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The Principle of In-lens Detection

LEO's field emission scanning electron microscopes are all
based an the "GEMINI" principle as shown in figure 1. In order
to reduce aberrations and sensitivity to interfering stray-fieids the
electron optical column possesses a positively biased booster that
shifts the energy of the primary electrons. The incident beam is
focussed by a combination of a magnetic lens with an axial gap that
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Fig. 1: Bias concept of Gemini

avoids field leakage to the specimen and an electrostatic retarding
lens formed by the beam booster together with the grounded
pole piece cap. Shortly before the electrons hit the specimen they
are decelerated down to the desired primary energy. A suitable
explanation for the reduction of spherical and chromatic aberrations
is that the electron beam is focussed by the objective lens at higher
energies and smaller electron beam diameters. Another advanta-
geous effect of this arrangement is the collection of secondary elec-
trons emerging from the sample surface attracted and accelerated
by the positively biased electrode of the beam booster and finally
projected onto the In-lens detector.
Energy and Angle selective BSE Detection - EsB

To understand the basic principle of the new detection sys-
tem, one has to have a closer look at the energy spectra as well
as the take-off angle distributions of the released electrons and
their trajectories through the electron column. Figure 2 illustrates a
schematic energy spectrum of electrons escaping from the speci-
men. Secondary electrons (green), possessing very low energies
by definition, are released from the near surface and carry therefore
topographic information, whereas back sea tiered electrons (blue),
which have undergone at least one large angle scattering, originate
from larger depths and possess compositional information. Beside
electron energy level both electron types also differ in respect to
their take-off angle distribution. While the distribution of secondary
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Fig. 2: Electron energy spectrum

electrons orientates perpendicularly to topographic structures, back-
scattered electrons emerge form the bulk material and are therefore
less sensitive to surface micro-inclinations. After emerging from the
specimen surface most of the electrons are attracted by the beam
booster and move upstream into the GEMINI column. Because of
the chromatic aberration of the magnetic lens, the electrons are
forced on different trajectories depending on their energy when
passing the focussing field.

Both, the deflection of the lens and the different take-off angle
distribution result In different phase spaces at the position of the
lower annular In-lens detector (Figure 3).
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Fig.3; Phases space comparison

The green ellipse indicates secondary electrons possessing
large divergence and a wide spatial spread, whereas the back-
scattered electron emittance is significantly smaller resulting in an
effective separation of secondary and backscattered electrons at the
position of the tower In-lens detector. As a consequence of different
phase spaces, backscattered electrons have a closer radial distance
in comparison to secondaries and transit through the central aper-
ture of the In-lens secondary detector, while secondary electrons
land on the In-lens detector and are collected.

From figure 4 depicting the radial distribution and the dimen-
sion of the detector aperture (red line} it is clear that for optimized
conditions a filtering efficiency of 90% may be achieved by applying
the method of "Energy and Angle selective BSE detection". Elec-
trons passing the lower In-lens detector may be collected at the
upper "EsB" detector. These are mainly the so-called "high angle"
backscattered electrons, but since there are still some secondary
electrons inside the phase space volume of the backscattered they
are not collected at the lower In-lens detector. This means that the
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compositional information of the EsB detector is superimposed by
undesirable surface signal. To remove this undesirable signal a
negatively biased filtering grid is installed below the EsB detector
to repel the secondary electrons. Adjustment of the filtering grid is
in the range from 0 to minus 3000V enabling real-time mixture of
surface, voltage, and material contrasts. The momentary obtained
energy resolution is in the range of 120 eV, allowing resolution en-
hancement in the BSE signal. The potential on the filtering grid does
not interfere with the profile of the high resolution primary electron
beam. The combination of detector geometry and the filter voltage
enables simultaneous observation of the In-lens secondary and the
EsB detector signals. Below 3000 V BSE filtering has been realized.
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Fig.5: The SEs (green) are projected onto the lower tn-lens
detector and the BSEs (blue) are guided onto the upper EsB
detector

Figure 5 shows clearly the beam shapes of both electron types and
the general functioning of EsB detection and filtering.
Results

Figure 6 depicts the advantages of the new detector arrange-
ment. While the upper image clearly shows topographical and volt-
age information, the lower micrograph pronounces compositional
contrast and suppresses any charging or edge emphasis effects
allowing for accurate metrology to be performed.

Fig. 6: Nanotube sample at 4 kV
Left: SE image. Right: BSE image with ESB detector (fil-

tering voltage 600 eV). image courtesy of Dr. Heiner Jacksch
LEO Electron Microscopy Group.

Conclusions

The new EsB detector shows excellent results at low beam
energy and very short working distances (100V @ 1mm WD) al-
lowing ultra high resolution and precise imaging. The integrated
EsB detector does not require any additional adjustments, does not
interfere with the primary electron beam and enables simultaneous
real time imaging and mixing of SE and BSE signals. The direct
detection method of the EsB detector has proven to be very effec-
tive. The detection efficiency is close to 100% against the expected
50% of conversion plate type detectors.

Compared to a chamber mounted BSE detector the EsB
detector, which only detects the "high angle" BSE, delivers higher
resolution at shorter working distances enabling high precision
feature measurements. •
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