s f° r e a c r i [£] € ^i • From this, we see that 

smD>i=tr(i)>m]i [Qevu 

which implies that scj> > tr. Therefore, it follows that 
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Because ~y > 1, we conclude that <j> G int (P by Proposition 2.1. • 
It is well known [6, Corollary 6.5.1] that if L is a hyperplane which contains an interior 

point of a convex set C, then 

(4.1) in t (LnQ = i n i n t C . 

For each positive definite (invertible) matrix K, the map 

*K:X*-+Kl/2ti(X)Klt2 

is an interior point of fP by Proposition 4.1. We denote by 2V the convex subset of fP 
consisting of <j> G (P which sends the identity / to K. By the relation (4.1), we see that 
Proposition 4.1 holds when fP is replaced by 2fc for a positive definite matrix K. Now, 
we characterize maximal faces of (P. We begin with the following simple Lemma: 

LEMMA 4.2. For any nonzero vectors £, 77 G C", there is a unitalpositive linear map 
<j) G tPwith the following properties: 

(i) ker </>([£]) is one dimensional subspace spanned by 77. 
(ii) <j)(q) is nonsingular whenever q G V is a projection of rank one which is different 

from [£]. 

PROOF. For JC G Mn(C), we define a(x) G A/B(C) by 

[0, i?j, 
[a(x)lj = I £trx, i=j= l , 2 , . . . , / i - 1, 

1 ;rrr(*22 + ' * ' +*/»«)> * =7 = *• 
Then the map o satisfies the conditions with [£] = e\\ G I''and 77 = e„ G Cw, where {e,y} 
and {ei} are the usual matrix units and the orthonormal basis. We may assume that 77 is 
a unit vector. Now, let u and v be unitaries with e\\ = u*[Ç]u and V77 = en, respectively. 
Then the map x \—» v*a(u*xu)v satisfies the required conditions. • 

For nonzero vectors £, 77 G Cn, we define 

(4.2) /TC,t?] = {0etf:#K]>7 = O}. 
Then it is clear that F[£, 77] is a convex subset of ^P, which is nonempty by Lemma 4.2. 
We write </>/ = (1 — 0</>o + t<f>\ for each f G [0, 1]. Assuming that (/>o, </>i G HP and 
</>> € T̂£> ^1 fof s o m e t G (0, 1), we have </>o([£])rç = Mfé])1? = 0 because &([£]) is 
positive semi-definite. Therefore, we see that F[£, 77] is a face of HP. 

For nonzero vectors £, 77 G Cn, we also define the join homomorphism J[£, 77] from 
V into V by 

(4.3) ^'^-[[riy-eV, p = K]€^. 

Then it is clear that 0 satisfies the two conditions in Lemma 4.2 if and only if 

(4.4) ï=M,ril 

LEMMA 4.3. Let <j> be an interior point of the face F[£, 77], then </> = J[£, 77]. 

PROOF. By Lemma 4.2, we can take i/> G F[£, 77] such that $ = J[£, 77]. Then we 
see that </> > xjj by Lemma 3.2, and so $ = 1 (̂<ÏA or </> = ./[£, 77]. The conclusion follows 
from Proposition 4.1, since <j> is a boundary point of HP. • 
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THEOREM 4.4. Let <£ be the convex set of all positive linear maps on the matrix 

algebra Mn(C). Then we have the following: 
(i) For each pair (£, 77) of nonzero vectors in Cn, the setF[^f 77] is a maximal face of 

<P. 
(ii) If F is a maximal face of LP then there is a pair of nonzero vectors (£, 77) in Cn 

such that F = F[£, 77]. 
(Hi) IfFo and F\ are two maximal faces of LP then they are affine isomorphic each 

other. 

PROOF. Take an interior point </>0 of F[£, 77], and <f>\ efP\ F[£9 77]. For the proof of 
(i), it suffices to show that <j>t = (1 — t)<j>o + t<j>\ is an interior point of fP for t G (0, 1), by 
Proposition 2.5. Assuming that <j>t is a boundary point of LP, there is [Q G V such that 
<t>t([Q) is singular with a nonzero null vector u. Therefore, it follows that 

<MK]V = <MK]V = 0. 

By Lemma 4.3, we have [Q = [£] and [u] = [77], and so it follows that <j>\ G F[£, 77], 
which is a contradiction. 

If F is a maximal face of IP with an interior point </>, then there is [£] G V such that 
0(R]) is singular with a nonzero null vector 77 by Proposition 4.1. Therefore, <j> G F[£, 
77], and so it follows that F Ç F[£, 77]. The maximality implies F = F[£, 77]. For the last 
assertion, let Ft = F[£„ 77/] for / = 0, 1. Take unitaries u and v such that w*[£i]w = [£o] 
and V771 =770, and define the affine isomorphism <j> 1—+ a^ between LP by 

oc^'.x H-> v*<j)(u*xu)v, x G Mn(C) 

as in the proof of Lemma 4.2. Then we see that </> G F0 if and only if a ^ G f j . • 
In the preceding discussions and Theorem 4.4, the convex set fP may be replaced by 

the convex set LPK for a positive definite matrix K. In this case, the face F[£, 77] should 
be replaced by 

(4.5) /M£,T7] =:F[£, 77] H2V. 

5. Examples. The author [3, 4] has considered the positive linear maps which fix 
diagonal entries, and showed that such maps are of the forms 

(5.1) ÏAj.X^AoX+Bojâ+IoX, 

for self-adjoint matrices A and B with zero diagonals, where A oXis the Hadamard product 
of A andX, andX* denotes the transpose of X. The set A of all such maps is a face of the 
convex set fP/, and diagonal map X 1—• X o / is an interior point of A. Considering the 
join homomorphism in J (If) induced by the diagonal map, it is easy to see that 

(5.2) A=f)[f){FI[ei,eJ]:j=l,2,...9n, j f /}], 
1=1 
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where {e,} is the usual orthonormal basis of Cw. 

Choi [1,2] found an example of an indecomposable positive linear map in M^(C) 

which generates an extreme ray. This map is given by 

011+033 - 0 1 2 - 0 1 3 1 

- 0 2 1 022+011 —023 

- 0 3 1 - 0 3 2 033+022 J 

Assume that £ is a nonzero vector in C3 and the image of [£] under the above map is 
singular. Then, by a direct calculation, we see that £ is one of the following vectors 

£i = 0 , 0 , 0 ) , & = (0,1,0), 6 = (0,0,1), £« = {ë\ é\ eic\ 

and the corresponding null spaces are generated by 

771 = (0,0,1), 772 = (1,0,0), 773 = (0,1,0), 77* = {é\ë\eic\ 

respectively, where a = (a, b, c) G R3. Although the Choi map 7 is an extreme point of 
fP/, it should be noted that the face 

(5.4) r=((V/[^/])n( n ma,ria\) 
i=l a€R3 

contains another map different from the Choi map. In fact, the two faces A and T have a 
nonempty intersection. For example, the map 

l / 2 - 1 ~l\ 
I M - - 1 2 - 1 o*, XeM3 

2 \ - l - 1 2 / 

lies in A H T. 

We note that 7: V —* V sends each [&] to [TJ/]1 for each i = 1, 2, 3, a G R3, and 
sends another/? G V to 1. By définition of T, it is clear that </> < 7 for each <\> G T. 
Therefore, we have <f> = 7 for each interior point 0 G intT. This means that the join 
homomorphism O ^ is not injective, since 7 lies on the boundary of T. 

ADDED IN PROOF (FEBRUARY 13,1996). The author has shown that every maximal 
face of the convex cone of all ^-positive linear maps from Mm into Mn corresponds to 
an m x « matrix whose rank is less than or equal to s, in the papers [On the convex set 
of completely positive linear maps in matrix algebras, Math. Proc. Cambridge Philos. 
Soc, to appear] and [Boundaries of the cone of positive linear maps and its subcones in 
matrix algebras, preprint]. 

(5.3) 7: K l ' 
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