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The statistical properties of uniform momentum zones (UMZs) are extracted from
laboratory and field measurements in rough wall turbulent boundary layers to formulate
a set of stochastic models for the simulation of instantaneous velocity profiles.
A spatiotemporally resolved velocity dataset, covering a field of view of 8 × 9 m2,
was obtained in the atmospheric surface layer using super-large-scale particle image
velocimetry (SLPIV), as part of the Grand-scale Atmospheric Imaging Apparatus (GAIA).
Wind tunnel data from a previous study are included for comparison (Heisel et al., J.
Fluid Mech., vol. 887, 2020, R1). The probability density function of UMZ attributes
such as their thickness, modal velocity and averaged vertical velocity are built at varying
elevations and modelled using log-normal and Gaussian distributions. Inverse transform
sampling of the distributions is used to generate synthetic step-like velocity profiles that are
spatially and temporally uncorrelated. Results show that in the wide range of wall-normal
distances and Reτ up to ∼ O(106) investigated here, shear velocity scaling is manifested
in the velocity jump across shear interfaces between adjacent UMZs, and attached eddy
behaviour is observed in the linear proportionality between UMZ thickness and their
wall normal location. These very same characteristics are recovered in the generated
instantaneous profiles, using both fully stochastic and data-driven hybrid stochastic (DHS)
models, which address, in different ways, the coupling between modal velocities and
UMZ thickness. Our method provides a stochastic approach for generating an ensemble of
instantaneous velocity profiles, consistent with the structural organisation of UMZs, where
the ensemble reproduces the logarithmic mean velocity profile and recovers significant
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portions of the Reynolds stresses and, thus, of the streamwise and vertical velocity
variability.

Key words: turbulent boundary layers, atmospheric flows, turbulence modelling

1. Introduction

Turbulent boundary layer (TBL) flows are characterised by a high degree of complexity,
which is manifested in the broad range of energetic scales that contributes to the spectrum
of the streamwise velocity (Jiménez 2012; Cardesa, Vela-Martín & Jiménez 2017). These
canonical flows also display a level of organisation of basic ubiquitous features, such as
vortices and shear layers (Cantwell 1981; Robinson 1991; Adrian 2007; Jiménez 2018).
Regions of coherent motions have been leveraged to propose simplified, low-dimensional,
phenomenological models of wall turbulent flows (Perry & Chong 1982; Klewicki &
Oberlack 2015; Bautista et al. 2019; Marusic & Monty 2019).

Laboratory investigations of the instantaneous velocity field in zero pressure gradient
(ZPG)-TBL flows, under a wide range of friction Reynolds number Reτ , have shown the
statistical persistence of large-scale structures in the outer region with nearly uniform
streamwise velocity, denoted as uniform momentum zones (UMZs) (Meinhart & Adrian
1995; Adrian, Meinhart & Tomkins 2000; de Silva, Hutchins & Marusic 2016; Laskari
et al. 2022). These zones are separated by internal layers of high shear (ISLs) (Eisma et al.
2015; de Silva et al. 2017; Heisel et al. 2021; Zheng & Anderson 2022). The ISLs are also
denoted as vortical fissures (Priyadarshana et al. 2007), as they are densely populated by
clusters of spanwise vortices (see also, Christensen & Adrian 2001; Heisel et al. 2018).

Due to the existence of UMZs separated by shear layers, the instantaneous
velocity profiles exhibit a step-like shape (de Silva et al. 2016; Heisel et al. 2020c).
A reduced-complexity, wall turbulence velocity field may thus be modelled as a sequence
of discrete steps, where the ensemble average is sufficient to recover the logarithmic
mean velocity profile, for both smooth- and rough-wall flows (Klewicki & Oberlack 2015;
Bautista et al. 2019; Heisel et al. 2020c).

Measurements of rough wall turbulence in the atmospheric surface layer (ASL)
confirmed the existence of UMZs at the field scale. Heisel et al. (2018) used
super-large-scale particle image velocimetry (SLPIV) during snow fall events (Hong et al.
2014; Toloui et al. 2014), under near-neutral thermal stability conditions, to investigate how
coherent structures grow from the laboratory to the ASL. The thickness of UMZs was
observed to scale with wall-normal distance z, within the logarithmic region, providing
a theoretical interpretation to previous laboratory observations by de Silva et al. (2016).
Recalling the mixing length theory, le = κz in which κ is von Kármán constant, is the
size of the height-dependent eddies responsible for the turbulent momentum transfer
across different flow layers (Prandtl 1925, 1932). The phenomenological interpretation
of those eddies in terms of UMZs, rather than isolated swirling motions, has been recently
proposed by Heisel et al. (2020c). A reconciling view is suggested, where the mixing
length dynamics is enabled by the shear layers and vortical structures delimiting UMZs.
Such description must also consider the vertical mobility of the UMZs that has not been
studied in detail, so far.

Townsend (1976) originally proposed the attached eddy hypothesis (AEH), according
to which energetic eddies are self-similar turbulent motions with a size proportional to
the distance from the wall. The word ‘attached’ highlights that these structures originate
at the wall and contribute to extending the shear velocity uτ scaling throughout the outer
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wall region Heisel et al. (2020c). Such a scaling is manifested in the velocity difference,
or jump, across the shear layer (de Silva et al. 2017; Heisel et al. 2020c) and in the
azimuthal velocity of energetic vortex cores (Heisel et al. 2021). The spatial distributions
of shear layers and associated UMZs are also consistent with the hairpin vortex paradigm
(Adrian et al. 2000; Adrian 2007) and the Λ eddy packet model (Perry & Chong 1982),
supporting the idea that vortex heads tend to organise themselves along the very same
shear layers separating UMZs (Heisel et al. 2018). Vortex organisation in the wall region
is also manifested in the statistically persistent structure angle of 9◦ to 15◦ observed in
the two-point correlation of the streamwise velocity fluctuations (Ganapathisubramani,
Longmire & Marusic 2003; Marusic & Heuer 2007) and of the swirling strength, which is
marking intense vortical flows (Christensen & Adrian 2001; Guala et al. 2012).

The existence of UMZs in different flow conditions and configurations confirm their
ubiquity and statistical relevance: for instance, in high-Mach-number flows (Williams et al.
2018; Cogo et al. 2022), above different wall surface roughness geometries or patterns
(Xu, Zhong & Zhang 2019), in adverse pressure gradient TBL flows (Bross, Fuchs &
Kähler 2019), in boundary layers perturbed by surface waves (Li et al. 2020) and in the
ASL under different thermal stability conditions (Puccioni et al. 2023; Salesky 2023). The
UMZs and the associated shear layers can be thus framed as the representative attached
eddy, coherent structure responsible for the momentum transport and the establishment
of the logarithmic velocity profile over a wide range of surface roughness conditions and
Reynolds numbers (Prandtl 1925; Bautista et al. 2019; Heisel et al. 2020c).

In this paper we address the vertical distribution of UMZs and the associated step-like
instantaneous velocity profiles as the simplest representation of streamwise and vertical
velocity variability in TBL flows, and we propose a hierarchy of stochastic models to
reproduce such variability. Thus far, several models for generating synthetic instantaneous
streamwise velocity fields have been proposed (Perry & Chong 1982; McKeon & Sharma
2010; Bautista et al. 2019). The most recent effort by Bautista et al. (2019), proposed
a model based on the mean streamwise momentum equation (Klewicki et al. 2014) and
self-similarity of turbulent structures to reconstruct the step-like instantaneous streamwise
velocity profile corresponding to the presence of UMZs. The Bautista et al. (2019) model
generates synthetic streamwise velocity profiles based on a series of UMZs, where the
number of UMZs in the outer region is a function of the friction Reynolds number
following de Silva et al. (2016), the zone thickness is imposed as a function of the
wall-normal position with an assumed positively skewed Gaussian distribution, and the
velocity jump between adjacent UMZs is assumed to be a constant factor of uτ . While
the model of Bautista et al. (2019) captures first- and higher-order statistical moments of
the streamwise velocity, the imposed assumptions have not been validated experimentally
and the model parameters have only been evaluated for a smooth-wall direct numerical
simulations (DNS) at a single Reτ ∼ O(103) value (Lee & Moser 2015), still relatively
low as compared with ASL values Reτ ∼ O(106).

The focus of our work is to use experimental evidence of UMZ properties and their
distribution to develop a model for the generation of step-like instantaneous velocity
profiles in the wall region above rough surfaces, with no need to reach the boundary
layer height. The model is formulated to mimic turbulence statistics in the logarithmic
region of TBLs over a broad range of Reynolds number and surface roughness. We
first leverage on the identification and statistical characterisation of UMZs geometric
and kinematic attributes, acquired through extensive laboratory and field measurements,
to formulate our modelling framework. For this objective, a spatiotemporally resolved
velocity dataset, covering a field of view of 8 × 9 m2, was obtained in the ASL using
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SLPIV, as part of the Grand-scale Atmospheric Imaging Apparatus (GAIA). The new
dataset targets the roughness sublayer and the logarithmic region, consistent with the
wind tunnel data from Heisel et al. (2020c), which are also included in the analysis. Two
models have been proposed in this study: (i) a stochastic model, and (ii) a data-driven
hybrid stochastic (DHS) model. They both rely on the stochastic generation of UMZ’s
thickness from cumulative distribution functions (c.d.f.s) that were parameterised using
height-dependent experimental observations. The difference between the two models is in
the coupling between UMZ thickness and the wall-normal and modal velocities, imposed
in the generation of the synthetic profiles. Those differences percolate in the statistical
description of the synthetic velocity field resulting from the ensemble of the simulated
velocity profiles. Both models incorporate the vertical velocity as a UMZ attribute, which
allows to extend the analysis of the synthetic velocity field to both components of the
velocity variance and the Reynolds shear stress.

The long-term objective for generating stochastic modal velocity profiles is twofold:
first, we aim to assess whether UMZs are responsible for a significant portion of the
variability of instantaneous rough-wall turbulent flows near the surface; second, we aim to
build a generalised method for generating velocity fields that could reproduce the effects
of the roughness sublayer in atmospheric turbulence, interface with large eddy simulations
and help develop more statistically representative wall function models

All three datasets investigated cover the lower portion of the zero-pressure gradient
rough wall TBL, extending from the edge of the roughness sublayer to the logarithmic
region. The bottom-up approach allows to extend the synthetic velocity profiles until
needed, e.g. to potentially overlap with the lower portion of coarse computational grids
employed for ASL simulations (Moeng 1984; Khanna & Brasseur 1998; Kosovic & Curry
2000; Larsson et al. 2016) and provide a more dynamic feedback.

The experimental datasets used in the models, the histogram-based approach for UMZ
detection, and the procedure to collect UMZs at each wall normal position and estimate
their statistical properties are discussed in detail in the methodology § 2. The two methods
for generating synthetic step-like velocity profiles are presented in § 3. The performance
of the model in reproducing the turbulence statistics of the canonical rough wall boundary
layer is presented in the result § 4. The limitations and strengths of the model are in part
discussed in § 5, in part summarised in the concluding § 6, with particular emphasis on the
prescribed vs emerging properties of the model.

In this study, the symbol z denotes the wall-normal distance, and the subscript ‘i’ is
utilised to denote an arbitrary elevation zi or UMZ attribute at any given location hmi . Each
UMZ has been described by four variables: its thickness hm, the mid-height elevation zm,
the modal velocity um and the averaged vertical velocity wm. The subscript ‘m’ is used to
show attributes of the UMZs, i.e. hm, um, wm. The superscript ‘+’ is used for inner wall
normalisation, i.e. u+ = u/uτ . For variables, lowercase lettering indicates instantaneous
value, and uppercase lettering is used for the temporal or ensemble averages. For velocity,
superscript ′ is used to indicate fluctuations from the mean value, i.e. u = U + u′. The
terms ‘characteristics’ and ‘attributes’ for UMZs are used interchangeably.

2. Methodology

2.1. Wind tunnel and ASL datasets
Data for this investigation were in part gathered from a previously published database
using PIV measurements obtained in the St. Anthony Fall Laboratory boundary layer wind
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Dataset Label Symbol Reτ uτ (m s−1) δ (m) z0 (m) Reference

Wind tunnel
mesh 1 WT (m1) � 10 100 0.39 0.40 6.2 × 10−4 Heisel et al. (2020c)
Wind tunnel
mesh 2 WT (m2) � 13 900 0.56 0.39 6.3 × 10−4 Heisel et al. (2020c)
Atmospheric
surface layer ASL • O(106) 0.40 93 3.3 × 10−3 New

Table 1. Experimental dataset used in acquiring the profile of the statistical moments of UMZs
characteristics.

tunnel with approximately ZPG and wire mesh surface roughness (Heisel et al. 2020c,a).
Table 1 presents the experiment’s parameters. The ASL measurement included here were
performed at the Eolos Wind Research Field Station in Rosemount, Minnesota with SLPIV
(Hong et al. 2014; Toloui et al. 2014; Heisel et al. 2018) and are characterised by high
Reynolds number, nearly neutral thermal stability and surface roughness typical of fresh
snow on flat terrain (Manes et al. 2008; Gromke et al. 2011).

2.1.1. ASL measurements
ASL measurements employed SLPIV using a near-wall configuration of the lighting
system to image an approximately square 10 × 10 m2 field of view with a 3840 ×
2160 pixel2 camera. The video was captured at a 120-Hz frame rate for 15 minutes of
continuous recording, which is of the order of the averaging time used in ASL flows
(Stull 1988a). The selected flow measurements extended from about 1 m above the surface,
well above the estimated roughness sublayer 3–5ks ∼ 0.3–0.5 m (Flack & Schultz 2014;
Chung et al. 2021). The deployment was carried out at night on 22 February 2022, during
a light snowfall. Direct sampling of snow particles provided a median (mean) particle
size of Dp = 0.65(0.82) mm and a mean settling velocity Ws = 0.5 m s−1, subtracted
from the SLPIV vertical velocity field. The estimated particle response time based on the
measured settling velocity, and neglecting particle–turbulence interaction mechanisms, is
estimated as τp � 0.05 s. Alternatively, using the particle response time formulation based
on spherical shape and drag correction we estimate τp = ρpD2

p/18ν(1 + 0.15Rep)
0.687 �

0.1 s for a snow density of approximately ρp = 90D−1
p = 109 kg m−3 (Brandes et al.

2007). This leads to an acceptable Stokes number St = τp/τf = 0.2 for a flow time
scale τf ∼ 0.25 s, corresponding to a length scale of about l ∼ τf urms ∼ 0.18 m, which
approximates the physical size of the 64 × 64 pixel2 interrogation window, 2�x = 0.16 m,
adopted in the SLPIV processing (with 50 % overlap). This scaling has been proposed
in Hong et al. (2014) and Heisel et al. (2018) to justify the use of snow particles
as acceptable tracers in the ASL, with spatial resolution targeting the organisation of
large-scale flow features, such as UMZ and shear layers. Detailed analysis by Heisel
et al. (2021) on a similar SLPIV dataset showed that the shear velocity scaling of both
the interface velocity jump, between adjacent UMZs, and of the azimuthal velocity
of identified energetic vortices is preserved. This suggests that the response of snow
particles to the turbulent flow scales resolved by SLPIV is adequate for the purposes
of the present analysis. We acknowledge that the inertial snow properties leading to the
scale-dependent Stokes number, and the nominal light sheet thickness of about 0.3 m
represent the current limiting factors preventing a further increase in resolution. Based on

979 A12-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.999


R. Ehsani, M. Heisel, J. Li, V. Voller, J. Hong and M. Guala

9

8

7

6

2–2–4

2

3

4

5

6

7

8

0

u (m s–1)z (m)

x (m)

(b)(a)

Figure 1. ASL experimental set-up: (a) photo of the vertical light–mirror configuration for near-surface
illumination; (b) sample recorded image and instantaneous fluctuating velocity field superimposed on the
streamwise velocity contour (a constant u0 = 6.7 m s−1 advection velocity is subtracted).

velocity and temperature measurements from a colocated sonic anemometer, the thermal
stability condition was classified as near-neutral with |z/L| < 0.008 (Iungo et al. 2023).
The Monin Obhukov length, L, is in line with the conditions explored by Toloui et al.
(2014) and Heisel et al. (2018), during similar snowfall events. By fitting the mean velocity
profile with logarithmic law, the shear velocity was estimated as uτ = 0.40 m s−1 and
the Coriolis parameter fc was calculated based on the latitude of the field site. The ASL
depth δ = 0.03uτ /fc = 93 m was estimated assuming 10 % of the atmospheric boundary
layer depth, weakly stable thermal conditions (z/L = 0.008) and geostrophic equilibrium
between Coriolis acceleration and the pressure gradient (Stull 1988b; Zilitinkevich &
Chalikov 1968). We acknowledge that there is significant uncertainty in the estimate of
the aerodynamic roughness length z0 and shear velocity, likely due to contamination from
the roughness sublayer and by unsteadiness and variability of the inflow conditions in the
field, including those driven by weak thermal stability. Comparison with the colocated
sonic anemometer suggests an uncertainty of 0.05 m s−1 in the shear velocity and a range
of z0 values from 0.001 to 0.003 m. Figure 1 provides a picture of the deployment and
a sample of the SLPIV fluctuating velocity field. Further details of the deployment are
included in Iungo et al. (2023).

2.2. UMZ detection
UMZs have been identified in each dataset by detecting local maxima in the histograms
of the instantaneous streamwise velocity u, following the step-by-step procedure of Heisel
et al. (2020c). This approach, introduced by Adrian et al. (2000), is also known as the
histogram-based approach for UMZ recognition. Alternative methods have been proposed
recently by others (Fan et al. 2019; Yao et al. 2019; Younes et al. 2021).

We briefly present here the methodology and the associated parameters. Every PIV
snapshot in the wind tunnel datasets is subdivided into three subsamples to contain roughly
7000 vectors and cover the roughness sublayer and the entire logarithmic region. The
instantaneous streamwise velocity field shown in figure 2(a) is the foundation upon which
the velocity histogram is calculated. The sample size was chosen to correctly identify
physically relevant histogram peaks, defining the modal velocities um and associate them
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Figure 2. Example of UMZ detection methodology from experiment WT (m1) in table 1. (a) Instantaneous
streamwise velocity field. (b) Histogram of the velocity vectors in (a) with detected modal velocities umi as
blue circles and shear velocities uVF as inverted red triangles. (c) Thickness hmi , mid-height elevation zmi and
normalised modal velocities u+

m for the detected UMZs. Yellow vertical lines mark sampled thicknesses hmi of
the UMZs intersecting the reference height zi (dashed horizontal line) accounted for in height-specific statistics.

with coherent flow regions. A lower sample size would lead to more peaks in the histogram
due to random turbulent fluctuations, whereas a larger sample size would smooth the
distribution due to overlapping UMZ travelling at different modal velocities. We direct
the reader to Heisel et al. (2018) and the discussion in de Silva et al. (2016) and Heisel
et al. (2020c) for a more systematic analysis of the sample size effect on UMZ detection.
In the following, we focus on the analysis of the new ASL dataset and on the specific
UMZ detection parameters as compared with the wind tunnel datasets. First, to maintain
in the ASL dataset a number of vectors per sample consistent with the wind tunnel datasets
and improve the statistical convergence of the histogram, three successive PIV snapshots
(t − �t, t, t + �t) were taken into account in the computation of the histogram of the
streamwise velocity at each time t. In addition to the vector sample size, the velocity
histogram is affected by the streamwise extent of the measurement domain Lx. If Lx
is substantially larger than the size of the expected UMZ, then numerous regions with
coherent (but distinct) velocity would contribute to the histogram, possibly smearing it
and concealing the smallest local peaks. Heisel et al. (2020c) computed the average UMZ
thickness Hm in the logarithmic region and showed that Lx acts as a low-pass filter for the
velocity histogram. To improve UMZ detection, it is thus desirable that the variability in
the streamwise velocity histogram emerges from vertically stacked flow regions travelling
at different modal velocities and resembling a step-like instantaneous velocity profile. To
facilitate UMZ extraction, in the ASL the field of view was defined by a relatively small
streamwise extent, Lx = 8 m, while covering a region of intense shear extending up to
Lx/δ ≈ 0.1, which is comparable with the wind tunnel datasets.

The ratio of the streamwise extent of wall-attached structures to their wall-normal
position is expected to be in the 10–15 range (Baars, Hutchins & Marusic 2017).
Accordingly, the typical length of UMZs at our lowest observed wall-normal position
in the wind tunnel, z = 0.025δ, is about 0.2δ. The chosen value Lx = 0.1δ is therefore
adequate, for both the wind tunnel and the ASL, to capture relatively small UMZs located
near the edge of the roughness sublayer, as well as progressively larger UMZs growing in
the logarithmic region.

In addition to the streamwise length Lx, the number of vectors per sample, and the
vertical extent of the shear region covered, also the bin width influences the peaks of the
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velocity histogram. The normalised bin width for the velocity histogram in figure 2(b)
is set to 0.3uτ , which is close to the 0.5uτ reported by Laskari et al. (2018) and slightly
larger than the SLPIV velocity uncertainty � 0.1 m s−1 reported by Heisel et al. (2018).
It has been demonstrated that UMZs are separated by thin layers characterised by strong
velocity gradients, where shear is concentrated (Laskari et al. 2018) and spanwise vortices
are likely to reside (Heisel et al. 2018). According to de Silva et al. (2017), the velocity
jump between two neighbouring UMZs, estimated as the difference between the respective
modal velocities, is in the range of one to two times the friction velocity uτ . Therefore,
the 0.3uτ discretisation of the velocity distribution is expected to be sufficient to detect
distinct modal velocities in each histogram. The local peaks which are illustrated by blue
circles in figure 2(b), are found using a peak detection algorithm based on a pretested
set of parameters: the minimum distance between two peaks (0.5uτ ), the minimum peak
prominence, i.e. the height difference between the peak and its adjacent minima (2 × 10−4

for a normalised, unit area, histogram). These parameters are comparable with previous
values (Laskari et al. 2018; Heisel et al. 2020c). A sample outcome of the UMZ detection
algorithm is presented in figure 2(c), with the modal velocity displayed as blue circles on
the histogram in figure 2(b). The local minima between the detected peaks, identified by
red inverted triangles in figure 2(b), are used to identify the shear layers, or interfaces,
between UMZs.

In figure 2(c), black curves mark the corresponding interfaces based on isocontours of
the histogram local velocity minima. At each streamwise location x, the UMZ thickness
hmi is the vertical distance between UMZ interfaces. The thickness and its mid-height
elevation zmi are depicted as grey double arrow in figure 2(c).

In order to quantify the contribution of UMZs to the Reynolds shear stress and the
corresponding partitioning into sweeps (u′ > 0, w′ < 0) and ejections (u′ < 0, w′ > 0),
the vertical velocity wmi is taken into account as a UMZ attribute. Specifically, it is
estimated at each streamwise position x as the spatially average vertical velocity along the
thickness hmi . Lastly, the thickness of every detected UMZ is compared with the Taylor
micro-scale estimated at the mid-height zmi to filter out possible outliers, such as travelling
vortices or shear layers (Heisel et al. 2021). The Taylor micro-scale, λ = (15ν/ε)1/2 is
estimated through hot-wire measurements for the wind tunnels and sonic anemometer
data in the ASL; the turbulent kinetic energy dissipation rate ε is estimated using
the second-order structure function of the streamwise velocity following Saddoughi &
Veeravalli (1994). The full database comprises O(106) UMZs. Zones reaching the top
and bottom of the PIV field are excluded from the analysis to avoid statistical bias (e.g.
showing a prevalence of thin UMZs near the top of the PIV domain). For the wind tunnel
datasets, we extended the vertical range of UMZ detection closer to the wall, within the
roughness sublayer, as compared with the z/δ > 0.05 lower limit adopted in Heisel et al.
(2020c). In this experimental set-up the mean velocity remains well approximated by the
logarithmic law within the roughness sublayer, and the roughness effects are more apparent
in higher-order statistics (Heisel et al. 2020).

2.3. UMZs height-dependent collection
Following the identification of UMZs at each column of each PIV frame, we present now
the method to combine the descriptive attributes hm, um, wm at each generic elevation z.
This is critical to formulate height-dependent c.d.f.s, which are at the core of the UMZ
generation stochastic process.
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Consistent with the definition of UMZ thickness, we define the elevation range, centred
around the mid-height position, extending from zm − hm/2 to zm + hm/2 (Heisel et al.
2020c). Figure 2(c) provides an example of how the statistical distribution of UMZ
thickness and mid-height is extracted. At each given zi, illustrated by the blue dashed line,
we collect all UMZs that intersect zi, marked in yellow and delimited by double circles.
In this way, any UMZ property can be conditionally averaged on the distance from the
wall z = zi, thus accounting also for large UMZ close to the surface, where zm > zi. The
distribution of hm for three wall-normal positions is shown in figure 3(a–c) for the three
datasets, and classified as log-normal. The most probable UMZ thickness is observed
to increase with z, consistent with the behaviour of attached eddies. The normalised
UMZ modal velocity u+

m and the associated vertical averaged velocity w+
m are plotted in

figure 3(d–i) and are approximately Gaussian. Due to the mean shear, the UMZ streamwise
modal velocity increases with wall normal distance z, whereas the mean vertical velocity
stays around zero.

The persistent wall-normal dependent behaviour of UMZs in the log region clearly
emerges for all datasets in the joint probability of hm/δ and z/δ, in figure 4. As discussed
in Heisel et al. (2020c), the size of statistically dominant eddies appear consistent with the
thickness of the UMZ regions, le ∼ Hm(z) = 0.75z, and scales linearly with z as originally
proposed in the mixing length theory (Prandtl 1932). Note that a similar result, le = 0.62z,
based on UMZ modelling was proposed by Bautista et al. (2019) for smooth wall boundary
layers. We stress that figure 4 offers a robust scaling law to predict the average UMZ
thickness at different heights, whereas figures 3(a)–3(c) describe their distribution and
variability.

2.4. Modelling parameters for a statistical description of UMZs
The estimated distributions of UMZ properties can be described by specific families of
mathematical functions. We use the log-normal distribution for the thickness hm and the
Gaussian distribution for um and wm. These functions require two z-specific modelling
parameters that depend on the mean μ and the standard deviation σ of the UMZ attributes
collected at each elevation z.

In particular, the log-normal distribution of hm requires as modelling parameters the
mean μ̂Hm and the standard deviation σ̂Hm of the logarithm of the thickness of all identified
UMZs collected at each wall-normal position. These are dimensionless and defined as

μ̂Hm = 1
n
Σk ln

(
hmk

1

)
and σ̂Hm =

√
1

n − 1
Σk

(
ln

(
hmk

1

)
− μ̂Hm

)2

, (2.1a,b)

where n is the number of the UMZ thickness measurements collected at z and a
nominal 1(m) width in the denominator of fractions is used for non-dimensionalisation
(see the discussion section for a more generalised normalisation). Please note that

σ̂Hm =
√

ln(1 + σ 2
hm

/μ2
hm

), implying that while the mean and variability of hm increase at

the field scale, the parameter σ̂Hm remains comparable with the wind tunnel data. The mean
and standard deviation of the modal um and vertical wm velocities are the two parameters
of the corresponding Gaussian distributions calculated for the collected UMZs at each
wall-normal position. The statistics of all UMZ attributes are illustrated in figure 5 as a
function of z, for the three datasets. At this stage, we do not aim to formulate predictive
models for these curves, but we need a mathematical expression, for each UMZ attributes,
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Figure 3. Probability density function (p.d.f.) of hm/δ(z), u+
m(z), and w+

m(z) at three wall-normal position for
the three datasets: (a,d,g) from wind tunnel WT (m1), (b,e,h) from wind tunnel WT (m2) and (c, f,i) from the
ASL.
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Figure 4. Normalised joint p.d.f. of hm/δ and z/δ: (a) wind tunnel dataset WT (m1) and (b) wind tunnel
dataset WT (m2); (c) ASL dataset. Dashed lines indicate Hm(z) = 0.75z, for reference.
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Figure 5. Required parameters to reproduce p.d.f. and c.d.f. of three UMZ attributes at different wall-normal
positions, for the three datasets: (a) mean of the logarithm of the extracted thicknesses μ̂Hm = μ(log(hm));
(b) standard deviation of the logarithm of the extracted thicknesses σ̂Hm = σ(log(hm)); (c) mean of the modal
velocity distribution μUm ; (d) modal velocity distribution’s standard deviation σUm ; (e) mean of the distribution
of the wall-normal velocity σWm ; ( f ) standard deviation of wall-normal velocity σWm . Yellow curves in panels
(a,c) represent the fitted power law and logarithmic functions, respectively, for the first statistical moment of
the corresponding variables.

to build the c.d.f. at any arbitrary wall-normal location and reproduce the variability of the
experimental observations.

Note that the specific method of collecting UMZs, at each given wall-normal position,
plays a role in the observed log-normal distribution of UMZ thickness (figure 3a–c). We
acknowledge that the vertical profile of the mean of the thickness logarithms (figure 5a)
does not preserve the linear trend proportional to the wall distance z characteristic of the
AEH and displayed in the joint p.d.f. in figure 4. This is a contamination effect that would
not exist if we only collected UMZ based on their mid-height position zm. However, such
a choice would introduce a significant bias in the data because near the wall or the upper
edge of the observation domain, only very thin zones would be extracted. Owing to the
above reasons, we preferred to collect unbiased intersecting UMZs at any given height
zi, as described previously, and employ a generic power-law function to model μ̂Hm(z)
(yellow line), as shown in figure 5(a). We confirm in the results section that the statistics
computed on the generated UMZ profiles, including the joint p.d.f. (hm, z), accurately
reproduce the experimental trends.
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Figure 6. Probability density function of normalised (a) UMZ’s thickness hm/δ, (b) UMZ’s modal velocity
u+

m , (c) UMZ’s vertical velocity w+
m , estimated from the wind tunnel WT(m1) dataset, at wall-normal position

z/δ = 0.048 (solid line) and reconstructed from the parameters in figure 5 (dotted line).

The mean of the modal velocities at various elevations are expected to converge
to the mean streamwise velocity profile (Heisel et al. 2020c), hence we choose a
logarithmic function for μUm(z) (yellow line in figure 5c). The mean vertical velocity
μWm(z) is approximately zero for all elevations, as expected in nearly zero-pressure
gradient boundary layer flows (figure 5e). Regarding the second parameters of the above
distributions, e.g. the variances, σ̂Hm , σUm , σWm , we do not have any theoretical argument
to support specific functions of wall-normal distance, within the explored range of heights,
and we rely on the interpolation between experimental observations. A preliminary,
approximate formulation of normalised statistical moments of UMZ attributes, in the
explored ranges of Reτ and z/δ, is presented in the discussion section. Figures 6(a)–6(c)
illustrate an example of experimentally derived and reconstructed distributions for UMZ
thickness, modal velocity and vertical velocity, respectively, at wall-normal position
z/δ = 0.048.

3. Stochastic generation of step-like instantaneous velocity profiles

Two methods are used to generate synthetic instantaneous streamwise velocity profiles
from the estimated distributions. Both methods start from the first point above the
surface, where the c.d.f. of the step height is reconstructed from the two height-dependent
parameters μ̂Hm and σ̂Hm . Figure 7(a) illustrates an example of the reconstructed
c.d.f. for UMZ thickness at a given wall-normal position z. A random number
between 0 and 1 is sampled from a uniformly distributed population [rhmi

∈ (0 1)].
The first UMZ thickness, or step height, hm, is produced by inverting the c.d.f. of
the log-normal distribution defined by the near-wall parameters extracted from the
modal velocity field. This technique is known as inverse transform sampling and has
been used in different research fields (Foufoula-Georgiou & Stark 2010; Fan et al.
2016; Heisel 2022). In particular, the corresponding UMZ thickness is estimated as
hmi = exp(μ̂Hm(zi) + σ̂Hm(zi)

√
2 erfinv(2rhmi

− 1)), where erfinv is the inverse of the
error function.

To estimate the modal and vertical velocity associated with the generated UMZ
thickness, two approaches are suggested, marking the core differences between the two
proposed models. Through the first approach, here defined simply as ‘stochastic’ and
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Figure 7. Stochastic model procedure for generating UMZ attributes by inverse transform sampling of the
c.d.f. (red dashed line) of (a) UMZ thickness hm, (b) UMZ modal velocity um and (c) UMZ vertical velocity
wm; (d) resulting instantaneous velocity step profile.

based again on inverse transform sampling, the c.d.f. of the modal velocity is reconstructed
from the estimated parameters at the mid-height elevation of generated UMZ, i.e. zmi =
zi + hmi/2. Then, the reconstructed c.d.f. is inverted and a second random number rumi
sampled from a uniform distribution is used to determine the modal velocity of the
generated UMZ. As discussed in § 5, a detailed analysis on the correlation between
extracted hm and um was performed to assess the dependency between rumi

and rhmi
.

Eventually, two uncorrelated random numbers were preferred, also to avoid a systematic
contamination effect on the near-wall modal velocity by the statistical weight of thicker
zones, contributing more to the height-specific ensemble average statistics.

For the vertical velocity, in the stochastic method we could not generate a third
independent random number rwmi

uncorrelated with rumi
because it would lead to an

unrealistic u′
m–w′

m distribution and to a precisely zero contribution to the Reynolds shear
stress. Therefore, we generated rwm and rum from a Gaussian copula with linear correlation
parameter equal to ρrum ,rwm , ensuring a desired Pearson correlation coefficient and uniform
distribution of both numbers in the ∈ (0 1) range (Joe 1997; Nelsen 2007). The value
of the correlation is estimated using the corresponding datasets (ρrum ,rwm = −0.4, for
wind tunnel, and ρrum ,rwm = −0.22 for the ASL dataset, both fairly independent of
z within the explored range). It should be noted that for the reconstruction of the
c.d.f. of the vertical velocity, the statistical parameters of mid-height elevation are
utilised, i.e. μWm(zmi), σWm(zmi). Figure 7(b,c) show an example of the height-dependent,
reconstructed c.d.f. for the UMZ modal and vertical velocity. These UMZ attributes
were determined using the inverse equation of the c.d.f. of the normal distribution
for each sampled random number: umi = μUm(zmi) + σUm(zmi)

√
2erfinv(2rumi

− 1),
wmi = μWm(zmi) + σWm(zmi)

√
2erfinv(2rwmi

− 1). The modal velocity profile shown in
figure 7(d) is just one of the many step profiles generated by the model.

In the second model, the modal and vertical velocities are evaluated using a data-driven
approach based on the actual measured UMZ attributes. We define this method as DHS.
The thickness is determined using the above stochastic modelling, which is illustrated in
figure 8(a), and the wall-normal position (zi) is used to calculate mid-height elevation of
UMZ (zmi = zi + hmi/2).

Using the two generated UMZ attributes, hmi and zmi , as our foundation, we search the
physical dataset to find the measurements that most closely match the generated values.
For each UMZ, we employed a n-nearest-neighbour approach based on Euclidean distance,
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Figure 8. DHS method: (a) hm is generated by inverse transform sampling; (b) modal and vertical velocities
are assigned by the nearest-neighbour algorithm given UMZ thickness hm and vertical location zm; (c) resulting
step velocity profile.

between the generated pair hmi , zmi and the data pairs (hmj , zmj , for j = 1, . . . , n), in order
to assign the values of vertical and streamwise modal velocities umi , wmi . Figure 8(b)
shows how to carry out this process. Following the selection of the n-nearest neighbours,
each neighbour is assigned a weight Cj = 1/D2

j in which Dj is the Euclidean distance
from the target. The weighted average of the n-nearest neighbour provides the value for
the modal and vertical velocity of the corresponding UMZ (umi = ∑n

j=1 Cjumj/
∑n

j=1 Cj,

wmi = ∑n
j=1 Cjwmj/

∑n
j=1 Cj). This method is considered hybrid stochastic modelling

because it first utilises stochastic modelling for determining UMZ thickness, and then
searches, within the actual dataset, the closest UMZs that embrace the same thickness
and mid-height elevation to determine the corresponding modal and vertical velocity.
We explore in Appendix A the adoption of different numbers of neighbours chosen for
computing the modal and vertical velocity. Eventually, we selected Kum = 1 and Kwm = 1
to ensure the correct reproduction of the streamwise u′

mu′
m and vertical velocity variances

w′
mw′

m.
With the generated UMZ thickness, the new wall-normal position is computed as

zi = zi−1 + hm−1. The previously specified steps are carried out again, iterating this
process until the end of the log region, or any height below, as demonstrated in figure 8(c).
Please note that the bottom-up generation procedure uses z-specific, hence local, attributes
to generate the next UMZ step. The local c.d.f. of um and hm however reflects the way
we collect zones contributing at each height z = zi within the identified UMZ thickness.
Therefore, in the bottom-up approach the synthetic step-like generation is weakly, though
systematically, contaminated by UMZs that tend to populate flow regions farther from
the wall. This is compensated for by the newly generated UMZ which extends vertically
from the step bottom height (zi), compensating for the above potential bias. The process of
generating velocity profiles is repeated until the emerging ensemble statistics converge, as
discussed in the following.

4. Results

The generation of a large number of instantaneous velocity profiles featuring UMZs
with different attributes (thickness, modal and vertical velocities) allows us to build a
multidimensional dataset that can be interrogated as an ensemble of spatiotemporally
uncorrelated realisations. The convergence of the statistics derived by such an ensemble,
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Figure 9. Convergence of the mean modal velocity Um using the stochastic and DHS approaches, for a point
at z/δ = 0.04 in the ASL database, as compared with the mean streamwise velocity profile from experimental
data (black solid line) sampled, as acquired, at 120 Hz U(t), or downsampled by the local integral time scale
U(i).

for the ASL case, is assessed in figure 9 where the mean velocity at mid-elevation
z/δ = 0.04 is computed over an increasing number of samples Ns, using the two
stochastic-based methods described previously. The convergence of the synthetic results
are compared with the convergence of experimental data. Note that by taking temporally
correlated PIV vector fields at 120 Hz, U(t) the number of samples increases significantly.
However, the convergence of the mean velocity still suffers from large-scale unsteady
motions that are known to characterise the ASL (Hutchins & Marusic 2007; Guala,
Metzger & McKeon 2011; Hutchins et al. 2012; Puccioni et al. 2023), and it is thus
intrinsically related to the choice of the averaging time and possible filtering strategies
separating the turbulence from a slowly varying mean flow. When downsampled in time
by approximately the integral time scale, the statistically independent experimental profiles
U(i) better resemble the sequence of the numerically generated profiles; their convergence
is seemingly achieved after about O(102) realisations, comparably with the stochastic
procedures.

Figure 10 illustrates the wall-normal profiles of the averaged velocity as obtained by
stochastically generated and experimental datasets. The theoretical logarithmic law for
rough wall TBLs U/uτ = (1/κ) ln(z/z0) is recovered. Here κ = 0.39 is the von Kármán
constant, whereas z0 is the aerodynamic roughness length. The only marked deviations are
due to the adoption of the modal velocities in the closest UMZs to the wall, which could
not capture the near-surface velocity gradient of the measured dataset. The relatively small
coherent features nearest to the surface do not manifest as distinct histogram peaks, either
due to limitations in the detection methodology or the lack of UMZs in that region. As a
result, the roughness sublayer is often included in a relatively faster UMZ centred farther
from the surface, leading to overestimated near-surface velocities in the model.

Note that the non-ideal representation of UMZs very close to the surface enhances
the discrepancy between the DHS and the stochastic method: the stochastically generated
modal velocity are anchored to the mean modal velocity resulting from UMZ averaging at
each zi and converging to the local mean PIV velocity; the DHS model, instead, converges
to the ensemble average of the modal velocity field, which is overestimated close to
the wall. In the ASL, near-wall UMZs identification is more challenging and, thus, the
DHS methods leads to a larger deviation from the logarithmic velocity profile. The better
performance of the stochastic model in reproducing the mean velocity profile thus relies
on the robustness of the distribution parameters informed by the log law, as opposed to the
difficulty to obtain a flawless height-dependent joint distribution of hm and um. In other
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Figure 10. Normalised mean streamwise velocity profile from the experimental data and from the ensemble of
profiles generated by the stochastic and DHS methods. The yellow line marks the theoretical logarithmic law
for rough walls.

words, the DHS approach is penalised by the shortcomings of the UMZ detection and
identification near the wall.

The height-dependent velocity variances can also be computed from the ensemble of
generated profiles. Results are plotted in figure 11 where the streamwise and vertical
velocity variances of the generated profiles, u′

mu′
m and w′

mw′
m, respectively, are normalised

by the variances measured directly from the PIV vector fields. The plots show that
despite differences in Reynolds number and aerodynamic roughness, the synthetic
modal velocity profiles from both models approximately reproduce the total streamwise
and vertical velocity variances. The overestimate near the wall is consistent with a
similar comparison shown in Heisel et al. (2018) where UMZ were extracted in the
spatio(z)–temporal(t) domain sampled by PIV measurements in the ASL. Note that:
(i) vortices and high-frequency fluctuations are not featured in the stochastic generated
step-like velocity profiles; (ii) the DHS modelled variance depends on the number of
neighbours (discussed in Appendix A). However, the majority of the variance is dictated
by the presence of large- and very-large-scale motions and the associated scale interaction
mechanisms (see, e.g., Hutchins & Marusic 2007; Guala et al. 2011; Peruzzi et al. 2020;
Jacobi et al. 2021). The signature of these features is reflected in the UMZ statistical
behaviour and in the estimated probability distribution of UMZ attributes. Thus, the
synthetic UMZs represent the large-scale portion of the variance. While the small-scale
component of the fluctuations is missing from the synthetic profiles, its absence is more
appreciable for w′

mw′
m in figure 11(b) than for u′

mu′
m in figure 11(a).

The fluctuations of the streamwise modal and vertical velocities allow for the calculation
of the Reynolds shear stress contribution of each UMZ. Wall-normal profiles of −u′

mw′
m

are divided by u2
τ (u2

τ � −u′w′) and are shown in figure 12. The prescribed correlation
between the random numbers used for the determination of modal and vertical velocity
(rumi

, rwmi
) allow the reproduction of Reynolds shear stresses by the stochastic method.

For the DHS model, both modal velocity components are assigned selecting the zone
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Figure 11. Profiles of (a) the generated modal velocity variance u′
mu′

m normalised by the PIV streamwise
velocity variance u′u′ and (b) generated wall-normal UMZ velocity variance w′

mw′
m normalised by the PIV

vertical velocity variance w′w′. Results are provided for the three datasets and the two methods.
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Figure 12. Reynolds shear stress profile of the PIV instantaneous velocity fields −u′w′ (Dataset) compared
with those generated using stochastic and DHS methods −u′

mw′
m.

most closely identified with the generated one (for K = 1). The limited spatial resolution
in the ASL dataset and the relatively large value of the Stokes number, marking a
compromised ability of a snowflake to closely follow fluid parcel trajectories (Samimy
& Lele 1991), are both responsible for the underestimate of the Reynolds shear stress and
for the uncertainty in the friction velocity. This limitation, which appears less stringent
for the velocity variances, affects the comparison between some results emerging from the
modal velocity field and the generated profiles, with those computed on the instantaneous
velocities from the high-Reynolds-number dataset. The most significant effect is in the
underestimate of the ratio ρu′

mw′
m

= u′
mw′

m/σu′
m
σw′

m
which is the correlation coefficient

between u′
m and w′

m. This ratio reduces from the canonical value of −0.4 (Sillero, Jiménez
& Moser 2013; Squire et al. 2016; Heisel et al. 2020) estimated in our wind tunnel to
−0.22 for the ASL dataset. We also acknowledge that factors such as heterogeneous
surface roughness, large-scale unsteadiness of the ASL, thermal stability affects, may
cause some departures from the canonical behaviour, as the observed increase of turbulent
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Figure 13. Quadrant-based analysis of Reynolds shear stress events at a given wall-normal position
z/δ = 0.084 for the WT (m1) dataset, based on (a) wind tunnel PIV instantaneous velocity (u′–w′) and
(b,c) UMZ profiles (u′

m–w′
m) generated using the DHS method and the stochastic method, respectively.

intensity with elevation, or the uncertainty in the estimate of the friction velocity and in
the normalisation of the Reynolds stresses.

Instantaneous Reynolds shear stress events are further mapped and categorised in the
u′–w′ quadrant phase space (Wallace, Eckelmann & Brodkey 1972; Nakagawa & Nezu
1977; Raupach 1981; Wallace 2016). Figure 13 shows an example joint distribution of u′
and w′ at a given wall-normal position z/δ ≈ 0.1 for the wind tunnel WT (m1) dataset.
Reynolds shear stress contributions are divided into low-momentum fluid travelling
upward, referred to as ‘ejection’, and high-momentum fluid moving downward, known
as ‘sweep’. First, we recall that attached eddies, broadly overlapping with δ-scale motions
at laboratory-scale Reynolds numbers, are expected to provide a significant contribution
to the Reynolds stresses, as discussed by Jiménez (1998), Christensen & Adrian (2001),
Guala, Hommema & Adrian (2006) and Balakumar & Adrian (2007). As acknowledged
previously, an independent uncorrelated stochastic generation of um and wm UMZ
attributes would not allow us to reproduce the expected Reynolds shear stress contributions
and would thus display an isotropic quadrant event distribution. This limitation is partially
overcome by the DHS method, which searches through the experimental dataset to find the
most representative UMZ attributes given the initial generation of UMZ thickness hm and
related mid-height position zm (hmi , zmi based on the notation in figure 7). The signature
of large-scale turbulence, expected to survive in the DHS-generated UMZs, provides a net
contribution to the Reynolds shear stress for all datasets (figure 12), manifesting the typical
Q2–Q4 alignment in the u′–w′ quadrants consistent with the experimental measurements
(figure 13). The generation of two uncorrelated random numbers for umi and wmi represent
a case limit in a range of potential strategies to replicate the correlation between UMZ
velocity component attributes, which are described in the discussion section. We opted for
the generation of a set of rumi

rwmi
numbers, imposing a uniform distribution ∈ (0 1) and a

prescribed u′
mw′

m correlation imposed by UMZs extracted from the experimental datasets.
Results shown in figures 12 and 13 support our generation strategy and confirm the key
role of UMZ spatial variability in the Reynolds shear stress.

Starting from the first UMZ thickness and modal velocity near the surface, the stochastic
and DHS models keep generating the velocity layers of the step-like profile. Each velocity
step �um represents the local difference between vertically adjacent modal velocities
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Figure 14. Profile of the average modal velocity jump �Um across UMZ interface in the logarithmic region,
normalised by the shear velocity. Comparison between experimental datasets and generated step velocity
profiles.

that are generated independently. The abrupt velocity jumps in the present model are a
simplified representation of the internal shear layer (ISL), which have a finite thickness
proportional to the Taylor microscale (Eisma et al. 2015; de Silva et al. 2017; Heisel
et al. 2021). The ensemble average value �Um is normalised with the shear velocity,
as suggested by de Silva et al. (2017), and plotted in figure 14 for all datasets. The
quantitative results are consistent with model predictions �Um = 1.26uτ (Bautista et al.
2019) and previous experimental results (de Silva et al. 2017; Gul, Elsinga & Westerweel
2020; Heisel et al. 2020c). However, �Um/uτ does not show the gentle decrease with
the distance from the wall that has been experimentally observed and interpreted as
a consequence of the diffusion of shear and vorticity and the progressive weakening
of the ISLs (Heisel et al. 2021). Since there are no explicit modelling constraints on
the velocity jump between generated UMZs, the observed collapse of �Um/uτ is an
emerging result of both models. It further confirms uτ as a key velocity scale in the
ISLs, well above the surface, throughout the whole outer region (Smits, McKeon &
Marusic 2011). The underestimation of the DHS model near the wall, as compared with
the stochastic model, is inherently related to the extracted modal velocities. As noted
previously, small-scale flow features near the wall are not sufficiently represented or
coherent to generate peaks in the velocity histograms, which are used to assign modal
velocities. Hence, those near-wall features may be included in thicker UMZs characterised
by higher velocities. The overestimate of modal velocities near wall, would also result
in underestimation of the mean shear and, thus, of the velocity jump for the DHS
model.

Note that the modal velocity profile is expected to follow the logarithmic law of the wall.
Hence, the log-normal distribution of UMZ thickness and the scaling of the velocity jump
�Um/uτ are deeply interconnected features. As a further element of validation, we show
in figure 15 the joint p.d.f. of thickness hm and various elevations z, computed in the same
manner as for figure 4. It can be seen that the stochastically generated UMZs thickness
by both methods exhibit characteristics of wall-attached behaviour in the log region,
comparable to the measured UMZ attributes (see figure 4). It is important to highlight
that the generation of the UMZ thickness in both models is carried out stochastically using
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Figure 15. Joint p.d.f. of UMZ thickness hm and elevation z from the generated velocity profiles for the
wind tunnel (a,b) and the ASL flows (c); the dashed line indicate Hm(z) = 0.75z, highlighting wall-attached
behaviour. The stochastic generation of UMZ thickness, in both models, is based on inverse transform sampling.
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Figure 16. Profile of the average normalised UMZ thickness (hm/zm) for all datasets and corresponding
stochastically generated profiles.

the same procedure. This holds true for both figures 15 and 16. The comparison between
generated and measured data is further emphasised in figure 16 where the mean UMZ
thickness is plotted as the function of the height. The emerging hm, zm scaling relationship
is expected to weaken outside of the log region, in the wake, where the constraint of the
outer scale δ becomes increasingly relevant, as observed from other datasets included in
Heisel et al. (2020c).

The coupling between UMZ modal velocity and thickness attributes can be further
explored by estimating the local velocity gradient ∂U/∂z � (�um/hm). This emerges
from the ensemble behaviour of the identified UMZs, specifically from the corresponding
attributes averaged at each wall-normal location z: the velocity jump between nearby
UMZs �umi (figure 7d) and the mean of their thickness hm = (hmi + hmi+1)/2. In
figure 17 the averaged modal velocity gradient, normalised by the friction velocity and the
aerodynamic roughness length (�um/hm)(z0/uτ ), is obtained from the stochastic and DHS
models and plotted for all datasets. As observed, the theoretical trend (∂U/∂z)(z0/uτ ) =
z0/κz is recovered at elevations above the roughness sublayer, where no criticalities are
expected in identifying UMZs. Results from both models, in the absence of constraints
on the modal velocity jump, confirm that the recovered logarithmic mean velocity profile
(figure 10) is ingrained in the step-like structure of the UMZs. The velocity jump scaling
with uτ (figure 15) appear to be the two minimal ingredients for potentially predictive
low-dimensional models.
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Figure 17. Average modal velocity jump gradient (�um/hm) profile, normalised with friction velocity uτ and
aerodynamic roughness length z0. The yellow line marks the theoretical profile z0/κz, derived from the log law.

Note that the emerging close comparison with the mean velocity gradient, in the
stochastic method, is preserved using both an independent and a coupled generation of
random numbers for the c.d.f. inversion of um and hm. As expected it is also preserved
through the nearest-neighbour procedure of the DHS method selecting UMZs with
attributes, such as um, statistically consistent with the generated thickness hm at the
prescribed height zm.

5. Discussion

5.1. Independent or joint generation of UMZ attributes?
In this section we provide some experimental evidence on the mutual relationship between
UMZ attributes, in particular on um–hm and um–wm, both posing some questions on
the optimal random number generation strategy. The stochastic method employed in
the synthetic UMZ step generation has been tested following two simple scenarios:
(i) a prescribed functional dependency between the random numbers rumi

, rhmi
used

for the modal velocity and step height generation, respectively; and (ii) uncorrelated
rumi

, rhmi
(used to produce current figures). Extracted attributes from identified UMZs,

in the logarithmic regions of the three datasets, have been guiding our methodology and
assumptions. For this specific question, we tuned the UMZ extraction algorithm to provide
one single set of attributes per zone, assigned at a wall-normal coordinate zic defined by
the centroid of each UMZ. The extracted hm, um and wm are denoted as ‘modal field’.
The statistical description of UMZ’s attributes is provided at every zi, compiling all the
zones extending in the vertical direction to include the reference height (zic − hm/2 < zi <

zic + hm/2). In figure 18 we illustrate the joint distribution of um–hm at zi/δ � 0.025–0.12,
for the WT (m1) wind tunnel identified UMZs (other datasets show qualitatively similar
features). Close to the wall, the appreciably positive correlation is due to the occurrence of
large high-momentum zones, i.e. with large hmi and umi values in figure 18(b), that extend
down near the wall. This observation is consistent with the prevalence of Q4 sweep events
in the roughness sublayer (Heisel et al. 2020), and suggests potential rumi

, rhmi
, and thus

um–hm, dependencies. However, with increasing zi the correlation is smeared, supporting
the current adoption of uncorrelated rumi

, rhmi
, reflecting the more even balance of Q2 and
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Figure 18. Joint distribution of the UMZ modal velocity and thickness extracted from the wind tunnel
WT (m1) dataset, as single UMZ attribute (blue dots) and generated stochastically (green dots). Results are
shown at different wall-normal positions (a) zi/δ = 0.025 and (b) zi/δ = 0.122. Yellow solid lines mark the
mean modal velocity of the dataset; red dashed lines indicate the mean modal velocity value of the stochastically
generated profiles. As the elevation increases, the correlation coefficient between the extracted hm and um
decreases.

Q4 contributions in the logarithmic region. Surprisingly, the decreasing correlation trend
survives in the synthetic generated profiles.

The other potentially correlated UMZ attributes under exam are the modal um and
wall-normal averaged velocity wm, which are, to some extent, expected to contribute to the
Reynolds shear stress of the instantaneous field. We again rely on identified UMZs from
the experimental datasets, using one set of attributes per zone, and compiled statistics at
specific zi. A level of correlation is expected (see figure 13), since uncorrelated rumi

, rwmi

lead to a non-physical u′
mw′

m = 0. However, a perfectly anti-correlated rwmi
= 1 − rumi

,
while guaranteeing a uniform distribution and a correct inversion of the respective c.d.f.,
lead to an overestimate of the Reynolds shear stress contribution by UMZs. Figure 19
reports the u′w′ profile for the instantaneous velocity filed, as well as for the experimentally
collected modal field (u′

mw′
m) for the different stochastic generation strategies. We show

that imposing the UMZ specific correlation coefficient derived from the data allows us
to reproduce the contribution of the modal field, which is only slightly lower than the
actual Reynolds stresses. A perfect correlation leads to an overestimate of u′

mw′
m across

the whole wall region. This result confirms that both extracted and simulated variability of
the UMZ modal field accounts for a very significant portion of the Reynolds stress tensor
u′

iu
′
j, including diagonal (variances) and off-diagonal (shear) terms. The latter comparison

forced us to adopt a rum, rwm generator procedure ensuring (i) a uniform distribution for
each of the two random numbers and (ii) a prescribed joint rum rwm distribution to recover
the experimentally estimated correlation coefficient. These two random numbers rumrwm
are generated from Gaussian copula with desired linear correlation coefficient ρrum ,rwm in
order to satisfy both mentioned required conditions (Joe 1997; Nelsen 2007).
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Figure 19. Vertical profile of the modal velocity contribution to the Reynolds shear stress. Comparison
between experimental PIV velocity field u′w′ (Dataset), extracted UMZ u′

mw′
m (Modal field) and stochastically

generated profiles imposing different correlation coefficient values between um and wm.

5.2. Generalised modelling for a statistical description of UMZs
In this section we attempt a generalised, yet simplified, description of the parameters
required for the stochastic generation of UMZ attributes at different wall distances within
the logarithmic region. These generalisations leverage both the present experimental
observations and known trends from the literature. Figure 5 showed the UMZ thickness
and velocity distribution parameters fitted to the experimental data and required to
accurately reproduce the p.d.f. and c.d.f. of the velocity step-like profiles. We remark that
the thicknesses of the collected UMZs have a log-normal distribution (figure 3) at each
given zi position, and should thus be normalised to be incorporated in the model in a
logarithmic form. The wall-normal distance zi is a suitable length scale for normalising
the thickness of the collected UMZs in the logarithmic region, as demonstrated in
Heisel et al. (2020c) and confirmed in figure 4. The normalised profile of the mean
and standard deviation of thickness, which are represented by μ̂

zi
Hm

= μ(log(hm/zi))

and σ̂
zi
Hm

= σ(log(hm/zi)), respectively, are plotted in figure 20(a,b), with the abscissa
being normalised by the outer length scale δ. The discrepancy between the wind tunnel
datasets and the ASL dataset may be attributed to uncertainty in determining the thickness
of the boundary layer δ for the ASL dataset, or non-stationarity effects in the ASL
also contributing to the z0 and uτ estimates. The profiles of the mean and standard
deviation of the modal and vertical velocity of the UMZ, normalised with the friction
velocity uτ , are plotted as a function of the aerodynamic roughness length z0, and are
shown in figures 20(c)–20( f ). The standard deviation values for all UMZ attributes are
approximately constant and independent of the wall-normal distance, whereas the mean
velocity profile is assumed to obey to the logarithmic law. The mathematical formulation
of the statistical moments of UMZ attributes required for the estimate of height-dependent
p.d.f. and c.d.f., and ultimately for the generation of the synthetic modal velocity fields,
can be simplified, within the range of Reynolds number explored here, as

μ̂
zi
Hm

� −3.59
( z
δ

)0.91
, σ̂

zi
Hm

� 1, μ+
Um

� 1
κ

log
(

z
z0

)
,

σ+
Um

� 2, μ+
Wm

� 0, σ+
Wm

� 0.85. (5.1a–e)
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Figure 20. Required dimensionless parameters to reproduce p.d.f. and c.d.f. of UMZ attributes at different
wall-normal positions, for the three datasets: (a) μ̂Hm = μ(log(hm/zi)) is the mean of the logarithm of the
thickness normalised by zi; (b) σ̂Hm = σ(log(hm/zi)) is the standard deviation of the logarithm of the thickness
normalised by zi; (c) μ+

Um
is the mean modal velocity normalised by uτ ; (d) σ+

Um
is the modal velocity standard

deviation normalised by uτ ; (e) μ+
Um

is the mean of the wall-normal velocity normalised by friction velocity;
( f ) the standard deviation of wall-normal velocity σ+

Wm
normalised by the friction velocity. Orange dashed lines

are the simplified model prediction based on (5.1a–e).

The statistics extracted from the ensemble of generated velocity profiles do
not exhibit significant differences from the figures shown previously. However,
such a simplified description of the parameters profile is only valid in the
logarithmic region of canonical, fully rough, turbulent boundary layers, and may
be extended down to the roughness sublayer with some caution. Note that in
the normalised description of mean and standard deviation of UMZ attributes,
the equations for generating the thickness, modal and vertical velocity of UMZ
are modified for the thickness (hmi = zi exp(μ̂

zi
Hm

+ σ̂
zi
Hm

√
2erfinv(2rhmi

− 1))), and
for the modal and vertical velocities umi = uτ (μ

+
Um

+ σ+
Um

√
2erfinv(2rumi

− 1)) and
wmi = uτ (μ

+
Wm

+ σ+
Wm

√
2erfinv(2rwmi

− 1)).

6. Conclusion

In this study, we provide experimental results on UMZ attributes (thickness hm, modal
um and vertical wm velocity) extracted from laboratory and field measurements of rough
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wall turbulent boundary layers, covering a broad range of Reynolds numbers (Reτ ∼
O(104 − 106)) and surface roughness. Leveraging on those results, we propose two models
able to generate step-like instantaneous velocity profiles that reproduce the statistical
properties of the investigated canonical flows. The first model utilises a stochastic approach
to determine all features of the UMZs contributing to the step-like velocity profile. The
second model employs a stochastic generation of only the UMZ thickness, while utilising
a data-driven technique to estimate the associated modal and vertical velocities (DHS). To
perform stochastic-based calculations, the distributions of UMZ attributes must be known
at each elevation z, so that the c.d.f. can be formulated and inverted. From the estimated
distribution based on experimental data, we assumed that the p.d.f. of UMZ thickness is
log-normal, whereas modal and vertical velocity are Gaussian. The required parameters
of these distributions are the mean and standard deviation of UMZ attributes, which are
extracted at each z from the laboratory and field datasets. The statistical moments of
the synthetically generated step-like velocity profiles are compared with those calculated
from direct measurements in rough wall turbulent boundary layers. There are a few major
outcomes from this work. The validated distribution functions of height (z)-specific UMZ
attributes, presented in § 5.2, provide the opportunity to introduce variability in the UMZ
step-like structure. The assumptions and emerging results allow the recovery from the
synthetically generated streamwise velocity profiles of the logarithmic law of the wall
and of the associated mean shear. These assumptions are consistent with the scaling of
the AEH: the UMZ thickness hm scaling with z and the velocity jump across the ISLs
scaling with uτ . The variability of the modal velocity field, confined to the evolution
of UMZs and ISLs, accounts for the full streamwise and vertical velocity variances,
leaving only a limited portion of the Reynolds shear stress to the vortices or other
under-represented high frequency fluctuations not featured in our models. Particular care
is devoted to the coupling between UMZ attributes, such as the UMZ thickness, the
streamwise modal and the wall-normal velocities. It appears that, for hm and um, using
the data-driven model is equivalent to the fully stochastic UMZ generation, with no
prescribed correlation between modal velocity and thickness, suggesting an approximate
balance between Q2 and Q4 events in the logarithmic region. A non-zero correlation,
imposed by the experimental modal velocity datasets, was however imposed in the um, wm
generation to retrieve a consistent (modal) Reynolds shear stress contribution. Because of
the entanglement between input parameters, dataset assimilation and model outcomes, we
consider the emerging velocity jump scaling �Um ∼ uτ as the most convincing result
for the model validation, also in view of the close agreement with previous studies
(Bautista et al. 2019; Heisel et al. 2020c). The agreement between the mean shear from
instantaneous UMZs (�um/hm) and the corresponding shear from the logarithmic law
of the wall, is an important established link between the UMZ generation and the mean
velocity profile. A second minor argument supporting the formulation of the model is the
emerging log-normal distribution of hm(z), introducing the necessary skewness to enable
the generation of relatively thick and fast zones near the wall, which seems to be a critical
source of variability. The proposed models possess several advantages, such as the ability
to introduce a structurally consistent variability in both velocity components, from a basic
parameterisation of the averaged velocity profile, and the applicability to a wide range of
Reynolds numbers and surface roughness. So far, the most serious limitations include the
confinement of the current model to the logarithmic layer, due to a lack of observations in
the wake region, and the two-dimensional description of the UMZ structure, due to a lack
of simultaneous measurements in the vertical and wall-parallel planes.
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Figure 21. (a) Mean modal velocity profile and (b) streamwise modal velocity variance profile, estimated on
DHS-generated velocity steps for the varying number of nearest neighbours K.
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Appendix A

A.1. Parameter selection for the DHS model
In order to discuss the hyper-parameter K required in the DHS model, its impact on
the reproduced first and second statistical moments of the modal velocity is studied.
The hyper-parameter K is the chosen number of neighbours, out of O(106) samples, to
determine the modal and vertical velocity of each generated UMZ, given hm and zm.
Figure 21(a) illustrates the sensitivity of the mean velocity profile, averaged over an
ensemble of step-like modal velocities generated by the DHS model, for different values
of K. The log-law can be approximately recovered with weighted averaging (K = 10) or
without weighted averaging (K = 1) of the modal velocities of neighbouring UMZs, from
our datasets. However, selecting K = 10, the weighted averaging results in the generation
of synthetic modal velocity profiles that are more similar to each other and to the mean
logarithmic velocity profile. This results in smaller deviations from the mean velocity at
each zi, and in the underestimation of the streamwise velocity variance profile, as shown
in figure 21(b). The case limit is by represents K = 1, where for any given hm and zm,
the experimental dataset will yield the most accurate match for um. This implies that
the variability observed in the measured and identified zones is entirely retained in the
generated profiles, including the variance.
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